期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Experimental analysis of matrix moveable oil saturation in tight sandstone reservoirs of the south Ordos Basin,China
1
作者 Ting Xu Jun Pu +1 位作者 Xuejie Qin YiWei 《Energy Geoscience》 EI 2024年第1期184-195,共12页
Tight oil reservoirs in the south Ordos Basin are characterized by fractured,heterogeneous oil-bearing strata(an oil saturation of less than 55%on average),normal pressure(0.8±)and extra-low permeability(less tha... Tight oil reservoirs in the south Ordos Basin are characterized by fractured,heterogeneous oil-bearing strata(an oil saturation of less than 55%on average),normal pressure(0.8±)and extra-low permeability(less than 0.3 mD).In the Chang 8 tight sandstone reservoir in Honghe oilfield,micro-and nanopores,especially those with a pore-throat radius of less than 1 mm,account for more than 90%.Fluid flow in the matrix is non-linear and crude oil flow rates are very low under normal pressure gradients.An improved understanding of oil mobility in a tight matrix is key to further development of normalpressure tight-oil resources in the continental basin.In this study,constant-velocity and high-pressure mercury injection experiments were conducted using samples of typical tight sandstone cores obtained from the south of Ordos Basin.A new method for reconstructing the full-scale pore-throat distribution characteristics of tight sandstone reservoirs was established successfully,based on which multistage centrifugal tests,tests of low-pressure differential displacement of oil by water,and nuclear magnetic resonance tests were conducted in order to obtain the distribution characteristics of moveable fluid in different pores.The moveable oil saturation(MOS)and degree of oil recovery(i.e.ratio of accumulative oil production to producing geologic reserves)of the core samples under different differential pressures for displacement were determined.As for the tight oil reservoirs in the south Ordos Basin,the moveable fluids are mainly stored in sub-micron(0.10-0.5 mm)pores.For Type I reservoirs(k>0.1 mD),the volume percentage of moveable fluid in pores with a radius larger than 0.5 mm is relatively high(greater than 40%).The degree of oil recovery of water flooding serves as the basis for forecasting recoverable reserves for tight oil reservoirs.Recoverable reserves under water flooding,mainly occur in pores with a radius greater than 0.5 mm.The contribution of Type I reserves to oil production is observed to be greater than 60%,and the degree of oil recovery reaches up to 17.1%.These results help improve our understanding on the evaluation and classification of Chang 8 tight sandstone reservoirs in Honghe oilfield and serve as theoretical basis for pilot tests to explore effective injection media and development methods to improve the matrix-driven pressure differences and displacement efficiency for oil. 展开更多
关键词 Tight reservoir Pore-throat structure moveable fluid volume moveable oil saturation(MOS) Waterflooding oil recovery South Ordos basin
下载PDF
4-1 A Moveable Laser-induced Breakdown Spectroscopy Instrument for Application
2
作者 Zhang Dacheng Ma Xinwen Zhao Dongmei 《IMP & HIRFL Annual Report》 2014年第1期179-179,共1页
As a developing analytical technique, laser-induced breakdown spectroscopy (LIBS) has demonstrated its capabilitiesfor on-line elemental analysis of any material phase without sample preparation or some easy samplepre... As a developing analytical technique, laser-induced breakdown spectroscopy (LIBS) has demonstrated its capabilitiesfor on-line elemental analysis of any material phase without sample preparation or some easy samplepreparation. Thus, it has attracted substantial attention nowadays for a wide range of applications. Some LIBSinstruments have also appeared in the market over the past few years. However, most prototypes were proposedprimarily by research teams mainly in laboratories in connection to potential field applications[1]. 展开更多
关键词 moveable BREAKDOWN SPECTROSCOPY
下载PDF
Fabrication of Fuze Micro-electro-mechanical System Safety Device 被引量:8
3
作者 DU Liqun JIA Shengfang +1 位作者 NIE Weirong WANG Qijia 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第5期836-841,共6页
Fuze micro-electro-mechanical system(MEMS) has become a popular subject in recent years.Studies have been done for the application of MEMS-based fuze safety and arm devices.The existing researches mainly focused on ... Fuze micro-electro-mechanical system(MEMS) has become a popular subject in recent years.Studies have been done for the application of MEMS-based fuze safety and arm devices.The existing researches mainly focused on reducing the cost and volume of the fuze safety device.The reduction in volume allows more payload and,thus,makes small-caliber rounds more effective and the weapon system more affordable.At present,MEMS-based fuze safety devices are fabricated mainly by using deep reactive ion ething or LIGA technology,and the fabrication process research on the fuze MEMS safety device is in the exploring stage.In this paper,a new micro fabrication method of metal-based fuze MEMS safety device is presented based on ultra violet(UV)-LIGA technology.The method consists of SU-8 thick photoresist lithography process,micro electroforming process,no back plate growing process,and SU-8 photoresist sacrificial layer process.Three kinds of double-layer moveable metal devices have been fabricated on metal substrates directly with the method.Because UV-LIGA technology and no back plate growing technology are introduced,the production cycle is shortened and the cost is reduced.The smallest dimension of the devices is 40 μm,which meets the requirement of size.To evaluate the adhesion property between electroforming deposit layer and substrate qualitatively,the impact experiments have been done on the device samples.The experimental result shows that the samples are still in good condition and workable after undergoing impact pulses with 20 kg peak and 150 μs duration and completely met the requirement of strength.The presented fabrication method provides a new option for the development of MEMS fuze and is helpful for the fabrication of similar kinds of micro devices. 展开更多
关键词 fuze MEMS safety device UV-LIGA technology double-layer moveable device micro electroforming
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部