BACKGROUND The low survival rate of mesenchymal stem cells(MSCs)caused by anoikis,a form of apoptosis,limits the therapeutic efficacy of MSCs.As a proapoptotic molecule,mammalian Ste20-like kinase 1(Mst1)can increase ...BACKGROUND The low survival rate of mesenchymal stem cells(MSCs)caused by anoikis,a form of apoptosis,limits the therapeutic efficacy of MSCs.As a proapoptotic molecule,mammalian Ste20-like kinase 1(Mst1)can increase the production of reactive oxygen species(ROS),thereby promoting anoikis.Recently,we found that Mst1 inhibition could protect mouse bone marrow MSCs(mBMSCs)from H 2 O 2-induced cell apoptosis by inducing autophagy and reducing ROS production.However,the influence of Mst1 inhibition on anoikis in mBMSCs remains unclear.AIM To investigate the mechanisms by which Mst1 inhibition acts on anoikis in isolated mBMSCs.METHODS Poly-2-hydroxyethyl methacrylate-induced anoikis was used following the silencing of Mst1 expression by short hairpin RNA(shRNA)adenovirus transfection.Integrin(ITGs)were tested by flow cytometry.Autophagy and ITGα5β1 were inhibited using 3-methyladenine and small interfering RNA,respe-ctively.The alterations in anoikis were measured by Terminal-deoxynucleoitidyl Transferase Mediated Nick End Labeling and anoikis assays.The levels of the anoikis-related proteins ITGα5,ITGβ1,and phospho-focal adhesion kinase and the activation of caspase 3 and the autophagy-related proteins microtubules associated protein 1 light chain 3 II/I,Beclin1 and p62 were detected by Western blotting.RESULTS In isolated mBMSCs,Mst1 expression was upregulated,and Mst1 inhibition significantly reduced cell apoptosis,induced autophagy and decreased ROS levels.Mechanistically,we found that Mst1 inhibition could upregulate ITGα5 and ITGβ1 expression but not ITGα4,ITGαv,or ITGβ3 expression.Moreover,autophagy induced by upregulated ITGα5β1 expression following Mst1 inhibition played an essential role in the protective efficacy of Mst1 inhibition in averting anoikis.CONCLUSION Mst1 inhibition ameliorated autophagy formation,increased ITGα5β1 expression,and decreased the excessive production of ROS,thereby reducing cell apoptosis in isolated mBMSCs.Based on these results,Mst1 inhibition may provide a promising strategy to overcome anoikis of implanted MSCs.展开更多
To study the cartilage differentiation of mouse mesenchymal stem cells (MSCs) induced by cartilage-derived morphogenetic proteins-2 in vitro, the MSCs were isolated from mouse bone marrow and cultured in vitro. The ...To study the cartilage differentiation of mouse mesenchymal stem cells (MSCs) induced by cartilage-derived morphogenetic proteins-2 in vitro, the MSCs were isolated from mouse bone marrow and cultured in vitro. The cells in passage 3 were induced into chondrogenic differentiation with different concentrations of recombinant human cartilage-derived morphogenetic proteins-2 (0, 10, 20, 50 and 100 ng/mL). After 14 days of induction, morphology of cells was observed under phase-contrast microscope. Collagen Ⅱ mRNA and protein were examined with RT-PCR, Western blotting and immunocytochemistry respectively and the sulfate glycosaminoglycan was measured by Alcian blue staining. RT-PCR showed that CDMP-2 could promote expression of collagen Ⅱ mRNA in an dose-dependant manner, especially at the concentration of 50 ng/mL and 100 ng/mL. Immunocytochemistry and Western blotting revealed a similar change. Alcian blue staining exhibited deposition of typical cartilage extracellular matrix. Our results suggest that mouse bone marrow mesencymal stem cells can differentiate into chondrogenic phonotype with the induction of CDMP-2 in vitro, which provides a basis for further research on the role of CDMP-2 in chondrogenesis.展开更多
Objective:To investigate the effect of the gap junction blocker 1-heptanol on the in vitro chondrogenic differentiation of mouse bone marrow mesenchymal stem cells(MSCs) following induction by GDF-5. Methods:MSCs ...Objective:To investigate the effect of the gap junction blocker 1-heptanol on the in vitro chondrogenic differentiation of mouse bone marrow mesenchymal stem cells(MSCs) following induction by GDF-5. Methods:MSCs were isolated from mouse bone marrow and cultured in vitro. After 3 passages cells were induced to undergo chondrogenic differentiation with recombinant human GDF-5(100 ng/ml), with or without 1-heptanol(2.5 la mol/L). The effect of 1-heptanol on MSCs proliferation was investigated using the MTT assay. Type II collagen mRNA and protein were examined by RT-PCR and immunocytochemistry respectively, and the sulfate glycosaminoglycan was assessed by Alcian blue dye staining. Connexin43(Cx43) protein was examined by western blotting. Results:GDF-5 induced proliferation and chondrogenic differentiation of MSCs. While 1-heptanol treatment had no effect on this proliferation, it inhibited the expression of both type II collagen mRNA and protein. The Alcian blue staining revealed that 1-heptanol also inhibited the deposition of the typical cartilage extracellular matrix promoted by recombinant GDF-5. Western blotting demonstrated that 1-heptanol had no effect on the expression of Cx43. Conclusion:These results suggest that mouse bone marrow MSCs can be differentiated into a chondrogenic phenotype by GDF- 5 administration in vitro. While the gap junction blocker, 1-heptanol, did not reduce gap junction Cx43, these intercellular communication pathways clearly played an important functional role in GDF-5-induced cartilage differentiation.展开更多
Non-adherent bone marrow cell-derived mesenchymal stem cells from C57BL/6J mice were sepa- rated and cultured using the "pour-off" method. Non-adherent bone marrow cell-derived mesen- chymal stem ceils developed col...Non-adherent bone marrow cell-derived mesenchymal stem cells from C57BL/6J mice were sepa- rated and cultured using the "pour-off" method. Non-adherent bone marrow cell-derived mesen- chymal stem ceils developed colony-forming unit-fibroblasts, and could be expanded by supple- mentation with epidermal growth factor. Immunocytochemistry showed that the non-adherent bone marrow cell-derived mesenchymal stem cells exposed to basic fibroblast growth factor/epidermal growth factor/nerve growth factor expressed the neuron specific markers, neurofilament-200 and NeuN, in vitro. Non-adherent bone marrow cell-derived mesenchymal stem cells from 13-galactosidase transgenic mice were also transplanted into focal ischemic brain (right corpus striatum) of C57BL/6J mice. At 8 weeks, cells positive for LacZ and 13-galactosidase staining were observed in the ischemic tissues, and cells co-labeled with both 13-galactosidase and NeuN were seen by double immunohistochemical staining. These findings suggest that the non-adherent bone marrow cell-derived mesenchymal stem cells could differentiate into neuronal-like cells in vitro and in vivo.展开更多
AIM:To assess the capacity to isolate and expand mesenchymal stem cells(MSC)from bone marrow of CBA/Ca,ICR and Balb/c mice. METHODS:Bone marrow of tibia and femur were flushed,cultured and maintained in supplemented D...AIM:To assess the capacity to isolate and expand mesenchymal stem cells(MSC)from bone marrow of CBA/Ca,ICR and Balb/c mice. METHODS:Bone marrow of tibia and femur were flushed,cultured and maintained in supplemented Dulbecco’s modified Eagle’s medium.MSC immunophenotype of cultures were tracked along increasing passages for positivity to CD106,Sca-1 and CD44 and negativity to CD45,CD11b and MHC classⅡ.Differentiation capacity of MSC towards osteogenic and adipo-genic lineages were also assessed. RESULTS:MSC were successfully cultured from bone marrow of all 3 strains,albeit differences in the temporal expression of certain surface antigens.Their differentiation into osteocytes and adipocytes were also observed. MSC from all 3 mouse strains demonstrated a shift from a haematopoietic phenotype(CD106-CD45+CD11b+Sca-1low)to typical MSC phenotype(CD106+CD45-CD11b-Sca-1high)with increasing passages. CONCLUSION:Information garnered assists us in the decision of selecting a mouse strain to generate MSC from for downstream experimentation.展开更多
Objective: A murine model of mixing syngeneic and haploidentical major histocompatibility complex (MHC) matched bone marrow cells transplant was used to evaluate the effect of splenocytes in graft-versus-host disease ...Objective: A murine model of mixing syngeneic and haploidentical major histocompatibility complex (MHC) matched bone marrow cells transplant was used to evaluate the effect of splenocytes in graft-versus-host disease (GVHD) and host-versus-graft reaction (HVGR). Methods: BALB/C recipient mice were lethally conditioned with 8.5 Gy and injected with different grafts which consisted of syngeneic bone marrow cells plus splenocytes (SPLCs) and haploidentical MHC matched bone marrow cells (BMCs)plus different doses of splenocytes. Recipient mice were detected for the percentage of haploidentical MHC matched mouse origin cells in the peripheral blood cells and checked daily for the appearance of GVHD symptoms. Histopathological examination of multiple organs from moribund mice was used to evaluate the grades of GVHD. Results: Recipient mice infused with 10 × 106 haploidentical MHC matched SPLCs and 5×106 syngeneic splenocytes showed a higher level and more stable chimerism with GVHD Ⅱ degree histopathological alterations. Histopathological results of GVHD in other group's hosts were not obvious, and the levels of chimerism were unstable. All of the mice survived over 150 d. Conclusion:The proportion and dose of syngeneic and haploidentical MHC splenocytes are of importance for inducing stable engraftment on the basis of nonlethal GVHD and to balance GVHD and HVGR.展开更多
基金Supported by Natural Science Foundation of Shandong Province,China,No.ZR2020MH014,No.ZR2021QH179 and No.ZR2021MH182.
文摘BACKGROUND The low survival rate of mesenchymal stem cells(MSCs)caused by anoikis,a form of apoptosis,limits the therapeutic efficacy of MSCs.As a proapoptotic molecule,mammalian Ste20-like kinase 1(Mst1)can increase the production of reactive oxygen species(ROS),thereby promoting anoikis.Recently,we found that Mst1 inhibition could protect mouse bone marrow MSCs(mBMSCs)from H 2 O 2-induced cell apoptosis by inducing autophagy and reducing ROS production.However,the influence of Mst1 inhibition on anoikis in mBMSCs remains unclear.AIM To investigate the mechanisms by which Mst1 inhibition acts on anoikis in isolated mBMSCs.METHODS Poly-2-hydroxyethyl methacrylate-induced anoikis was used following the silencing of Mst1 expression by short hairpin RNA(shRNA)adenovirus transfection.Integrin(ITGs)were tested by flow cytometry.Autophagy and ITGα5β1 were inhibited using 3-methyladenine and small interfering RNA,respe-ctively.The alterations in anoikis were measured by Terminal-deoxynucleoitidyl Transferase Mediated Nick End Labeling and anoikis assays.The levels of the anoikis-related proteins ITGα5,ITGβ1,and phospho-focal adhesion kinase and the activation of caspase 3 and the autophagy-related proteins microtubules associated protein 1 light chain 3 II/I,Beclin1 and p62 were detected by Western blotting.RESULTS In isolated mBMSCs,Mst1 expression was upregulated,and Mst1 inhibition significantly reduced cell apoptosis,induced autophagy and decreased ROS levels.Mechanistically,we found that Mst1 inhibition could upregulate ITGα5 and ITGβ1 expression but not ITGα4,ITGαv,or ITGβ3 expression.Moreover,autophagy induced by upregulated ITGα5β1 expression following Mst1 inhibition played an essential role in the protective efficacy of Mst1 inhibition in averting anoikis.CONCLUSION Mst1 inhibition ameliorated autophagy formation,increased ITGα5β1 expression,and decreased the excessive production of ROS,thereby reducing cell apoptosis in isolated mBMSCs.Based on these results,Mst1 inhibition may provide a promising strategy to overcome anoikis of implanted MSCs.
基金This project was supported by a grant from the National Natural Sciences Foundation of China (No 30471753)
文摘To study the cartilage differentiation of mouse mesenchymal stem cells (MSCs) induced by cartilage-derived morphogenetic proteins-2 in vitro, the MSCs were isolated from mouse bone marrow and cultured in vitro. The cells in passage 3 were induced into chondrogenic differentiation with different concentrations of recombinant human cartilage-derived morphogenetic proteins-2 (0, 10, 20, 50 and 100 ng/mL). After 14 days of induction, morphology of cells was observed under phase-contrast microscope. Collagen Ⅱ mRNA and protein were examined with RT-PCR, Western blotting and immunocytochemistry respectively and the sulfate glycosaminoglycan was measured by Alcian blue staining. RT-PCR showed that CDMP-2 could promote expression of collagen Ⅱ mRNA in an dose-dependant manner, especially at the concentration of 50 ng/mL and 100 ng/mL. Immunocytochemistry and Western blotting revealed a similar change. Alcian blue staining exhibited deposition of typical cartilage extracellular matrix. Our results suggest that mouse bone marrow mesencymal stem cells can differentiate into chondrogenic phonotype with the induction of CDMP-2 in vitro, which provides a basis for further research on the role of CDMP-2 in chondrogenesis.
基金supported by the National Natural Science Foundation of China(30471753)
文摘Objective:To investigate the effect of the gap junction blocker 1-heptanol on the in vitro chondrogenic differentiation of mouse bone marrow mesenchymal stem cells(MSCs) following induction by GDF-5. Methods:MSCs were isolated from mouse bone marrow and cultured in vitro. After 3 passages cells were induced to undergo chondrogenic differentiation with recombinant human GDF-5(100 ng/ml), with or without 1-heptanol(2.5 la mol/L). The effect of 1-heptanol on MSCs proliferation was investigated using the MTT assay. Type II collagen mRNA and protein were examined by RT-PCR and immunocytochemistry respectively, and the sulfate glycosaminoglycan was assessed by Alcian blue dye staining. Connexin43(Cx43) protein was examined by western blotting. Results:GDF-5 induced proliferation and chondrogenic differentiation of MSCs. While 1-heptanol treatment had no effect on this proliferation, it inhibited the expression of both type II collagen mRNA and protein. The Alcian blue staining revealed that 1-heptanol also inhibited the deposition of the typical cartilage extracellular matrix promoted by recombinant GDF-5. Western blotting demonstrated that 1-heptanol had no effect on the expression of Cx43. Conclusion:These results suggest that mouse bone marrow MSCs can be differentiated into a chondrogenic phenotype by GDF- 5 administration in vitro. While the gap junction blocker, 1-heptanol, did not reduce gap junction Cx43, these intercellular communication pathways clearly played an important functional role in GDF-5-induced cartilage differentiation.
基金supported by the National Natural Science Foundation of China,No.30471836
文摘Non-adherent bone marrow cell-derived mesenchymal stem cells from C57BL/6J mice were sepa- rated and cultured using the "pour-off" method. Non-adherent bone marrow cell-derived mesen- chymal stem ceils developed colony-forming unit-fibroblasts, and could be expanded by supple- mentation with epidermal growth factor. Immunocytochemistry showed that the non-adherent bone marrow cell-derived mesenchymal stem cells exposed to basic fibroblast growth factor/epidermal growth factor/nerve growth factor expressed the neuron specific markers, neurofilament-200 and NeuN, in vitro. Non-adherent bone marrow cell-derived mesenchymal stem cells from 13-galactosidase transgenic mice were also transplanted into focal ischemic brain (right corpus striatum) of C57BL/6J mice. At 8 weeks, cells positive for LacZ and 13-galactosidase staining were observed in the ischemic tissues, and cells co-labeled with both 13-galactosidase and NeuN were seen by double immunohistochemical staining. These findings suggest that the non-adherent bone marrow cell-derived mesenchymal stem cells could differentiate into neuronal-like cells in vitro and in vivo.
基金Supported by The Research University Grant Scheme UPM,04-02-10-0924RUExploratory Research Grant Scheme,Ministry of Higher Education,ERGS/1/2012/5527106
文摘AIM:To assess the capacity to isolate and expand mesenchymal stem cells(MSC)from bone marrow of CBA/Ca,ICR and Balb/c mice. METHODS:Bone marrow of tibia and femur were flushed,cultured and maintained in supplemented Dulbecco’s modified Eagle’s medium.MSC immunophenotype of cultures were tracked along increasing passages for positivity to CD106,Sca-1 and CD44 and negativity to CD45,CD11b and MHC classⅡ.Differentiation capacity of MSC towards osteogenic and adipo-genic lineages were also assessed. RESULTS:MSC were successfully cultured from bone marrow of all 3 strains,albeit differences in the temporal expression of certain surface antigens.Their differentiation into osteocytes and adipocytes were also observed. MSC from all 3 mouse strains demonstrated a shift from a haematopoietic phenotype(CD106-CD45+CD11b+Sca-1low)to typical MSC phenotype(CD106+CD45-CD11b-Sca-1high)with increasing passages. CONCLUSION:Information garnered assists us in the decision of selecting a mouse strain to generate MSC from for downstream experimentation.
文摘Objective: A murine model of mixing syngeneic and haploidentical major histocompatibility complex (MHC) matched bone marrow cells transplant was used to evaluate the effect of splenocytes in graft-versus-host disease (GVHD) and host-versus-graft reaction (HVGR). Methods: BALB/C recipient mice were lethally conditioned with 8.5 Gy and injected with different grafts which consisted of syngeneic bone marrow cells plus splenocytes (SPLCs) and haploidentical MHC matched bone marrow cells (BMCs)plus different doses of splenocytes. Recipient mice were detected for the percentage of haploidentical MHC matched mouse origin cells in the peripheral blood cells and checked daily for the appearance of GVHD symptoms. Histopathological examination of multiple organs from moribund mice was used to evaluate the grades of GVHD. Results: Recipient mice infused with 10 × 106 haploidentical MHC matched SPLCs and 5×106 syngeneic splenocytes showed a higher level and more stable chimerism with GVHD Ⅱ degree histopathological alterations. Histopathological results of GVHD in other group's hosts were not obvious, and the levels of chimerism were unstable. All of the mice survived over 150 d. Conclusion:The proportion and dose of syngeneic and haploidentical MHC splenocytes are of importance for inducing stable engraftment on the basis of nonlethal GVHD and to balance GVHD and HVGR.