Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infue...Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infuenced by the phase characteristics and microstructure.In this work,Nd-Fe-B magnets were manufactured using vacuum induction melting(VIM),laser directed energy deposition(LDED)and laser powder bed fusion(LPBF)technologies.Themicrostructure evolution and phase selection of Nd-Fe-B magnets were then clarified in detail.The results indicated that the solidification velocity(V)and cooling rate(R)are key factors in the phase selection.In terms of the VIM-casting Nd-Fe-B magnet,a large volume fraction of theα-Fe soft magnetic phase(39.7 vol.%)and Nd2Fe17Bxmetastable phase(34.7 vol.%)areformed due to the low R(2.3×10-1?C s-1),whereas only a minor fraction of the Nd2Fe14B hard magnetic phase(5.15 vol.%)is presented.For the LDED-processed Nd-Fe-B deposit,although the Nd2Fe14B hard magnetic phase also had a low value(3.4 vol.%)as the values of V(<10-2m s-1)and R(5.06×103?C s-1)increased,part of theα-Fe soft magnetic phase(31.7vol.%)is suppressed,and a higher volume of Nd2Fe17Bxmetastable phases(47.5 vol.%)areformed.As a result,both the VIM-casting and LDED-processed Nd-Fe-B deposits exhibited poor magnetic properties.In contrast,employing the high values of V(>10-2m s-1)and R(1.45×106?C s-1)in the LPBF process resulted in the substantial formation of the Nd2Fe14B hard magnetic phase(55.8 vol.%)directly from the liquid,while theα-Fe soft magnetic phase and Nd2Fe17Bxmetastable phase precipitation are suppressed in the LPBF-processed Nd-Fe-B magnet.Additionally,crystallographic texture analysis reveals that the LPBF-processedNd-Fe-B magnets exhibit isotropic magnetic characteristics.Consequently,the LPBF-processed Nd-Fe-B deposit,exhibiting a coercivity of 656 k A m-1,remanence of 0.79 T and maximum energy product of 71.5 k J m-3,achieved an acceptable magnetic performance,comparable to other additive manufacturing processed Nd-Fe-B magnets from MQP(Nd-lean)Nd-Fe-Bpowder.展开更多
Bacterial colonization of orthopedic implants is one of the leading causes of failure and clinical complexities for load-bearing metallic implants. Topical or systemic administration of antibiotics may not offer the m...Bacterial colonization of orthopedic implants is one of the leading causes of failure and clinical complexities for load-bearing metallic implants. Topical or systemic administration of antibiotics may not offer the most efficient defense against colonization, especially in the case of secondary infection, leading to surgical removal of implants and in some cases even limbs. In this study, laser powder bed fusion was implemented to fabricate Ti3Al2V alloy by a 1:1 weight mixture of CpTi and Ti6Al4V powders. Ti-Tantalum(Ta)–Copper(Cu) alloys were further analyzed by the addition of Ta and Cu into the Ti3Al2V custom alloy. The biological,mechanical, and tribo-biocorrosion properties of Ti3Al2V alloy were evaluated. A 10 wt.% Ta(10Ta) and 3 wt.% Cu(3Cu) were added to the Ti3Al2V alloy to enhance biocompatibility and impart inherent bacterial resistance. Additively manufactured implants were investigated for resistance against Pseudomonas aeruginosa and Staphylococcus aureus strains of bacteria for up to 48 h. A 3 wt.% Cu addition to Ti3Al2V displayed improved antibacterial efficacy, i.e.78%–86% with respect to CpTi. Mechanical properties for Ti3Al2V–10Ta–3Cu alloy were evaluated, demonstrating excellent fatigue resistance, exceptional shear strength, and improved tribological and tribo-biocorrosion characteristics when compared to Ti6Al4V. In vivo studies using a rat distal femur model revealed improved early-stage osseointegration for alloys with10 wt.% Ta addition compared to CpTi and Ti6Al4V. The 3 wt.% Cu-added compositions displayed biocompatibility and no adverse infammatory response in vivo. Our results establish the Ti3Al2V–10Ta–3Cu alloy’s synergistic effect on improving both in vivo biocompatibility and microbial resistance for the next generation of load-bearing metallic implants.展开更多
Magnesium(Mg)and its alloys are emerging as a structural material for the aerospace,automobile,and electronics industries,driven by the imperative of weight reduction.They are also drawing notable attention in the med...Magnesium(Mg)and its alloys are emerging as a structural material for the aerospace,automobile,and electronics industries,driven by the imperative of weight reduction.They are also drawing notable attention in the medical industries owing to their biodegradability and a lower elastic modulus comparable to bone.The ability to manufacture near-net shape products featuring intricate geometries has sparked huge interest in additive manufacturing(AM)of Mg alloys,reflecting a transformation in the manufacturing sectors.However,AM of Mg alloys presents more formidable challenges due to inherent properties,particularly susceptibility to oxidation,gas trapping,high thermal expansion coefficient,and low solidification temperature.This leads to defects such as porosity,lack of fusion,cracking,delamination,residual stresses,and inhomogeneity,ultimately influencing the mechanical,corrosion,and surface properties of AM Mg alloys.To address these issues,post-processing of AM Mg alloys are often needed to make them suitable for application.The present article reviews all post-processing techniques adapted for AM Mg alloys to date,including heat treatment,hot isostatic pressing,friction stir processing,and surface peening.The utilization of these methods within the hybrid AM process,employing interlayer post-processing,is also discussed.Optimal post-processing conditions are reported,and their influence on the microstructure,mechanical,and corrosion properties are detailed.Additionally,future prospects and research directions are proposed.展开更多
This paper presents the first-ever investigation of Menger fractal cubes'quasi-static compression and impact behaviour.Menger cubes with different void ratios were 3D printed using polylactic acid(PLA)with dimensi...This paper presents the first-ever investigation of Menger fractal cubes'quasi-static compression and impact behaviour.Menger cubes with different void ratios were 3D printed using polylactic acid(PLA)with dimensions of 40 mm×40 mm×40 mm.Three different orders of Menger cubes with different void ratios were considered,namely M1 with a void ratio of 0.26,M2 with a void ratio of 0.45,and M3with a void ratio of 0.60.Quasi-static Compression tests were conducted using a universal testing machine,while the drop hammer was used to observe the behaviour under impact loading.The fracture mechanism,energy efficiency and force-time histories were studied.With the structured nature of the void formation and predictability of the failure modes,the Menger geometry showed some promise compared to other alternatives,such as foams and honeycombs.With the increasing void ratio,the Menger geometries show force-displacement behaviour similar to hyper-elastic materials such as rubber and polymers.The third-order Menger cubes showed the highest energy absorption efficiency compared to the other two geometries in this study.The findings of the present work reveal the possibility of using additively manufactured Menger geometries as an energy-efficient system capable of reducing the transmitting force in applications such as crash barriers.展开更多
Bone screws are devices used to fix implants or bones to bones.However,conventional screws are mechanically fixed with thread and often face long-term failure due to poor osseointegration.To improve osseointegration,s...Bone screws are devices used to fix implants or bones to bones.However,conventional screws are mechanically fixed with thread and often face long-term failure due to poor osseointegration.To improve osseointegration,screws are evolving from solid and smooth to porous and rough.Additive manufacturing(AM)offers a high degree of manufacturing freedom,enabling the preparation of predesigned screws that are porous and rough.This paper provides an overview of the problems currently faced by bone screws:long-term loosening and screw breakage.Next,advances in osseointegrated screws are summarized hierarchically(sub-micro,micro,and macro).At the sub-microscale level,we describe surface-modification techniques for enhancing osseointegration.At the micro level,we summarize the micro-design parameters that affect the mechanical and biological properties of porous osseointegrated screws,including porosity,pore size,and pore shape.In addition,we highlight three promising pore shapes:triply periodic minimal surface,auxetic structure with negative Poisson ratio,and the Voronoi structure.At the macro level,we outline the strategies of graded design,gradient design,and topology optimization design to improve the mechanical strength of porous osseointegrated screws.Simultaneously,this paper outlines advances in AM technology for enhancing the mechanical properties of porous osseointegrated screws.AM osseointegrated screws with hierarchical design are expected to provide excellent long-term fixation and the required mechanical strength.展开更多
In the face of the increased global campaign to minimize the emission of greenhouse gases and the need for sustainability in manufacturing, there is a great deal of research focusing on environmentally benign and rene...In the face of the increased global campaign to minimize the emission of greenhouse gases and the need for sustainability in manufacturing, there is a great deal of research focusing on environmentally benign and renewable materials as a substitute for synthetic and petroleum-based products. Natural fiber-reinforced polymeric composites have recently been proposed as a viable alternative to synthetic materials. The current work investigates the suitability of coconut fiber-reinforced polypropylene as a structural material. The coconut fiber-reinforced polypropylene composites were developed. Samples of coconut fiber/polypropylene (PP) composites were prepared using Fused Filament Fabrication (FFF). Tests were then conducted on the mechanical properties of the composites for different proportions of coconut fibers. The results obtained indicate that the composites loaded with 2 wt% exhibited the highest tensile and flexural strength, while the ones loaded with 3 wt% had the highest compression strength. The ultimate tensile and flexural strength at 2 wt% were determined to be 34.13 MPa and 70.47 MPa respectively. The compression strength at 3 wt% was found to be 37.88 MPa. Compared to pure polypropylene, the addition of coconut fibers increased the tensile, flexural, and compression strength of the composite. In the study, an artificial neural network model was proposed to predict the mechanical properties of polymeric composites based on the proportion of fibers. The model was found to predict data with high accuracy.展开更多
Wire-arc additive manufacture(WAAM)has great potential for manufacturing of Al-Cu components.However,inferior mechanical properties of WAAM deposited material restrict its industrial application.Inter-layer cold rolli...Wire-arc additive manufacture(WAAM)has great potential for manufacturing of Al-Cu components.However,inferior mechanical properties of WAAM deposited material restrict its industrial application.Inter-layer cold rolling and thermo-mechanical heat treatment(T8)with pre-stretching deformation between solution and aging treatment were adopted in this study.Their effects on hardness,mechanical properties and microstructure were analyzed and compared to the conventional heat treatment(T6).The results show that cold rolling increases the hardness and strengths,which further increase with T8 treatment.The ultimate tensile strength(UTS)of 513 MPa and yield stress(YS)of 413 MPa can be obtained in the inter-layer cold-rolled sample with T8 treatment,which is much higher than that in the as-deposited samples.The cold-rolled samples show higher elongation than that of as-deposited ones due to significant elimination of porosity in cold rolling;while both the T6 and T8 treatments decrease the elongation.The cold rolling and pre-stretching deformation both contribute to the formation of dense and dispersive precipitatedθ′phases,which inhibits the dislocation movement and enhances the strengths;as a result,T8 treatment shows better strengthening effect than the T6 treatment.The strengthening mechanism was analyzed and it was mainly related to work hardening and precipitation strengthening.展开更多
Al Si10Mg porous protective structure often produces different damage forms under compressive loading,and these damage modes affect its protective function.In order to well meet the service requirements,there is an ur...Al Si10Mg porous protective structure often produces different damage forms under compressive loading,and these damage modes affect its protective function.In order to well meet the service requirements,there is an urgent need to comprehensively understand the mechanical behavior and response mechanism of AlSi10Mg porous structures under compressive loading.In this paper,Al Si10Mg porous structures with three kinds of volume fractions are designed and optimized to meet the requirements of high-impact,strong-energy absorption,and lightweight characteristics.The mechanical behaviors of AlSi10Mg porous structures,including the stress-strain relationship,structural bearing state,deformation and damage modes,and energy absorption characteristics,were obtained through experimental studies at different loading rates.The damage pattern of the damage section indicates that AlSi10Mg porous structures have both ductile and brittle mechanical properties.Numerical simulation studies show that the AlSi10Mg porous structure undergoes shear damage due to relative misalignment along the diagonal cross-section,and the damage location is almost at 45°to the load direction,which is the most direct cause of its structural damage,revealing the damage mechanism of AlSi10Mg porous structures under the compressive load.The normalized energy absorption model constructed in the paper well interprets the energy absorption state of Al Si10Mg porous structures and gives the sensitive location of the structures,and the results of this paper provide important references for peers in structural design and optimization.展开更多
UK manufacturers experienced a challenging start to 2024,with sales in the first quarter(Q1)down 10 per cent on the previous quarter,according to a report by Unleashed.However,year-on-year growth showed a modest incre...UK manufacturers experienced a challenging start to 2024,with sales in the first quarter(Q1)down 10 per cent on the previous quarter,according to a report by Unleashed.However,year-on-year growth showed a modest increase of 2 per cent,reflecting the Bank of England’s assessment of weak growth in the manufacturing sector.展开更多
One of the core competencies of a supermarket lies in its branding.With the continuous development of the market economy and the ongoing evolution of consumer demand,private brands have progressively emerged as signif...One of the core competencies of a supermarket lies in its branding.With the continuous development of the market economy and the ongoing evolution of consumer demand,private brands have progressively emerged as significant contributors to supermarket growth.However,a pivotal developmental challenge for supermarkets is navigating the innovative decision-making process between private brands and designated manufacturers.This paper aims to investigate the innovative decisions between private brands and designated manufacturers,along with the relevant promotional strategies employed during entry into the United States market.展开更多
Additive manufacturing(AM)of Mg alloys has become a promising strategy for producing complex structures,but the corrosion performance of AM Mg components remains unexploited.In this study,wire and arc additive manufac...Additive manufacturing(AM)of Mg alloys has become a promising strategy for producing complex structures,but the corrosion performance of AM Mg components remains unexploited.In this study,wire and arc additive manufacturing(WAAM)was employed to produce single AZ31 layer.The results revealed that the WAAM AZ31 was characterized by significant grain refinement with non-textured crystallographic orientation,similar phase composition and stabilized corrosion performance comparing to the cast AZ31.These varied corrosion behaviors were principally ascribed to the size of grain,where cast AZ31 and WAAM AZ31 were featured by micro galvanic corrosion and intergranular corrosion,respectively.展开更多
The Swarm intelligence algorithm is a very prevalent field in which some scholars have made outstanding achievements.As a representative,Slime mould algorithm(SMA)is widely used because of its superior initial perform...The Swarm intelligence algorithm is a very prevalent field in which some scholars have made outstanding achievements.As a representative,Slime mould algorithm(SMA)is widely used because of its superior initial performance.Therefore,this paper focuses on the improvement of the SMA and the mitigation of its stagnation problems.For this aim,the structure of SMA is adjusted to develop the efficiency of the original method.As a stochastic optimizer,SMA mainly stimulates the behavior of slime mold in nature.For the harmony of the exploration and exploitation of SMA,the paper proposed an enhanced algorithm of SMA called ECSMA,in which two mechanisms are embedded into the structure:elite strategy,and chaotic stochastic strategy.The details of the original SMA and the two introduced strategies are given in this paper.Then,the advantages of the improved SMA through mechanism comparison,balance-diversity analysis,and contrasts with other counterparts are validated.The experimental results demonstrate that both mechanisms have a significant enhancing effect on SMA.Also,SMA is applied to four structural design issues of the welded beam design problem,PV design problem,I-beam design problem,and cantilever beam design problem with excellent results.展开更多
Strength-ductility trade-off is a common issue in Mg alloys. This work proposed that a synergistic enhancement of strength and ductility could be achieved through tuning interlayer dwell time(IDT) in the wire and arc ...Strength-ductility trade-off is a common issue in Mg alloys. This work proposed that a synergistic enhancement of strength and ductility could be achieved through tuning interlayer dwell time(IDT) in the wire and arc additive manufacturing(WAAM) process of Mg alloy.The thermal couples were used to monitor the thermal history during the WAAM process. Additionally, the effect of different IDTs on the microstructure characteristics and resultant mechanical properties of WAAM-processed Mg alloy thin-wall were investigated. The results showed that the stable temperature of the thin-wall component could reach 290 ℃ at IDT=0s, indicating that the thermal accumulation effect was remarkable. Consequently, unimodal coarse grains with an average size of 39.6 μm were generated, and the resultant room-temperature tensile property was poor. With the IDT extended to 60s, the thermal input and thermal dissipation reached a balance, and the stable temperature was only 170 ℃, closing to the initial temperature of the substrate. A refined grain structure with bimodal size distribution was obtained. The remelting zone had fine grains with the size of 15.2 μm, while the arc zone owned coarse grains with the size of 24.5 μm.The alternatively distributed coarse and fine grains lead to the elimination of strength-ductility trade-off. The ultimate tensile strength and elongation of the samples at IDT=60s are increased by 20.6 and 75.0% of those samples at IDT=0s, respectively. The findings will facilitate the development of additive manufacturing processes for advanced Mg alloys.展开更多
Multistable mechanical metamaterials are a type of mechanical metamaterials with special features,such as reusability,energy storage and absorption capabilities,rapid deformation,and amplified output forces.These meta...Multistable mechanical metamaterials are a type of mechanical metamaterials with special features,such as reusability,energy storage and absorption capabilities,rapid deformation,and amplified output forces.These metamaterials are usually realized by series and/or parallel of bistable units.They can exhibit multiple stable configurations under external loads and can be switched reversely among each other,thereby realizing the reusability of mechanical metamaterials and offering broad engineering applications.This paper reviews the latest research progress in the design strategy,manufacture and application of multistable mechanical metamaterials.We divide bistable structures into three categories based on their basic element types and provide the criterion of their bistability.Various manufacturing techniques to fabricate these multistable mechanical metamaterials are introduced,including mold casting,cutting,folding and three-dimensional/4D printing.Furthermore,the prospects of multistable mechanical metamaterials for applications in soft driving,mechanical computing,energy absorption and wave controlling are discussed.Finally,this paper highlights possible challenges and opportunities for future investigations.The review aims to provide insights into the research and development of multistable mechanical metamaterials.展开更多
By the addition of superplasticizer and air entraining agent,manufactured sand selfcompacting concrete(MS SCC)with slump flow varying from 500 to 700 mm and air content varying from 2.0%to 9.0%were prepared and the pu...By the addition of superplasticizer and air entraining agent,manufactured sand selfcompacting concrete(MS SCC)with slump flow varying from 500 to 700 mm and air content varying from 2.0%to 9.0%were prepared and the pumpability of MS SCC was studied by a sliding pipe rheometer(Sliper).According to the Kaplan’s model,the initial pump pressure and the pump resistance of MS SCC were obtained.Meanwhile,rheological properties including the yield stress and the plastic viscosity of MS SCC were measured by a rheometer.The experimental results show that the increase of slump flow contributes to a higher pumpability and a proper air content,i e,6%is beneficial for the pumpability of MS SCC.Due to the existence of stone powder and stronger angularity of MS,the initial pump pressure of MS SCC is only about 60%-88%that of river sand(RS)SCC with the same slump flow and air content,indicating that MS SCC possesses a higher pumpability than RS SCC.展开更多
To overcome the disadvantages of inhomogeneous microstructures and poor mechanical properties of additively manufactured Ti-6Al-4V alloys,a novel technique of hybrid deposition and synchronous micro-rolling is propose...To overcome the disadvantages of inhomogeneous microstructures and poor mechanical properties of additively manufactured Ti-6Al-4V alloys,a novel technique of hybrid deposition and synchronous micro-rolling is proposed.The micro-rolling leads to equiaxed prior β grains,thin discontinuous intergranular α,and equiaxed primary α,in contrast to the coarse columnar prior β grains without the application of micro-rolling.The recrystallization by micro-rolling results in discontinuous intergranular α via the mechanism of strain and interface-induced grain boundary migration.The evolution of α globularization,driven by a solute concentration gradient,starts from the sub-boundary until the formation of equiaxed primary α.Simultaneous strengthening and toughening are achieved,which means an increase in yield strength,ultimate tensile strength,fracture elongation,and work hardening rate.The formation of α recrystallization leads to more fine grain boundaries to strengthen the yield strength,and the improvement of ductility is due to the better-coordinated deformation ability of discontinuous intergranular α and equiaxed primary α.As a result,the fracture mode in micro-rolling changes from intergranular type to transgranular type.展开更多
The eradication of poliomyelitis is a landmark achievement in the history of public health, providing strong protection for children’s health. The introduction of the Chinese Regulations for the Manufacture and Contr...The eradication of poliomyelitis is a landmark achievement in the history of public health, providing strong protection for children’s health. The introduction of the Chinese Regulations for the Manufacture and Control of Live Poliovirus Vaccine is a prerequisite and safeguard for the large-scale production and use of domestically produced live poliovirus vaccines, serving as an indispensable component of vaccine safety. This article, based on archival documents, letters, collections of essays, and oral interviews, examines the historical experience of the development of Chinese Regulations for the Manufacture and Control of Live Poliovirus Vaccine. It contends that the emphasis on localization and the active engagement in international cooperation are critical factors in the swift introduction of Chinese Regulations for the Manufacture and Control of Live Poliovirus Vaccine.展开更多
基金supported by the National Key R&D Program of China(Grant No.2022YFB4600300)the National Natural Science Foundation of China(No.U22A20189,52175364)the China Scholarship Council(Grant No.202206290134)。
文摘Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infuenced by the phase characteristics and microstructure.In this work,Nd-Fe-B magnets were manufactured using vacuum induction melting(VIM),laser directed energy deposition(LDED)and laser powder bed fusion(LPBF)technologies.Themicrostructure evolution and phase selection of Nd-Fe-B magnets were then clarified in detail.The results indicated that the solidification velocity(V)and cooling rate(R)are key factors in the phase selection.In terms of the VIM-casting Nd-Fe-B magnet,a large volume fraction of theα-Fe soft magnetic phase(39.7 vol.%)and Nd2Fe17Bxmetastable phase(34.7 vol.%)areformed due to the low R(2.3×10-1?C s-1),whereas only a minor fraction of the Nd2Fe14B hard magnetic phase(5.15 vol.%)is presented.For the LDED-processed Nd-Fe-B deposit,although the Nd2Fe14B hard magnetic phase also had a low value(3.4 vol.%)as the values of V(<10-2m s-1)and R(5.06×103?C s-1)increased,part of theα-Fe soft magnetic phase(31.7vol.%)is suppressed,and a higher volume of Nd2Fe17Bxmetastable phases(47.5 vol.%)areformed.As a result,both the VIM-casting and LDED-processed Nd-Fe-B deposits exhibited poor magnetic properties.In contrast,employing the high values of V(>10-2m s-1)and R(1.45×106?C s-1)in the LPBF process resulted in the substantial formation of the Nd2Fe14B hard magnetic phase(55.8 vol.%)directly from the liquid,while theα-Fe soft magnetic phase and Nd2Fe17Bxmetastable phase precipitation are suppressed in the LPBF-processed Nd-Fe-B magnet.Additionally,crystallographic texture analysis reveals that the LPBF-processedNd-Fe-B magnets exhibit isotropic magnetic characteristics.Consequently,the LPBF-processed Nd-Fe-B deposit,exhibiting a coercivity of 656 k A m-1,remanence of 0.79 T and maximum energy product of 71.5 k J m-3,achieved an acceptable magnetic performance,comparable to other additive manufacturing processed Nd-Fe-B magnets from MQP(Nd-lean)Nd-Fe-Bpowder.
基金supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under Award Numbers R01 AR067306 and R01 AR078241。
文摘Bacterial colonization of orthopedic implants is one of the leading causes of failure and clinical complexities for load-bearing metallic implants. Topical or systemic administration of antibiotics may not offer the most efficient defense against colonization, especially in the case of secondary infection, leading to surgical removal of implants and in some cases even limbs. In this study, laser powder bed fusion was implemented to fabricate Ti3Al2V alloy by a 1:1 weight mixture of CpTi and Ti6Al4V powders. Ti-Tantalum(Ta)–Copper(Cu) alloys were further analyzed by the addition of Ta and Cu into the Ti3Al2V custom alloy. The biological,mechanical, and tribo-biocorrosion properties of Ti3Al2V alloy were evaluated. A 10 wt.% Ta(10Ta) and 3 wt.% Cu(3Cu) were added to the Ti3Al2V alloy to enhance biocompatibility and impart inherent bacterial resistance. Additively manufactured implants were investigated for resistance against Pseudomonas aeruginosa and Staphylococcus aureus strains of bacteria for up to 48 h. A 3 wt.% Cu addition to Ti3Al2V displayed improved antibacterial efficacy, i.e.78%–86% with respect to CpTi. Mechanical properties for Ti3Al2V–10Ta–3Cu alloy were evaluated, demonstrating excellent fatigue resistance, exceptional shear strength, and improved tribological and tribo-biocorrosion characteristics when compared to Ti6Al4V. In vivo studies using a rat distal femur model revealed improved early-stage osseointegration for alloys with10 wt.% Ta addition compared to CpTi and Ti6Al4V. The 3 wt.% Cu-added compositions displayed biocompatibility and no adverse infammatory response in vivo. Our results establish the Ti3Al2V–10Ta–3Cu alloy’s synergistic effect on improving both in vivo biocompatibility and microbial resistance for the next generation of load-bearing metallic implants.
文摘Magnesium(Mg)and its alloys are emerging as a structural material for the aerospace,automobile,and electronics industries,driven by the imperative of weight reduction.They are also drawing notable attention in the medical industries owing to their biodegradability and a lower elastic modulus comparable to bone.The ability to manufacture near-net shape products featuring intricate geometries has sparked huge interest in additive manufacturing(AM)of Mg alloys,reflecting a transformation in the manufacturing sectors.However,AM of Mg alloys presents more formidable challenges due to inherent properties,particularly susceptibility to oxidation,gas trapping,high thermal expansion coefficient,and low solidification temperature.This leads to defects such as porosity,lack of fusion,cracking,delamination,residual stresses,and inhomogeneity,ultimately influencing the mechanical,corrosion,and surface properties of AM Mg alloys.To address these issues,post-processing of AM Mg alloys are often needed to make them suitable for application.The present article reviews all post-processing techniques adapted for AM Mg alloys to date,including heat treatment,hot isostatic pressing,friction stir processing,and surface peening.The utilization of these methods within the hybrid AM process,employing interlayer post-processing,is also discussed.Optimal post-processing conditions are reported,and their influence on the microstructure,mechanical,and corrosion properties are detailed.Additionally,future prospects and research directions are proposed.
文摘This paper presents the first-ever investigation of Menger fractal cubes'quasi-static compression and impact behaviour.Menger cubes with different void ratios were 3D printed using polylactic acid(PLA)with dimensions of 40 mm×40 mm×40 mm.Three different orders of Menger cubes with different void ratios were considered,namely M1 with a void ratio of 0.26,M2 with a void ratio of 0.45,and M3with a void ratio of 0.60.Quasi-static Compression tests were conducted using a universal testing machine,while the drop hammer was used to observe the behaviour under impact loading.The fracture mechanism,energy efficiency and force-time histories were studied.With the structured nature of the void formation and predictability of the failure modes,the Menger geometry showed some promise compared to other alternatives,such as foams and honeycombs.With the increasing void ratio,the Menger geometries show force-displacement behaviour similar to hyper-elastic materials such as rubber and polymers.The third-order Menger cubes showed the highest energy absorption efficiency compared to the other two geometries in this study.The findings of the present work reveal the possibility of using additively manufactured Menger geometries as an energy-efficient system capable of reducing the transmitting force in applications such as crash barriers.
基金supported by the National Natural Science Foundation of China(Nos.82272504 and 82072456)the National Key R&D Program of China(No.2018YFB1105100)+4 种基金the Department of Science and Technology of Jilin Province,China(Nos.20200404202YY,20200403086SF,20210101321JC,20210204104YY,20200201453JC,20220204119YY,202201ZYTS131,202201ZYTS129,20220401084YY,202201ZYTS505,and YDZJ202301ZYTS076)the Department of Finance of Jilin Province,China(No.2020SCZT037)the Jilin Provincial Development and Reform Commission,China(Nos.2018C010 and 2022C043-5)the Interdisciplinary Integration and Cultivation Project of Jilin University(No.JLUXKJC2020307)the Central University Basic Scientific Research Fund(No.2023-JCXK-04).
文摘Bone screws are devices used to fix implants or bones to bones.However,conventional screws are mechanically fixed with thread and often face long-term failure due to poor osseointegration.To improve osseointegration,screws are evolving from solid and smooth to porous and rough.Additive manufacturing(AM)offers a high degree of manufacturing freedom,enabling the preparation of predesigned screws that are porous and rough.This paper provides an overview of the problems currently faced by bone screws:long-term loosening and screw breakage.Next,advances in osseointegrated screws are summarized hierarchically(sub-micro,micro,and macro).At the sub-microscale level,we describe surface-modification techniques for enhancing osseointegration.At the micro level,we summarize the micro-design parameters that affect the mechanical and biological properties of porous osseointegrated screws,including porosity,pore size,and pore shape.In addition,we highlight three promising pore shapes:triply periodic minimal surface,auxetic structure with negative Poisson ratio,and the Voronoi structure.At the macro level,we outline the strategies of graded design,gradient design,and topology optimization design to improve the mechanical strength of porous osseointegrated screws.Simultaneously,this paper outlines advances in AM technology for enhancing the mechanical properties of porous osseointegrated screws.AM osseointegrated screws with hierarchical design are expected to provide excellent long-term fixation and the required mechanical strength.
文摘In the face of the increased global campaign to minimize the emission of greenhouse gases and the need for sustainability in manufacturing, there is a great deal of research focusing on environmentally benign and renewable materials as a substitute for synthetic and petroleum-based products. Natural fiber-reinforced polymeric composites have recently been proposed as a viable alternative to synthetic materials. The current work investigates the suitability of coconut fiber-reinforced polypropylene as a structural material. The coconut fiber-reinforced polypropylene composites were developed. Samples of coconut fiber/polypropylene (PP) composites were prepared using Fused Filament Fabrication (FFF). Tests were then conducted on the mechanical properties of the composites for different proportions of coconut fibers. The results obtained indicate that the composites loaded with 2 wt% exhibited the highest tensile and flexural strength, while the ones loaded with 3 wt% had the highest compression strength. The ultimate tensile and flexural strength at 2 wt% were determined to be 34.13 MPa and 70.47 MPa respectively. The compression strength at 3 wt% was found to be 37.88 MPa. Compared to pure polypropylene, the addition of coconut fibers increased the tensile, flexural, and compression strength of the composite. In the study, an artificial neural network model was proposed to predict the mechanical properties of polymeric composites based on the proportion of fibers. The model was found to predict data with high accuracy.
基金Project(ZZYJKT2024-08)supported by the State Key Laboratory of Precision Manufacturing for Extreme Service Performance,ChinaProject(2022JB11GX004)supported by Selection of the best Candidates to Undertake Key Research Projects by Dalian City,ChinaProject(201806835007)supported by China Scholarship Council。
文摘Wire-arc additive manufacture(WAAM)has great potential for manufacturing of Al-Cu components.However,inferior mechanical properties of WAAM deposited material restrict its industrial application.Inter-layer cold rolling and thermo-mechanical heat treatment(T8)with pre-stretching deformation between solution and aging treatment were adopted in this study.Their effects on hardness,mechanical properties and microstructure were analyzed and compared to the conventional heat treatment(T6).The results show that cold rolling increases the hardness and strengths,which further increase with T8 treatment.The ultimate tensile strength(UTS)of 513 MPa and yield stress(YS)of 413 MPa can be obtained in the inter-layer cold-rolled sample with T8 treatment,which is much higher than that in the as-deposited samples.The cold-rolled samples show higher elongation than that of as-deposited ones due to significant elimination of porosity in cold rolling;while both the T6 and T8 treatments decrease the elongation.The cold rolling and pre-stretching deformation both contribute to the formation of dense and dispersive precipitatedθ′phases,which inhibits the dislocation movement and enhances the strengths;as a result,T8 treatment shows better strengthening effect than the T6 treatment.The strengthening mechanism was analyzed and it was mainly related to work hardening and precipitation strengthening.
基金financially supported by the National Natural Science Foundation of China(Nos.12272356,12072326,and 12172337)the State Key Laboratory of Dynamic Measurement Technology,North University of China(No.2022-SYSJJ-03)。
文摘Al Si10Mg porous protective structure often produces different damage forms under compressive loading,and these damage modes affect its protective function.In order to well meet the service requirements,there is an urgent need to comprehensively understand the mechanical behavior and response mechanism of AlSi10Mg porous structures under compressive loading.In this paper,Al Si10Mg porous structures with three kinds of volume fractions are designed and optimized to meet the requirements of high-impact,strong-energy absorption,and lightweight characteristics.The mechanical behaviors of AlSi10Mg porous structures,including the stress-strain relationship,structural bearing state,deformation and damage modes,and energy absorption characteristics,were obtained through experimental studies at different loading rates.The damage pattern of the damage section indicates that AlSi10Mg porous structures have both ductile and brittle mechanical properties.Numerical simulation studies show that the AlSi10Mg porous structure undergoes shear damage due to relative misalignment along the diagonal cross-section,and the damage location is almost at 45°to the load direction,which is the most direct cause of its structural damage,revealing the damage mechanism of AlSi10Mg porous structures under the compressive load.The normalized energy absorption model constructed in the paper well interprets the energy absorption state of Al Si10Mg porous structures and gives the sensitive location of the structures,and the results of this paper provide important references for peers in structural design and optimization.
文摘UK manufacturers experienced a challenging start to 2024,with sales in the first quarter(Q1)down 10 per cent on the previous quarter,according to a report by Unleashed.However,year-on-year growth showed a modest increase of 2 per cent,reflecting the Bank of England’s assessment of weak growth in the manufacturing sector.
文摘One of the core competencies of a supermarket lies in its branding.With the continuous development of the market economy and the ongoing evolution of consumer demand,private brands have progressively emerged as significant contributors to supermarket growth.However,a pivotal developmental challenge for supermarkets is navigating the innovative decision-making process between private brands and designated manufacturers.This paper aims to investigate the innovative decisions between private brands and designated manufacturers,along with the relevant promotional strategies employed during entry into the United States market.
基金the financial support by National Key Research and Development Project(Grand No.2020YFC1107202)Guangdong Basic and Applied Basic Research Foundation(Grand No.2020A1515110754)+3 种基金MOE Key Lab of Disaster Forest and Control in Engineering,Jinan University(Grand No.20200904008)Educational Commission of Guangdong Province(Grand No.2020KTSCX012)the Fundamental Research Funds for Central Universities(Grand No.21620342)the support from National Natural Science Foundation of China,NSFC(Grand No.51775556)。
文摘Additive manufacturing(AM)of Mg alloys has become a promising strategy for producing complex structures,but the corrosion performance of AM Mg components remains unexploited.In this study,wire and arc additive manufacturing(WAAM)was employed to produce single AZ31 layer.The results revealed that the WAAM AZ31 was characterized by significant grain refinement with non-textured crystallographic orientation,similar phase composition and stabilized corrosion performance comparing to the cast AZ31.These varied corrosion behaviors were principally ascribed to the size of grain,where cast AZ31 and WAAM AZ31 were featured by micro galvanic corrosion and intergranular corrosion,respectively.
基金supported in part by the National Natural Science Foundation of China(J2124006,62076185)。
文摘The Swarm intelligence algorithm is a very prevalent field in which some scholars have made outstanding achievements.As a representative,Slime mould algorithm(SMA)is widely used because of its superior initial performance.Therefore,this paper focuses on the improvement of the SMA and the mitigation of its stagnation problems.For this aim,the structure of SMA is adjusted to develop the efficiency of the original method.As a stochastic optimizer,SMA mainly stimulates the behavior of slime mold in nature.For the harmony of the exploration and exploitation of SMA,the paper proposed an enhanced algorithm of SMA called ECSMA,in which two mechanisms are embedded into the structure:elite strategy,and chaotic stochastic strategy.The details of the original SMA and the two introduced strategies are given in this paper.Then,the advantages of the improved SMA through mechanism comparison,balance-diversity analysis,and contrasts with other counterparts are validated.The experimental results demonstrate that both mechanisms have a significant enhancing effect on SMA.Also,SMA is applied to four structural design issues of the welded beam design problem,PV design problem,I-beam design problem,and cantilever beam design problem with excellent results.
基金the support from Projects of Major Innovation Platforms for Scientific and Technological and Local Transformation of Scientific and Technological Achievements of Xi’an (No.20GXSF0003)the Higher Education Institution Discipline Innovation and Intelligence Base of Shaanxi Provincial (No.S2021-ZC-GXYZ0011)National Natural Science Foundation of China (Grants No.51801154)。
文摘Strength-ductility trade-off is a common issue in Mg alloys. This work proposed that a synergistic enhancement of strength and ductility could be achieved through tuning interlayer dwell time(IDT) in the wire and arc additive manufacturing(WAAM) process of Mg alloy.The thermal couples were used to monitor the thermal history during the WAAM process. Additionally, the effect of different IDTs on the microstructure characteristics and resultant mechanical properties of WAAM-processed Mg alloy thin-wall were investigated. The results showed that the stable temperature of the thin-wall component could reach 290 ℃ at IDT=0s, indicating that the thermal accumulation effect was remarkable. Consequently, unimodal coarse grains with an average size of 39.6 μm were generated, and the resultant room-temperature tensile property was poor. With the IDT extended to 60s, the thermal input and thermal dissipation reached a balance, and the stable temperature was only 170 ℃, closing to the initial temperature of the substrate. A refined grain structure with bimodal size distribution was obtained. The remelting zone had fine grains with the size of 15.2 μm, while the arc zone owned coarse grains with the size of 24.5 μm.The alternatively distributed coarse and fine grains lead to the elimination of strength-ductility trade-off. The ultimate tensile strength and elongation of the samples at IDT=60s are increased by 20.6 and 75.0% of those samples at IDT=0s, respectively. The findings will facilitate the development of additive manufacturing processes for advanced Mg alloys.
基金supported by the National Natural Science Foundation of China(Grant Nos.12172164,52250363)the National Key R&D Program of China(Grant Nos.2021YFB3801800,2018YFA0306200)。
文摘Multistable mechanical metamaterials are a type of mechanical metamaterials with special features,such as reusability,energy storage and absorption capabilities,rapid deformation,and amplified output forces.These metamaterials are usually realized by series and/or parallel of bistable units.They can exhibit multiple stable configurations under external loads and can be switched reversely among each other,thereby realizing the reusability of mechanical metamaterials and offering broad engineering applications.This paper reviews the latest research progress in the design strategy,manufacture and application of multistable mechanical metamaterials.We divide bistable structures into three categories based on their basic element types and provide the criterion of their bistability.Various manufacturing techniques to fabricate these multistable mechanical metamaterials are introduced,including mold casting,cutting,folding and three-dimensional/4D printing.Furthermore,the prospects of multistable mechanical metamaterials for applications in soft driving,mechanical computing,energy absorption and wave controlling are discussed.Finally,this paper highlights possible challenges and opportunities for future investigations.The review aims to provide insights into the research and development of multistable mechanical metamaterials.
基金Funded by the National Natural Science Foundation of China(Nos.U1934206 and 52108260)the Foundation of China Academy of Railway Science Corporation Limited(No.2020YJ049)。
文摘By the addition of superplasticizer and air entraining agent,manufactured sand selfcompacting concrete(MS SCC)with slump flow varying from 500 to 700 mm and air content varying from 2.0%to 9.0%were prepared and the pumpability of MS SCC was studied by a sliding pipe rheometer(Sliper).According to the Kaplan’s model,the initial pump pressure and the pump resistance of MS SCC were obtained.Meanwhile,rheological properties including the yield stress and the plastic viscosity of MS SCC were measured by a rheometer.The experimental results show that the increase of slump flow contributes to a higher pumpability and a proper air content,i e,6%is beneficial for the pumpability of MS SCC.Due to the existence of stone powder and stronger angularity of MS,the initial pump pressure of MS SCC is only about 60%-88%that of river sand(RS)SCC with the same slump flow and air content,indicating that MS SCC possesses a higher pumpability than RS SCC.
基金the support of the National Natural Science Foundation of China (No.51971099)the Analytical and Testing Center, HUST。
文摘To overcome the disadvantages of inhomogeneous microstructures and poor mechanical properties of additively manufactured Ti-6Al-4V alloys,a novel technique of hybrid deposition and synchronous micro-rolling is proposed.The micro-rolling leads to equiaxed prior β grains,thin discontinuous intergranular α,and equiaxed primary α,in contrast to the coarse columnar prior β grains without the application of micro-rolling.The recrystallization by micro-rolling results in discontinuous intergranular α via the mechanism of strain and interface-induced grain boundary migration.The evolution of α globularization,driven by a solute concentration gradient,starts from the sub-boundary until the formation of equiaxed primary α.Simultaneous strengthening and toughening are achieved,which means an increase in yield strength,ultimate tensile strength,fracture elongation,and work hardening rate.The formation of α recrystallization leads to more fine grain boundaries to strengthen the yield strength,and the improvement of ductility is due to the better-coordinated deformation ability of discontinuous intergranular α and equiaxed primary α.As a result,the fracture mode in micro-rolling changes from intergranular type to transgranular type.
基金This work was supported by a key project of the 14th Five Year Plan of the Institute for the History of Natural Sciences,Chinese Academy of Sciences(E2291J01)the Youth Promotion Association of the Chinese Academy of Sciences(E3292G02).
文摘The eradication of poliomyelitis is a landmark achievement in the history of public health, providing strong protection for children’s health. The introduction of the Chinese Regulations for the Manufacture and Control of Live Poliovirus Vaccine is a prerequisite and safeguard for the large-scale production and use of domestically produced live poliovirus vaccines, serving as an indispensable component of vaccine safety. This article, based on archival documents, letters, collections of essays, and oral interviews, examines the historical experience of the development of Chinese Regulations for the Manufacture and Control of Live Poliovirus Vaccine. It contends that the emphasis on localization and the active engagement in international cooperation are critical factors in the swift introduction of Chinese Regulations for the Manufacture and Control of Live Poliovirus Vaccine.