Based on the Kelvin viscoelastic differential constitutive law and the motion equation of the axially moving belt, the nonlinear dynamic model of the viscoelastic axial moving belt was established. And then it was red...Based on the Kelvin viscoelastic differential constitutive law and the motion equation of the axially moving belt, the nonlinear dynamic model of the viscoelastic axial moving belt was established. And then it was reduced to be a linear differential system which the analytical solutions with a constant transport velocity and with a harmonically varying transport velocity were obtained by applying Lie group transformations. According to the nonlinear dynamic model, the effects of material parameters and the steady-state velocity and the perturbed axial velocity of the belt on the dynamic responses of the belts were investigated by the research of digital simulation . The result shows:1) The nonlinear vibration frequency of the belt will become small when the relocity of the belt increases . 2) Increasing the value of viscosity or decreasing the value of elasticity leads to a deceasing in vibration frequencies. 3) The most effects of the transverse amplitudes come from the frequency of the perturbed velocity when the belt moves with harmonic velocity .展开更多
基金the National Natural Science Foundation of China (59636140)
文摘Based on the Kelvin viscoelastic differential constitutive law and the motion equation of the axially moving belt, the nonlinear dynamic model of the viscoelastic axial moving belt was established. And then it was reduced to be a linear differential system which the analytical solutions with a constant transport velocity and with a harmonically varying transport velocity were obtained by applying Lie group transformations. According to the nonlinear dynamic model, the effects of material parameters and the steady-state velocity and the perturbed axial velocity of the belt on the dynamic responses of the belts were investigated by the research of digital simulation . The result shows:1) The nonlinear vibration frequency of the belt will become small when the relocity of the belt increases . 2) Increasing the value of viscosity or decreasing the value of elasticity leads to a deceasing in vibration frequencies. 3) The most effects of the transverse amplitudes come from the frequency of the perturbed velocity when the belt moves with harmonic velocity .