Aim: To investigate the stage-specific localization of metastasis-associated protein 1 (MTA1) during spermatogenesis in adult human and mouse testis. Methods: The immunolocalization of MTA1 was studied by immunohi...Aim: To investigate the stage-specific localization of metastasis-associated protein 1 (MTA1) during spermatogenesis in adult human and mouse testis. Methods: The immunolocalization of MTA1 was studied by immunohistochemistry and Western blot analysis. The distribution pattern of MTA1 in mouse testis was confirmed by using quantitative analysis of purified spermatogenic cells. Results: The specificity of polyclonal antibody was confirmed by Western blot analysis. MTA1 was found expressed in the nucleus of germ cells, except elongate spermatids, and in the cytoplasm of Sertoli cells; Leydig cells did not show any specific reactivity. MTA1 possessed different distribution patterns in the two species: in humans, the most intensive staining was found in the nucleus of round spermatids and of primary spermatocytes while in mice, the most intense MTA 1 staining was in the nucleus of leptotene, zygotene and pachytene spermatocytes. In both species the staining exhibited a cyclic pattern. Conclusion: The present communication initially provides new evidence for the potential role of MTA1 in mature testis. In addition, its distinctive expression in germ cells suggests a regulatory role of the peptide during spermatogenesis.展开更多
AIM:To study the correlation between high metastasisassociated protein 1(MTA1)expression and lymphangiogenesis in colorectal cancer(CRC)and its role in production of vascular endothelial growth factor-C(VEGF-C). METHO...AIM:To study the correlation between high metastasisassociated protein 1(MTA1)expression and lymphangiogenesis in colorectal cancer(CRC)and its role in production of vascular endothelial growth factor-C(VEGF-C). METHODS:Impact of high MTA1 and VEGF-C expression levels on disease progression and lymphovasculardensity(LVD,D2-40-immunolabeled)in 81 cases of human CRC was evaluated by immunohistochemistry. VEGF-C mRNA and protein expressions in human LoVo and HCT116 cell lines were detected by real-time polymerase chain reaction and Western blotting,respectively,with a stable expression vector or siRNA. RESULTS:The elevated MTA1 and VEGF-C expression levels were correlated with lymph node metastasis and Dukes stages(P<0.05).Additionally,high MTA1 expression level was correlated with a large tumor size(P< 0.05).A significant correlation was found between MTA1 and VEGF-C protein expressions in tumor cells(r=0.371, P<0.05).Similar to the VEGF-C expression level,high MTA1 expression level was correlated with high LVD in CRC(P<0.05).Furthermore,over-expression of MTA1 significantly enhanced the VEGF-C mRNA and protein expression levels,whereas siRNAs-knocked down MTA1 decreased the VEGF-C expression level. CONCLUSION:MTA1,as a regulator of tumor-associated lymphangiogenesis,promotes lymphangiogenesis in CRC by mediating the VEGF-C expression.展开更多
<strong>Introduction</strong>.<span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> The molecular biological mechanism ...<strong>Introduction</strong>.<span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> The molecular biological mechanism of the increased incidence of the various types of cancer in obesity or type 2 diabetes in rodents or humans has largely been resolved in recent years. By contrast, the molecular biological mechanism of the decreased, not increased, incidence of the various types of cancer in the homozygous long-lived Ames dwarf mice still remains unresolved. </span><b><span style="font-family:Verdana;">Objective.</span></b><span style="font-family:Verdana;"> The first objective of the present study was to investigate whether the decrease in the incidence of cancer in the homozygous long-lived Ames dwarf mice is due to the increase, not decrease, in the expression of p27Kip1, a cell cycle repressor protein. The second objective was to investigate whether the decrease in the incidence of cancer in the homozygous long-lived Ames dwarf mice is due to the decrease, not increase, in the levels of glucose or insulin. </span><b><span style="font-family:Verdana;">Methods.</span></b><span style="font-family:Verdana;"> To achieve these objectives, we first performed western immunoblot analysis of the hepatic expression of p27Kip1 protein. We then performed, using a human breast cancer cell line </span><i><span style="font-family:Verdana;">in</span></i> <i><span style="font-family:Verdana;">vitro</span></i><span style="font-family:Verdana;">, the luciferase reporter plasmid assay to determine whether the translation initiation activity of the p27Kip1 mRNA is increased when the concentrations of either glucose or insulin are decreased. </span><b><span style="font-family:Verdana;">Results and Conclusion. </span></b><span style="font-family:Verdana;">The results of the first objective indicated that the hepatic expression of p27Kip1 protein was up-regulated in the homozygous long-lived Ames dwarf mice as expected. We also found that the lower concentrations of glucose or insulin increased the translation initiation activity of the p27Kip1 mRNA.</span></span></span></span>展开更多
BACKGROUND Hepatic fibrosis is a serious condition,and the development of hepatic fibrosis can lead to a series of complications.However,the pathogenesis of hepatic fibrosis remains unclear,and effective therapy optio...BACKGROUND Hepatic fibrosis is a serious condition,and the development of hepatic fibrosis can lead to a series of complications.However,the pathogenesis of hepatic fibrosis remains unclear,and effective therapy options are still lacking.Our group identified hepatitis C virus nonstructural protein 3-transactivated protein 1(NS3TP1) by suppressive subtractive hybridization and bioinformatics analysis,but its role in diseases including hepatic fibrosis remains undefined.Therefore,additional studies on the function of NS3TP1 in hepatic fibrosis are urgently needed to provide new targets for treatment.AIM To elucidate the mechanism of NS3TP1 in hepatic fibrosis and the regulatory effects of calcitriol on NS3TP1.METHODS Twenty-four male C57BL/6 mice were randomized and separated into three groups,comprising the normal,fibrosis,and calcitriol treatment groups,and liver fibrosis was modeled by carbon tetrachloride(CCl4).To evaluate the level of hepatic fibrosis in every group,serological and pathological examinations of the liver were conducted.TGF-β1 was administered to boost the in vitro cultivation of LX-2 cells.NS3TP1,α-smooth muscle actin(α-SMA),collagen I,and collagen Ⅲ in every group were examined using a Western blot and real-time quantitative polymerase chain reaction.The activity of the transforming growth factor beta 1(TGFβ1)/Smad3 and NF-κB signaling pathways in each group of cells transfected with pcDNA-NS3TP1 or siRNA-NS3TP1 was detected.The statistical analysis of the data was performed using the Student’s t test.RESULTS NS3TP1 promoted the activation,proliferation,and differentiation of hepatic stellate cells(HSCs)and enhanced hepatic fibrosis via the TGFβ1/Smad3 and NF-κB signaling pathways,as evidenced by the presence of α-SMA,collagen I,collagen Ⅲ,p-smad3,and p-p65 in LX-2 cells,which were upregulated after NS3TP1 overexpression and downregulated after NS3TP1 interference.The proliferation of HSCs was lowered after NS3TP1 interference and elevated after NS3TP1 overexpression,as shown by the luciferase assay.NS3TP1 inhibited the apoptosis of HSCs.Moreover,both Smad3 and p65 could bind to NS3TP1,and p65 increased the promoter activity of NS3TP1,while NS3TP1 increased the promoter activity of TGFβ1 receptor I,as indicated by coimmunoprecipitation and luciferase assay results.Both in vivo and in vitro,treatment with calcitriol dramatically reduced the expression of NS3TP1.Calcitriol therapy-controlled HSCs activation,proliferation,and differentiation and substantially suppressed CCl4-induced hepatic fibrosis in mice.Furthermore,calcitriol modulated the activities of the above signaling pathways via downregulation of NS3TP1.CONCLUSION Our results suggest that calcitriol may be employed as an adjuvant therapy for hepatic fibrosis and that NS3TP1 is a unique,prospective therapeutic target in hepatic fibrosis.展开更多
AIM: To characterize high-mobility group protein 1-toll-like receptor 4(HMGB1-TLR4) and downstream signaling pathways in intestinal ischemia/reperfusion(I/R) injury.METHODS: Forty specific-pathogen-free male C57BL/6 m...AIM: To characterize high-mobility group protein 1-toll-like receptor 4(HMGB1-TLR4) and downstream signaling pathways in intestinal ischemia/reperfusion(I/R) injury.METHODS: Forty specific-pathogen-free male C57BL/6 mice were randomly divided into five groups(n = 8 per group): sham, control, anti-HMGB1, anti-myeloid differentiation gene 88(My D88), and anti-translocatingchain-associating membrane protein(TRIF) antibody groups. Vehicle with the control Ig G antibody, antiHMGB1, anti-My D88, or anti-TRIF antibodies(all 1 mg/kg, 0.025%) were injected via the caudal vein 30 min prior to ischemia. After anesthetization, the abdominal wall was opened and the superior mesenteric artery was exposed, followed by 60 min mesenteric ischemia and then 60 min reperfusion. For the sham group, the abdominal wall was opened for 120 min without I/R. Levels of serum nuclear factor(NF)-κB p65, interleukin(IL)-6, and tumor necrosis factor(TNF)-α were measured, along with myeloperoxidase activity in the lung and liver. Inaddition,morphologic changes that occurred in the lung and intestinal tissues were evaluated. Levels of m RNA transcripts encoding HMGB1 and NF-κB were measured by real-time quantitative PCR, and levels of HMGB1 and NF-κB protein were measured by Western blot. Results were analyzed using one-way analysis of variance.RESULTS: Blocking HMGB 1, MyD 8 8, and TRIF expression by injecting anti-HMGB1, anti-My D88, or anti-TRIF antibodies prior to ischemia reduced the levels of inflammatory cytokines in serum; NF-κB p65: 104.64 ± 11.89, 228.53 ± 24.85, 145.00 ± 33.63, 191.12 ± 13.22, and 183.73 ± 10.81(P < 0.05); IL-6: 50.02 ± 6.33, 104.91 ± 31.18, 62.28 ± 6.73, 85.90 ± 17.37, and 78.14 ± 7.38(P < 0.05); TNF-α, 43.79 ± 4.18, 70.81 ± 6.97, 52.76 ± 5.71, 63.19 ± 5.47, and 59.70 ± 4.63(P < 0.05) for the sham, control, anti-HMGB1, anti-My D88, and anti-TRIF groups, respectively(all in pg/m L).Antibodies also alleviated tissue injury in the lung and small intestine compared with the control group in the mouse intestinal I/R model. The administration of antiHMGB1, anti-My D88, and anti-TRIF antibodies markedly reduced damage caused by I/R, for which anti-HMGB1 antibody had the most obvious effect.CONCLUSION: HMGB1 and its downstream signaling pathway play important roles in the mouse intestinal I/R injury, and the effect of the TRIF-dependent pathway is slightly greater.展开更多
Alterations in embryonic neural stem cells play crucial roles in the pathogenesis of amyotrophic lateral sclerosis. We hypothesized that embryonic neural stem cells from SOD1G93A individuals might be more susceptible ...Alterations in embryonic neural stem cells play crucial roles in the pathogenesis of amyotrophic lateral sclerosis. We hypothesized that embryonic neural stem cells from SOD1G93A individuals might be more susceptible to oxidative injury, resulting in a propensity for neurodegeneration at later stages. In this study, embryonic neural stem cells obtained from human superoxide dis- mutase 1 mutant (SOD1G93A) and wild-type (SOD1wv) mouse models were exposed to H202. We assayed cell viability with mitochondrial succinic dehydrogenase colorimetric reagent, and measured cell apoptosis by flow cytometry. Moreover, we evaluated the expression of the adenos- ine monophosphate-activated protein kinase (AMPK) ct-subunit, paired box 3 (Pax3) protein, and p53 in western blot analyses. Compared with SOD1wr cells, SOD1~93A embryonic neural stem cells were more likely to undergo H202-induced apoptosis. Phosphorylation of AMPKct in SOD1G93A cells was higher than that in SOD1wr cells. Pax3 expression was inversely correlated with the phosphorylation levels of AMPKct. p53 protein levels were also correlated with AMPKct phosphorylation levels. Compound C, an inhibitor of AMPKa, attenuated the effects of H20~. These results suggest that embryonic neural stem cells from SOD1C93A mice are more susceptible to apoptosis in the presence of oxidative stress compared with those from wild-type controls, and the effects are mainly mediated by Pax3 and p53 in the AMPKa pathway.展开更多
BACKGROUND: The pharmacological actions of Panax notoginseng saponins (PNS) lie in removing free radicals, anti-inflammation and anti-oxygenation. It can also improve memory and behavior in rat models of Alzheime...BACKGROUND: The pharmacological actions of Panax notoginseng saponins (PNS) lie in removing free radicals, anti-inflammation and anti-oxygenation. It can also improve memory and behavior in rat models of Alzheimer's disease. OBJECTIVE: Using the Morris water maze, immunohistochemistry, real-time PCR and RT-PCR, this study aimed to measure improvement in spatial learning, memory, expression of amyloid precursor protein (App) and β -amyloid (A β ), to investigate the mechanism of action of PNS in the treatment of AD in the senescence accelerated mouse-prone 8 (SAMP8) and compare the effects with huperzine A. DESIGN, TIME AND SETTING: A completely randomized grouping design, controlled animal experiment was performed in the Center for Research & Development of New Drugs, Guangxi Traditional Chinese Medical University from July 2005 to April 2007. MATERIALS: Sixty male SAMP8 mice, aged 3 months, purchased from Tianjin Chinese Traditional Medical University of China, were divided into four groups: PNS high-dosage group, PNS low-dosage group, huperzine A group and control group. PNS was provided by Weihe Pharmaceutical Co., Ltd. (batch No.: Z53021485, Yuxi, Yunan Province, China). Huperzine A was provided by Zhenyuan Pharmaceutical Co., Ltd. (batch No.: 20040801, Zhejiang, China). METHODS: The high-dosage group and low-dosage group were treated with 93.50 and 23.38 mg/kg PNS respectively per day and the huperzine A group was treated with 0.038 6 mg/kg huperzine A per day, all by intragastric administration, for 8 consecutive weeks. The same volume of double distilled water was given to the control group. MAIN OUTCOME MEASURES: After drug administration, learning and memory abilities were assessed by place navigation and spatial probe tests. The recording indices consisted of escape latency (time-to-platform), and the percentage of swimming time spent in each quadrant. The number of A β 1-40, A β 1-42 and App immunopositive neurons in the brains of SAMP8 mice was analyzed by immunohistochemistry. The mRNA content ofApp, tau, acetylcholinesterase, and synaptophysin (Syp) was tested by real time PCR and RT-PCR. RESULTS: The PCR results show that PNS can downregulate the expression of the App gene and upregulate the expression of the Syp gene in the parietal cortex and hippocampus of SAMP8 mice. The therapeutic effects of the PNS high-dosage group were greater than those of the PNS low-dosage group and the huperzine A group (P 〈 0.05). The results of the Morris water maze and immunohistochemistry indicated that PNS can improve the capacity for spatial learning and memory in SAMP8 mice, and reduce the content of A β 1-40, A β 1-42 and expression of App in the brains of SAMP8 mice. The therapeutic effects of the PNS high-dosage group were greater than that of the PNS low-dosage group and the huperzine A group (P 〈 0.05). CONCLUSION: These results support the hypothesis that PNS plays a therapeutic and protective role on the pathological lesions and learning dysfunction of Alzheimer's disease. The therapeutic effects of PNS for Alzheimer's disease are possibly achieved through downregulating the expression of the App gene and upregulating the expression of the Syp gene. The therapeutic effects of PNS are dose-dependent and are greater than the effect of huperzine A.展开更多
An allelic variant of the protein tyrosin phosphatase non-receptor 22(PTPN22) gene, PTPN22 R620 W, constitutes the strongest non-HLA genetic risk factor for the development of type 1 diabetes(T1D). A numberstudies usi...An allelic variant of the protein tyrosin phosphatase non-receptor 22(PTPN22) gene, PTPN22 R620 W, constitutes the strongest non-HLA genetic risk factor for the development of type 1 diabetes(T1D). A numberstudies using mouse models have addressed how PTPN22 predisposes to T1D. PTPN22 downmodulation, overexpression or expression of the variant gene in genetically manipulated mice has generated controversial results. These discrepancies probably derive from the fact that PTPN22 has differential effects on innate and adaptive immune responses. Moreover, the effects of PTPN22 are dependent on other genetic variables. Here we discuss these findings and try to explain the discrepancies. Exploring the mechanism by which PTPN22 contributes to islet-specific autoimmunity could help us understand its role in T1D pathogenesis and exploit it as a potential therapeutic target to prevent the disease.展开更多
基金We are grateful to Prof. Rui-An Wang (Department of Molecular and Cellular 0ncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA) for his helpful advice and discussion regarding the pos- sible functions of MTA1. We also thank Miss Hui Wang for her careful assistance in English. This study was supported by the Natural Science Foundation of China (2006: No. 30570982 2003: No. 30370750 2003: No. 30371584).
文摘Aim: To investigate the stage-specific localization of metastasis-associated protein 1 (MTA1) during spermatogenesis in adult human and mouse testis. Methods: The immunolocalization of MTA1 was studied by immunohistochemistry and Western blot analysis. The distribution pattern of MTA1 in mouse testis was confirmed by using quantitative analysis of purified spermatogenic cells. Results: The specificity of polyclonal antibody was confirmed by Western blot analysis. MTA1 was found expressed in the nucleus of germ cells, except elongate spermatids, and in the cytoplasm of Sertoli cells; Leydig cells did not show any specific reactivity. MTA1 possessed different distribution patterns in the two species: in humans, the most intensive staining was found in the nucleus of round spermatids and of primary spermatocytes while in mice, the most intense MTA 1 staining was in the nucleus of leptotene, zygotene and pachytene spermatocytes. In both species the staining exhibited a cyclic pattern. Conclusion: The present communication initially provides new evidence for the potential role of MTA1 in mature testis. In addition, its distinctive expression in germ cells suggests a regulatory role of the peptide during spermatogenesis.
基金Supported by National Natural Science Foundation of China(No.30772131)Fundamental Research Funds for Central Universities(No.21609313)from Ministry of Education of China
文摘AIM:To study the correlation between high metastasisassociated protein 1(MTA1)expression and lymphangiogenesis in colorectal cancer(CRC)and its role in production of vascular endothelial growth factor-C(VEGF-C). METHODS:Impact of high MTA1 and VEGF-C expression levels on disease progression and lymphovasculardensity(LVD,D2-40-immunolabeled)in 81 cases of human CRC was evaluated by immunohistochemistry. VEGF-C mRNA and protein expressions in human LoVo and HCT116 cell lines were detected by real-time polymerase chain reaction and Western blotting,respectively,with a stable expression vector or siRNA. RESULTS:The elevated MTA1 and VEGF-C expression levels were correlated with lymph node metastasis and Dukes stages(P<0.05).Additionally,high MTA1 expression level was correlated with a large tumor size(P< 0.05).A significant correlation was found between MTA1 and VEGF-C protein expressions in tumor cells(r=0.371, P<0.05).Similar to the VEGF-C expression level,high MTA1 expression level was correlated with high LVD in CRC(P<0.05).Furthermore,over-expression of MTA1 significantly enhanced the VEGF-C mRNA and protein expression levels,whereas siRNAs-knocked down MTA1 decreased the VEGF-C expression level. CONCLUSION:MTA1,as a regulator of tumor-associated lymphangiogenesis,promotes lymphangiogenesis in CRC by mediating the VEGF-C expression.
文摘<strong>Introduction</strong>.<span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> The molecular biological mechanism of the increased incidence of the various types of cancer in obesity or type 2 diabetes in rodents or humans has largely been resolved in recent years. By contrast, the molecular biological mechanism of the decreased, not increased, incidence of the various types of cancer in the homozygous long-lived Ames dwarf mice still remains unresolved. </span><b><span style="font-family:Verdana;">Objective.</span></b><span style="font-family:Verdana;"> The first objective of the present study was to investigate whether the decrease in the incidence of cancer in the homozygous long-lived Ames dwarf mice is due to the increase, not decrease, in the expression of p27Kip1, a cell cycle repressor protein. The second objective was to investigate whether the decrease in the incidence of cancer in the homozygous long-lived Ames dwarf mice is due to the decrease, not increase, in the levels of glucose or insulin. </span><b><span style="font-family:Verdana;">Methods.</span></b><span style="font-family:Verdana;"> To achieve these objectives, we first performed western immunoblot analysis of the hepatic expression of p27Kip1 protein. We then performed, using a human breast cancer cell line </span><i><span style="font-family:Verdana;">in</span></i> <i><span style="font-family:Verdana;">vitro</span></i><span style="font-family:Verdana;">, the luciferase reporter plasmid assay to determine whether the translation initiation activity of the p27Kip1 mRNA is increased when the concentrations of either glucose or insulin are decreased. </span><b><span style="font-family:Verdana;">Results and Conclusion. </span></b><span style="font-family:Verdana;">The results of the first objective indicated that the hepatic expression of p27Kip1 protein was up-regulated in the homozygous long-lived Ames dwarf mice as expected. We also found that the lower concentrations of glucose or insulin increased the translation initiation activity of the p27Kip1 mRNA.</span></span></span></span>
基金the National Key Research and Development Program of China,No.2017YFC0908104National Science and Technology Projects,No.2017ZX10203201,No.2017ZX10201201,and No.2017ZX10202202.
文摘BACKGROUND Hepatic fibrosis is a serious condition,and the development of hepatic fibrosis can lead to a series of complications.However,the pathogenesis of hepatic fibrosis remains unclear,and effective therapy options are still lacking.Our group identified hepatitis C virus nonstructural protein 3-transactivated protein 1(NS3TP1) by suppressive subtractive hybridization and bioinformatics analysis,but its role in diseases including hepatic fibrosis remains undefined.Therefore,additional studies on the function of NS3TP1 in hepatic fibrosis are urgently needed to provide new targets for treatment.AIM To elucidate the mechanism of NS3TP1 in hepatic fibrosis and the regulatory effects of calcitriol on NS3TP1.METHODS Twenty-four male C57BL/6 mice were randomized and separated into three groups,comprising the normal,fibrosis,and calcitriol treatment groups,and liver fibrosis was modeled by carbon tetrachloride(CCl4).To evaluate the level of hepatic fibrosis in every group,serological and pathological examinations of the liver were conducted.TGF-β1 was administered to boost the in vitro cultivation of LX-2 cells.NS3TP1,α-smooth muscle actin(α-SMA),collagen I,and collagen Ⅲ in every group were examined using a Western blot and real-time quantitative polymerase chain reaction.The activity of the transforming growth factor beta 1(TGFβ1)/Smad3 and NF-κB signaling pathways in each group of cells transfected with pcDNA-NS3TP1 or siRNA-NS3TP1 was detected.The statistical analysis of the data was performed using the Student’s t test.RESULTS NS3TP1 promoted the activation,proliferation,and differentiation of hepatic stellate cells(HSCs)and enhanced hepatic fibrosis via the TGFβ1/Smad3 and NF-κB signaling pathways,as evidenced by the presence of α-SMA,collagen I,collagen Ⅲ,p-smad3,and p-p65 in LX-2 cells,which were upregulated after NS3TP1 overexpression and downregulated after NS3TP1 interference.The proliferation of HSCs was lowered after NS3TP1 interference and elevated after NS3TP1 overexpression,as shown by the luciferase assay.NS3TP1 inhibited the apoptosis of HSCs.Moreover,both Smad3 and p65 could bind to NS3TP1,and p65 increased the promoter activity of NS3TP1,while NS3TP1 increased the promoter activity of TGFβ1 receptor I,as indicated by coimmunoprecipitation and luciferase assay results.Both in vivo and in vitro,treatment with calcitriol dramatically reduced the expression of NS3TP1.Calcitriol therapy-controlled HSCs activation,proliferation,and differentiation and substantially suppressed CCl4-induced hepatic fibrosis in mice.Furthermore,calcitriol modulated the activities of the above signaling pathways via downregulation of NS3TP1.CONCLUSION Our results suggest that calcitriol may be employed as an adjuvant therapy for hepatic fibrosis and that NS3TP1 is a unique,prospective therapeutic target in hepatic fibrosis.
基金Supported by National Natural Science Foundation of China,No.30940069the Natural Sciences Foundation of Beijing,No.7102127
文摘AIM: To characterize high-mobility group protein 1-toll-like receptor 4(HMGB1-TLR4) and downstream signaling pathways in intestinal ischemia/reperfusion(I/R) injury.METHODS: Forty specific-pathogen-free male C57BL/6 mice were randomly divided into five groups(n = 8 per group): sham, control, anti-HMGB1, anti-myeloid differentiation gene 88(My D88), and anti-translocatingchain-associating membrane protein(TRIF) antibody groups. Vehicle with the control Ig G antibody, antiHMGB1, anti-My D88, or anti-TRIF antibodies(all 1 mg/kg, 0.025%) were injected via the caudal vein 30 min prior to ischemia. After anesthetization, the abdominal wall was opened and the superior mesenteric artery was exposed, followed by 60 min mesenteric ischemia and then 60 min reperfusion. For the sham group, the abdominal wall was opened for 120 min without I/R. Levels of serum nuclear factor(NF)-κB p65, interleukin(IL)-6, and tumor necrosis factor(TNF)-α were measured, along with myeloperoxidase activity in the lung and liver. Inaddition,morphologic changes that occurred in the lung and intestinal tissues were evaluated. Levels of m RNA transcripts encoding HMGB1 and NF-κB were measured by real-time quantitative PCR, and levels of HMGB1 and NF-κB protein were measured by Western blot. Results were analyzed using one-way analysis of variance.RESULTS: Blocking HMGB 1, MyD 8 8, and TRIF expression by injecting anti-HMGB1, anti-My D88, or anti-TRIF antibodies prior to ischemia reduced the levels of inflammatory cytokines in serum; NF-κB p65: 104.64 ± 11.89, 228.53 ± 24.85, 145.00 ± 33.63, 191.12 ± 13.22, and 183.73 ± 10.81(P < 0.05); IL-6: 50.02 ± 6.33, 104.91 ± 31.18, 62.28 ± 6.73, 85.90 ± 17.37, and 78.14 ± 7.38(P < 0.05); TNF-α, 43.79 ± 4.18, 70.81 ± 6.97, 52.76 ± 5.71, 63.19 ± 5.47, and 59.70 ± 4.63(P < 0.05) for the sham, control, anti-HMGB1, anti-My D88, and anti-TRIF groups, respectively(all in pg/m L).Antibodies also alleviated tissue injury in the lung and small intestine compared with the control group in the mouse intestinal I/R model. The administration of antiHMGB1, anti-My D88, and anti-TRIF antibodies markedly reduced damage caused by I/R, for which anti-HMGB1 antibody had the most obvious effect.CONCLUSION: HMGB1 and its downstream signaling pathway play important roles in the mouse intestinal I/R injury, and the effect of the TRIF-dependent pathway is slightly greater.
基金supported by a grant from the National Natural Sciences Foundation of China,No.81030019
文摘Alterations in embryonic neural stem cells play crucial roles in the pathogenesis of amyotrophic lateral sclerosis. We hypothesized that embryonic neural stem cells from SOD1G93A individuals might be more susceptible to oxidative injury, resulting in a propensity for neurodegeneration at later stages. In this study, embryonic neural stem cells obtained from human superoxide dis- mutase 1 mutant (SOD1G93A) and wild-type (SOD1wv) mouse models were exposed to H202. We assayed cell viability with mitochondrial succinic dehydrogenase colorimetric reagent, and measured cell apoptosis by flow cytometry. Moreover, we evaluated the expression of the adenos- ine monophosphate-activated protein kinase (AMPK) ct-subunit, paired box 3 (Pax3) protein, and p53 in western blot analyses. Compared with SOD1wr cells, SOD1~93A embryonic neural stem cells were more likely to undergo H202-induced apoptosis. Phosphorylation of AMPKct in SOD1G93A cells was higher than that in SOD1wr cells. Pax3 expression was inversely correlated with the phosphorylation levels of AMPKct. p53 protein levels were also correlated with AMPKct phosphorylation levels. Compound C, an inhibitor of AMPKa, attenuated the effects of H20~. These results suggest that embryonic neural stem cells from SOD1C93A mice are more susceptible to apoptosis in the presence of oxidative stress compared with those from wild-type controls, and the effects are mainly mediated by Pax3 and p53 in the AMPKa pathway.
基金the National Natural Science Foundation of China, No: 30560189
文摘BACKGROUND: The pharmacological actions of Panax notoginseng saponins (PNS) lie in removing free radicals, anti-inflammation and anti-oxygenation. It can also improve memory and behavior in rat models of Alzheimer's disease. OBJECTIVE: Using the Morris water maze, immunohistochemistry, real-time PCR and RT-PCR, this study aimed to measure improvement in spatial learning, memory, expression of amyloid precursor protein (App) and β -amyloid (A β ), to investigate the mechanism of action of PNS in the treatment of AD in the senescence accelerated mouse-prone 8 (SAMP8) and compare the effects with huperzine A. DESIGN, TIME AND SETTING: A completely randomized grouping design, controlled animal experiment was performed in the Center for Research & Development of New Drugs, Guangxi Traditional Chinese Medical University from July 2005 to April 2007. MATERIALS: Sixty male SAMP8 mice, aged 3 months, purchased from Tianjin Chinese Traditional Medical University of China, were divided into four groups: PNS high-dosage group, PNS low-dosage group, huperzine A group and control group. PNS was provided by Weihe Pharmaceutical Co., Ltd. (batch No.: Z53021485, Yuxi, Yunan Province, China). Huperzine A was provided by Zhenyuan Pharmaceutical Co., Ltd. (batch No.: 20040801, Zhejiang, China). METHODS: The high-dosage group and low-dosage group were treated with 93.50 and 23.38 mg/kg PNS respectively per day and the huperzine A group was treated with 0.038 6 mg/kg huperzine A per day, all by intragastric administration, for 8 consecutive weeks. The same volume of double distilled water was given to the control group. MAIN OUTCOME MEASURES: After drug administration, learning and memory abilities were assessed by place navigation and spatial probe tests. The recording indices consisted of escape latency (time-to-platform), and the percentage of swimming time spent in each quadrant. The number of A β 1-40, A β 1-42 and App immunopositive neurons in the brains of SAMP8 mice was analyzed by immunohistochemistry. The mRNA content ofApp, tau, acetylcholinesterase, and synaptophysin (Syp) was tested by real time PCR and RT-PCR. RESULTS: The PCR results show that PNS can downregulate the expression of the App gene and upregulate the expression of the Syp gene in the parietal cortex and hippocampus of SAMP8 mice. The therapeutic effects of the PNS high-dosage group were greater than those of the PNS low-dosage group and the huperzine A group (P 〈 0.05). The results of the Morris water maze and immunohistochemistry indicated that PNS can improve the capacity for spatial learning and memory in SAMP8 mice, and reduce the content of A β 1-40, A β 1-42 and expression of App in the brains of SAMP8 mice. The therapeutic effects of the PNS high-dosage group were greater than that of the PNS low-dosage group and the huperzine A group (P 〈 0.05). CONCLUSION: These results support the hypothesis that PNS plays a therapeutic and protective role on the pathological lesions and learning dysfunction of Alzheimer's disease. The therapeutic effects of PNS for Alzheimer's disease are possibly achieved through downregulating the expression of the App gene and upregulating the expression of the Syp gene. The therapeutic effects of PNS are dose-dependent and are greater than the effect of huperzine A.
文摘An allelic variant of the protein tyrosin phosphatase non-receptor 22(PTPN22) gene, PTPN22 R620 W, constitutes the strongest non-HLA genetic risk factor for the development of type 1 diabetes(T1D). A numberstudies using mouse models have addressed how PTPN22 predisposes to T1D. PTPN22 downmodulation, overexpression or expression of the variant gene in genetically manipulated mice has generated controversial results. These discrepancies probably derive from the fact that PTPN22 has differential effects on innate and adaptive immune responses. Moreover, the effects of PTPN22 are dependent on other genetic variables. Here we discuss these findings and try to explain the discrepancies. Exploring the mechanism by which PTPN22 contributes to islet-specific autoimmunity could help us understand its role in T1D pathogenesis and exploit it as a potential therapeutic target to prevent the disease.