期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
New methods for calculating bare soil land surface temperature over mountainous terrain
1
作者 YANG Yong CHEN Ren-sheng +3 位作者 SONG Yao-xuan LIU Jun-feng HAN Chun-tan LIU Zhang-wen 《Journal of Mountain Science》 SCIE CSCD 2017年第12期2471-2483,共13页
Land surface temperature(LST) causes the phase change of water, links to the partitioning of surface water and energy budget, and becomes an important parameter to hydrology, meteorology, ecohydrology, and other resea... Land surface temperature(LST) causes the phase change of water, links to the partitioning of surface water and energy budget, and becomes an important parameter to hydrology, meteorology, ecohydrology, and other researches in the high mountain cold regions. Unlike air temperature, which has common altitudinal lapse rates in the mountainous regions, the influence of terrain leads to complicated estimation for soil LST. This study presents two methods that use air temperature and solar position,to estimate bare LST with high temporal resolution over horizontal sites and mountainous terrain with a random slope azimuth. The data from three horizontal meteorological stations and fourteen LST observation fields with different aspects and slopes were used to test the proposed LST methods. The calculated and measured LST were compared in a range of statistical analysis, and the analysis showed that the average RMSE(root mean square error),MAD(mean absolute deviation), and R^2(correlation coefficient) for three horizontal sites were 5.09℃,3.66℃, 0.92, and 5.03℃, 3.52℃, 0.85 for the fourteen complex terrain sites. The proposed methods showed acceptable accuracy, provide a simple way to estimate LST, and will be helpful for simulating the water and energy cycles in alpine mountainous terrain. 展开更多
关键词 Land surface temperature Air temperature Solar position mountainous terrain
下载PDF
Study on Possible Mechanism of Terrain Influence on Cold-flow Snowstorm 被引量:2
2
作者 ZHOU Xue-song YANG Cheng-fang ZHANG Shao-lin 《Meteorological and Environmental Research》 CAS 2011年第8期48-51,85,共5页
[Objective] The research aimed to study the possible mechanism of terrain effect on cold-flow snowstorm.[Method] By using the meso-scale numerical model(WRF),a cold-flow snowstorm weather process in Shandong Peninsula... [Objective] The research aimed to study the possible mechanism of terrain effect on cold-flow snowstorm.[Method] By using the meso-scale numerical model(WRF),a cold-flow snowstorm weather process in Shandong Peninsula was carried out numerical simulation and terrain sensitivity contrast test.The possible reason of terrain effect on falling zone and strength of snowstorm was deeply analyzed from water vapor,thermodynamic field and so on.[Result] The mountain terrain in Shandong Peninsula had great influences on falling zone and strength of cold-flow snowstorm.The strength of snowstorm obviously increased,and the snowfall center obviously moved northward.The main reason was that terrain caused the low-level wind field convergence and vertical movement in the troposphere strengthened.Then,the spatial distribution of water vapor and snow water content in the cold-flow snowstorm process obviously changed.So,the whole snowstorm process was affected.[Conclusion] The mountain terrain in Shandong Peninsula was the important element which needed to be focused on considering in the forecast analysis of cold-flow snowstorm weather process. 展开更多
关键词 Cold-flow snowstorm Mountain terrain Numerical sensitivity test Influence mechanism China
下载PDF
Mesoscale Modeling Study of Severe Convection over Complex Terrain 被引量:2
3
作者 Ying ZHANG Zhiyong MENG +2 位作者 Peijun ZHU Tao SU Guoqing ZHAI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第11期1259-1270,共12页
Short squall lines that occurred over Lishui, southwestern Zhejiang Province, China, on 5 July 2012, were investigated using the WRF model based on 1°× 1° gridded NCEP Final Operational Global Analysis ... Short squall lines that occurred over Lishui, southwestern Zhejiang Province, China, on 5 July 2012, were investigated using the WRF model based on 1°× 1° gridded NCEP Final Operational Global Analysis data. The results from the numerical simulations were particularly satisfactory in the simulated radar echo, which realistically reproduced the generation and development of the convective cells during the period of severe convection. The initiation of this severe convective case was mainly associated with the uplift effect of mesoscale mountains, topographic convergence, sufficient water vapor, and enhanced low-level southeasterly wind from the East China Sea. An obvious wind velocity gradient occurred between the Donggong Mountains and the southeast coastline, which easily enabled wind convergence on the windward slope of the Donggong Mountains; both strong mid–low-level southwesterly wind and low-level southeasterly wind enhanced vertical shear over the mountains to form instability; and a vertical coupling relation between the divergence on the upper-left side of the Donggong Mountains and the convergence on the lower-left side caused the convection to develop rapidly. The convergence centers of surface streams occurred over the mountain terrain and updrafts easily broke through the lifting condensation level(LCL) because of the strong wind convergence and topographic lift, which led to water vapor condensation above the LCL and the generation of the initial convective cloud. The centers of surface convergence continually created new convective cells that moved with the southwest wind and combined along the Donggong Mountains, eventually forming a short squall line that caused severe convective weather. 展开更多
关键词 convective convection divergence mesoscale mountains instability southwestern terrain moved uplift
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部