A fully digital data acquisition system based on a field-programmable gate array(FPGA) was developed for a CsI(Tl) array at the external target facility(ETF) in the Heavy Ion Research Facility in Lanzhou(HIRFL). To pr...A fully digital data acquisition system based on a field-programmable gate array(FPGA) was developed for a CsI(Tl) array at the external target facility(ETF) in the Heavy Ion Research Facility in Lanzhou(HIRFL). To process the CsI(Tl) signals generated by γ-rays and light-charged ions, a scheme for digital pulse processing algorithms is proposed. Every step in the algorithms was benchmarked using standard γ and α sources. The scheme, which included a moving average filter, baseline restoration, leading-edge discrimination, moving window deconvolution, and digital charge comparison, was subsequently implemented on the FPGA. A good energy resolution of 5.7% for 1.33-MeV γ-rays and excellent α-γ identification using the digital charge comparison method were achieved, which satisfies CsI(Tl) array performance requirements.展开更多
基金supported by the Open Research Project of CAS Large Research InfrastructuresCAS Key Technology Talent ProgramNational Natural Science Foundations of China (Nos.U2031206 and 12273086)
文摘A fully digital data acquisition system based on a field-programmable gate array(FPGA) was developed for a CsI(Tl) array at the external target facility(ETF) in the Heavy Ion Research Facility in Lanzhou(HIRFL). To process the CsI(Tl) signals generated by γ-rays and light-charged ions, a scheme for digital pulse processing algorithms is proposed. Every step in the algorithms was benchmarked using standard γ and α sources. The scheme, which included a moving average filter, baseline restoration, leading-edge discrimination, moving window deconvolution, and digital charge comparison, was subsequently implemented on the FPGA. A good energy resolution of 5.7% for 1.33-MeV γ-rays and excellent α-γ identification using the digital charge comparison method were achieved, which satisfies CsI(Tl) array performance requirements.