EDITOR’S NOTE: Tangmei Gungior Baimo, the former Vice-Chairwoman of the Tibet Committee of the Chinese People’s Political Consultative Conference, is a celebrity in Tibet. In the early days after the peaceful libera...EDITOR’S NOTE: Tangmei Gungior Baimo, the former Vice-Chairwoman of the Tibet Committee of the Chinese People’s Political Consultative Conference, is a celebrity in Tibet. In the early days after the peaceful liberation of Tibet in 1951,she moved out of an aristocrat family in order to word in the public interest.展开更多
A prediction framework based on the evolution of pattern motion probability density is proposed for the output prediction and estimation problem of non-Newtonian mechanical systems,assuming that the system satisfies t...A prediction framework based on the evolution of pattern motion probability density is proposed for the output prediction and estimation problem of non-Newtonian mechanical systems,assuming that the system satisfies the generalized Lipschitz condition.As a complex nonlinear system primarily governed by statistical laws rather than Newtonian mechanics,the output of non-Newtonian mechanics systems is difficult to describe through deterministic variables such as state variables,which poses difficulties in predicting and estimating the system’s output.In this article,the temporal variation of the system is described by constructing pattern category variables,which are non-deterministic variables.Since pattern category variables have statistical attributes but not operational attributes,operational attributes are assigned to them by posterior probability density,and a method for analyzing their motion laws using probability density evolution is proposed.Furthermore,a data-driven form of pattern motion probabilistic density evolution prediction method is designed by combining pseudo partial derivative(PPD),achieving prediction of the probability density satisfying the system’s output uncertainty.Based on this,the final prediction estimation of the system’s output value is realized by minimum variance unbiased estimation.Finally,a corresponding PPD estimation algorithm is designed using an extended state observer(ESO)to estimate the parameters to be estimated in the proposed prediction method.The effectiveness of the parameter estimation algorithm and prediction method is demonstrated through theoretical analysis,and the accuracy of the algorithm is verified by two numerical simulation examples.展开更多
Eavesdropping attacks have become one of the most common attacks on networks because of their easy implementation. Eavesdropping attacks not only lead to transmission data leakage but also develop into other more harm...Eavesdropping attacks have become one of the most common attacks on networks because of their easy implementation. Eavesdropping attacks not only lead to transmission data leakage but also develop into other more harmful attacks. Routing randomization is a relevant research direction for moving target defense, which has been proven to be an effective method to resist eavesdropping attacks. To counter eavesdropping attacks, in this study, we analyzed the existing routing randomization methods and found that their security and usability need to be further improved. According to the characteristics of eavesdropping attacks, which are “latent and transferable”, a routing randomization defense method based on deep reinforcement learning is proposed. The proposed method realizes routing randomization on packet-level granularity using programmable switches. To improve the security and quality of service of legitimate services in networks, we use the deep deterministic policy gradient to generate random routing schemes with support from powerful network state awareness. In-band network telemetry provides real-time, accurate, and comprehensive network state awareness for the proposed method. Various experiments show that compared with other typical routing randomization defense methods, the proposed method has obvious advantages in security and usability against eavesdropping attacks.展开更多
Outbreaks of hand-foot-mouth disease(HFMD) have occurred many times and caused serious health burden in China since 2008. Application of modern information technology to prediction and early response can be helpful ...Outbreaks of hand-foot-mouth disease(HFMD) have occurred many times and caused serious health burden in China since 2008. Application of modern information technology to prediction and early response can be helpful for efficient HFMD prevention and control. A seasonal auto-regressive integrated moving average(ARIMA) model for time series analysis was designed in this study. Eighty-four-month(from January 2009 to December 2015) retrospective data obtained from the Chinese Information System for Disease Prevention and Control were subjected to ARIMA modeling. The coefficient of determination(R^2), normalized Bayesian Information Criterion(BIC) and Q-test P value were used to evaluate the goodness-of-fit of constructed models. Subsequently, the best-fitted ARIMA model was applied to predict the expected incidence of HFMD from January 2016 to December 2016. The best-fitted seasonal ARIMA model was identified as(1,0,1)(0,1,1)12, with the largest coefficient of determination(R^2=0.743) and lowest normalized BIC(BIC=3.645) value. The residuals of the model also showed non-significant autocorrelations(P_(Box-Ljung(Q))=0.299). The predictions by the optimum ARIMA model adequately captured the pattern in the data and exhibited two peaks of activity over the forecast interval, including a major peak during April to June, and again a light peak for September to November. The ARIMA model proposed in this study can forecast HFMD incidence trend effectively, which could provide useful support for future HFMD prevention and control in the study area. Besides, further observations should be added continually into the modeling data set, and parameters of the models should be adjusted accordingly.展开更多
A prediction-aided routing algorithm based on ant colony optimization mode (PRACO) to achieve energy-aware data-gathering routing structure in wireless sensor networks (WSN) is presented. We adopt autoregressive m...A prediction-aided routing algorithm based on ant colony optimization mode (PRACO) to achieve energy-aware data-gathering routing structure in wireless sensor networks (WSN) is presented. We adopt autoregressive moving average model (ARMA) to predict dynamic tendency in data traffic and deduce the construction of load factor, which can help to reveal the future energy status of sensor in WSN. By checking the load factor in heuristic factor and guided by novel pheromone updating rule, multi-agent, i. e. , artificial ants, can adaptively foresee the local energy state of networks and the corresponding actions could be taken to enhance the energy efficiency in routing construction. Compared with some classic energy-saving routing schemes, the simulation results show that the proposed routing building scheme can ① effectively reinforce the robustness of routing structure by mining the temporal associability and introducing multi-agent optimization to balance the total energy cost for data transmission, ② minimize the total communication consumption, and ③prolong the lifetime of networks.展开更多
This paper addresses a modified auxiliary model stochastic gradient recursive parameter identification algorithm(M-AM-SGRPIA)for a class of single input single output(SISO)linear output error models with multi-thresho...This paper addresses a modified auxiliary model stochastic gradient recursive parameter identification algorithm(M-AM-SGRPIA)for a class of single input single output(SISO)linear output error models with multi-threshold quantized observations.It proves the convergence of the designed algorithm.A pattern-moving-based system dynamics description method with hybrid metrics is proposed for a kind of practical single input multiple output(SIMO)or SISO nonlinear systems,and a SISO linear output error model with multi-threshold quantized observations is adopted to approximate the unknown system.The system input design is accomplished using the measurement technology of random repeatability test,and the probabilistic characteristic of the explicit metric value is employed to estimate the implicit metric value of the pattern class variable.A modified auxiliary model stochastic gradient recursive algorithm(M-AM-SGRA)is designed to identify the model parameters,and the contraction mapping principle proves its convergence.Two numerical examples are given to demonstrate the feasibility and effectiveness of the achieved identification algorithm.展开更多
The thermal examination of a non-integer-ordered mobile fin with a magnetism in the presence of a trihybrid nanofluid(Fe_3O_4-Au-Zn-blood) is carried out. Three types of nanoparticles, each having a different shape, a...The thermal examination of a non-integer-ordered mobile fin with a magnetism in the presence of a trihybrid nanofluid(Fe_3O_4-Au-Zn-blood) is carried out. Three types of nanoparticles, each having a different shape, are considered. These shapes include spherical(Fe_3O_4), cylindrical(Au), and platelet(Zn) configurations. The combination approach is utilized to evaluate the physical and thermal characteristics of the trihybrid and hybrid nanofluids, excluding the thermal conductivity and dynamic viscosity. These two properties are inferred by means of the interpolation method based on the volume fraction of nanoparticles. The governing equation is transformed into a dimensionless form, and the Adomian decomposition Sumudu transform method(ADSTM) is adopted to solve the conundrum of a moving fin immersed in a trihybrid nanofluid. The obtained results agree well with those numerical simulation results, indicating that this research is reliable. The influence of diverse factors on the thermal overview for varying noninteger values of γ is analyzed and presented in graphical representations. Furthermore, the fluctuations in the heat transfer concerning the pertinent parameters are studied. The results show that the heat flux in the presence of the combination of spherical, cylindrical, and platelet nanoparticles is higher than that in the presence of the combination of only spherical and cylindrical nanoparticles. The temperature at the fin tip increases by 0.705 759% when the value of the Peclet number increases by 400%, while decreases by 11.825 13% when the value of the Hartman number increases by 400%.展开更多
This study is focused on the effect of vibration induced by moving trains in tunnels on the surrounding ground and structures.A three-dimensional finite element model is established for a one-track railway tunnel and ...This study is focused on the effect of vibration induced by moving trains in tunnels on the surrounding ground and structures.A three-dimensional finite element model is established for a one-track railway tunnel and an adjacent twelve-storey building frame by using commercial software Midas GTS-NX(2019)and Midas Gen.This study considered the moving load effect of a complete train,which varies with space as well as with time.The effect of factors such as train speed,overburden pressure on the tunnel and variation in soil properties are studied in the time domain.As a result,the variations in horizontal and vertical acceleration for two different sites,i.e.,the free ground surface(without structure)and the area containing the structure,are compared.Also,the displacement pattern of the raft foundation is plotted for different train velocities.At lower speeds,the heaving phenomenon is negligible,but as the speed increases,both the heaving and differential settlement increase in the foundation.This study demonstrates that the effect of moving train vibrations should be considered in the design of new nearby structures and proper ground improvement should be considered for existing structures.展开更多
Should the government or the market determine resource allocation? China Economist (CE):The financial crisis that originated in the U.S.continues to brew around the world and has severely
The performance of geosynthetic-reinforced embankments under traffic moving loads is always a hotspot in the geotechnical engineering field.A three-dimensional(3D)model of a geosynthetic-reinforced embankment without ...The performance of geosynthetic-reinforced embankments under traffic moving loads is always a hotspot in the geotechnical engineering field.A three-dimensional(3D)model of a geosynthetic-reinforced embankment without drainage consolidation was established using the finite element software ABAQUS.In this model,the traffic loads were simulated by two moving loads of rectangular pattern,and their amplitude,range,and moving speed were realized by a Fortran subroutine.The embankment fill was simulated by an equivalent linear viscoelastic model,which can reflect its viscoelasticity.The geogrid was simulated by the truss element,and the geocell was simulated by the membrane element.Infinite elements were utilized to weaken the boundary effect caused by the model geometry at the boundaries.Validation of the established numerical model was conducted by comparing the predicted deformations in the cross-section of the geosynthetic-reinforced embankment with those from the existing literature.On this basis,the dynamic stress and strain distribution in the pavement structure layer of the geosynthetic-reinforced embankment under a moving load was also analyzed.Finally,a parametric study was conducted to examine the influences of the different types of reinforcement,overload,and the moving load velocity on the geosynthetic-reinforced embankment.展开更多
The article introduces a finite element procedure using the bilinear quadrilateral element or four-node rectangular element(namely Q4 element) based on a refined first-order shear deformation theory(rFSDT) and Monte C...The article introduces a finite element procedure using the bilinear quadrilateral element or four-node rectangular element(namely Q4 element) based on a refined first-order shear deformation theory(rFSDT) and Monte Carlo simulation(MCS), so-called refined stochastic finite element method to investigate the random vibration of functionally graded material(FGM) plates subjected to the moving load.The advantage of the proposed method is to use r-FSDT to improve the accuracy of classical FSDT, satisfy the stress-free condition at the plate boundaries, and combine with MCS to analyze the vibration of the FGM plate when the parameter inputs are random quantities following a normal distribution. The obtained results show that the distribution characteristics of the vibration response of the FGM plate depend on the standard deviation of the input parameters and the velocity of the moving load.Furthermore, the numerical results in this study are expected to contribute to improving the understanding of FGM plates subjected to moving loads with uncertain input parameters.展开更多
Frequency modulated continuous wave(FMCW)radar is an advantageous sensor scheme for target estimation and environmental perception.However,existing algorithms based on discrete Fourier transform(DFT),multiple signal c...Frequency modulated continuous wave(FMCW)radar is an advantageous sensor scheme for target estimation and environmental perception.However,existing algorithms based on discrete Fourier transform(DFT),multiple signal classification(MUSIC)and compressed sensing,etc.,cannot achieve both low complexity and high resolution simultaneously.This paper proposes an efficient 2-D MUSIC algorithm for super-resolution target estimation/tracking based on FMCW radar.Firstly,we enhance the efficiency of 2-D MUSIC azimuth-range spectrum estimation by incorporating 2-D DFT and multi-level resolution searching strategy.Secondly,we apply the gradient descent method to tightly integrate the spatial continuity of object motion into spectrum estimation when processing multi-epoch radar data,which improves the efficiency of continuous target tracking.These two approaches have improved the algorithm efficiency by nearly 2-4 orders of magnitude without losing accuracy and resolution.Simulation experiments are conducted to validate the effectiveness of the algorithm in both single-epoch estimation and multi-epoch tracking scenarios.展开更多
Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a movi...Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a moving rough sea surface is studied based on integral equation and parabolic equation.And with the principles of grating and constructive interference,the mechanism of this acoustic scattering modulation is explained.The periodicity of the interference of moving rough sea surface will lead to the interference of the scattering field at a series of discrete angles,which will form comb-like and frequency-shift characteristics on the intensity and the frequency spectrum of the acoustic scattering field,respectively,which is a high-order Bragg scattering phenomenon.Unlike the conventional Doppler effect,the frequency shifts of the Bragg scattering phenomenon are multiples of the undulating sea surface frequency and are independent of the incident sound wave frequency.Therefore,even if a low-frequency underwater acoustic field is incident,it will produce obvious frequency shifts.Moreover,under the action of ideal sinusoidal waves,swells,fully grown wind waves,unsteady wind waves,or mixed waves,different moving rough sea surfaces create different acoustic scattering processes and possess different frequency shift characteristics.For the swell wave,which tends to be a single harmonic wave,the moving rough sea surface produces more obvious high-order scattering and frequency shifts.The same phenomena are observed on the sea surface under fully grown wind waves,however,the frequency shift slightly offsets the multiple peak frequencies of the wind wave spectrum.Comparing with the swell and fully-grown wind waves,the acoustic scattering and frequency shift are not obvious for the sea surface under unsteady wind waves.展开更多
Due to the importance of vibration effects on the functional accuracy of mechanical systems,this research aims to develop a precise model of a nonlinearly vibrating single-link mobile flexible manipulator.The manipula...Due to the importance of vibration effects on the functional accuracy of mechanical systems,this research aims to develop a precise model of a nonlinearly vibrating single-link mobile flexible manipulator.The manipulator consists of an elastic arm,a rotary motor,and a rigid carrier,and undergoes general in-plane rigid body motion along with elastic transverse deformation.To accurately model the elastic behavior,Timoshenko’s beam theory is used to describe the flexible arm,which accounts for rotary inertia and shear deformation effects.By applying Newton’s second law,the nonlinear governing equations of motion for the manipulator are derived as a coupled system of ordinary differential equations(ODEs)and partial differential equations(PDEs).Then,the assumed mode method(AMM)is used to solve this nonlinear system of governing equations with appropriate shape functions.The assumed modes can be obtained after solving the characteristic equation of a Timoshenko beam with clamped boundary conditions at one end and an attached mass/inertia at the other.In addition,the effect of the transverse vibration of the inextensible arm on its axial behavior is investigated.Despite the axial rigidity,the effect makes the rigid body dynamics invalid for the axial behavior of the arm.Finally,numerical simulations are conducted to evaluate the performance of the developed model,and the results are compared with those obtained by the finite element approach.The comparison confirms the validity of the proposed dynamic model for the system.According to the mentioned features,this model can be reliable for investigating the system’s vibrational behavior and implementing vibration control algorithms.展开更多
Applying numerical simulation technology to investigate fluid-solid interaction involving complex curved bound-aries is vital in aircraft design,ocean,and construction engineering.However,current methods such as Latti...Applying numerical simulation technology to investigate fluid-solid interaction involving complex curved bound-aries is vital in aircraft design,ocean,and construction engineering.However,current methods such as Lattice Boltzmann(LBM)and the immersion boundary method based on solid ratio(IMB)have limitations in identifying custom curved boundaries.Meanwhile,IBM based on velocity correction(IBM-VC)suffers from inaccuracies and numerical instability.Therefore,this study introduces a high-accuracy curve boundary recognition method(IMB-CB),which identifies boundary nodes by moving the search box,and corrects the weighting function in LBM by calculating the solid ratio of the boundary nodes,achieving accurate recognition of custom curve boundaries.In addition,curve boundary image and dot methods are utilized to verify IMB-CB.The findings revealed that IMB-CB can accurately identify the boundary,showing an error of less than 1.8%with 500 lattices.Also,the flow in the custom curve boundary and aerodynamic characteristics of the NACA0012 airfoil are calculated and compared to IBM-VC.Results showed that IMB-CB yields lower lift and drag coefficient errors than IBM-VC,with a 1.45%drag coefficient error.In addition,the characteristic curve of IMB-CB is very stable,whereas that of IBM-VC is not.For the moving boundary problem,LBM-IMB-CB with discrete element method(DEM)is capable of accurately simulating the physical phenomena of multi-moving particle flow in complex curved pipelines.This research proposes a new curve boundary recognition method,which can significantly promote the stability and accuracy of fluid-solid interaction simulations and thus has huge applications in engineering.展开更多
This investigation aims to analyze the effects of heat transport characteristics in the unsteady flow of nanofluids over a moving plate caused by a moving slot factor.The BRS variable is utilized for the purpose of an...This investigation aims to analyze the effects of heat transport characteristics in the unsteady flow of nanofluids over a moving plate caused by a moving slot factor.The BRS variable is utilized for the purpose of analyzing these characteristics.The process of mathematical computation involves converting the governing partial differential equations into ordinary differential equations that have suitable similarity components.The Keller-Box technique is employed to solve the ordinary differential equations(ODEs)and derive the corresponding mathematical outcomes.Figures and tables present the relationship between growth characteristics and various parameters such as temperature,velocity,skin friction coefficient,concentration,Sherwood number,and Nusselt number.The results are assessed by comparing them to previous findings.The observation reveals that higher dimensionless reference temperature and variable values of the moving slot parameter have a suppressing effect on the velocity and temperature patterns of nanofluids.Higher values of the dimensionless reference temperature and moving slot parameter lead to enhancements in the Sherwood number,skin friction coefficient,and Nusselt number.The conductivity of the nanofluid is ultimately affected by these enhancements.展开更多
This paper reviews works on the dynamic analysis of flexible and rigid pavements under moving vehicles on the basis of continuum-based plane strain models and linear theories.The purpose of this review is to provide i...This paper reviews works on the dynamic analysis of flexible and rigid pavements under moving vehicles on the basis of continuum-based plane strain models and linear theories.The purpose of this review is to provide in-formation about the existing works on the subject,critically discuss them and make suggestions for further research.The reviewed papers are presented on the basis of the various models for pavement-vehicle systems and the various methods for dynamically analyzing these systems.Flexible pavements are modeled by a homogeneous or layered half-plane with isotropic or anisotropic and linear elastic,viscoelastic or poroelastic material behavior.Rigid pavements are modeled by a beam or plate on a homogeneous or layered half-plane with material properties like the ones for flexible pavements.The vehicles are modeled as concentrated or distributed over a finite area loads moving with constant or time dependent speed.The above pavement-vehicle models are dynamically analyzed by analytical,analytical/numerical or purely numerical methods working in the time or frequency domain.Representative examples are presented to illustrate the models and methods of analysis,demonstrate their merits and assess the effects of the various parameters on pavement response.The paper closes with con-clusions and suggestions for further research in the area.The significance of this research effort has to do with the presentation of the existing literature on the subject in a critical and easy to understand way with the aid of representative examples and the identification of new research areas.展开更多
Spatial variation is often encountered when large scale field trials are conducted which can result in biased estimation or prediction of treatment (i.e. genotype) values. An effective removal of spatial variation is ...Spatial variation is often encountered when large scale field trials are conducted which can result in biased estimation or prediction of treatment (i.e. genotype) values. An effective removal of spatial variation is needed to ensure unbiased estimation or prediction and thus increase the accuracy of field data evaluation. A moving grid adjustment (MGA) method, which was proposed by Technow, was evaluated through Monte Carlo simulation for its statistical properties regarding field spatial variation control. Our simulation results showed that the MGA method can effectively account for field spatial variation if it does exist;however, this method will not change phenotype results if field spatial variation does not exist. The MGA method was applied to a large-scale cotton field trial data set with two representative agronomic traits: lint yield (strong field spatial pattern) and lint percentage (no field spatial pattern). The results suggested that the MGA method was able to effectively separate the spatial variation including blocking effects from random error variation for lint yield while the adjusted data remained almost identical to the original phenotypic data. With application of the MGA method, the estimated variance for residuals was significantly reduced (62.2% decrease) for lint yield while more genetic variation (29.7% increase) was detected compared to the original data analysis subject to the conventional randomized complete block design analysis. On the other hand, the results were almost identical for lint percentage with and without the application of the MGA method. Therefore, the MGA method can be a useful addition to enhance data analysis when field spatial pattern exists.展开更多
The existing research results show that a fixed single station must conduct three consecutive frequency shift measurements and obtain the target’s moving speed by constructing two frequency difference equations. This...The existing research results show that a fixed single station must conduct three consecutive frequency shift measurements and obtain the target’s moving speed by constructing two frequency difference equations. This article proposes a new method that requires only two consecutive measurements. While using the azimuth measurement to obtain the angular difference between two radial distances, it also conducts two consecutive Doppler frequency shift measurements at the same target azimuth. On the basis of this measurement, a frequency difference equation is first constructed and solved jointly with the Doppler frequency shift equation. By eliminating the velocity variable and using the measured angular difference to obtain the target’s lead angle, the target’s velocity can be solved by using the Doppler frequency shift equation again. The new method avoids the condition that the target must move equidistantly, which not only provides an achievable method for engineering applications but also lays a good foundation for further exploring the use of steady-state signals to achieve passive positioning.展开更多
The vibration characteristics of transverse oscillation of an axially moving beam with high velocity is in- vestigated. The vibration equation and boundary conditions of the free-free axially moving beam are derived u...The vibration characteristics of transverse oscillation of an axially moving beam with high velocity is in- vestigated. The vibration equation and boundary conditions of the free-free axially moving beam are derived using Hamilton's principle. Furthermore, the linearized equations are set up based on Galerkinl s method for the ap- proximation solution. Finally, three influencing factors on the vibration frequency of the beam are considered: (1) The axially moving speed. The first order natural frequency decreases as the axial velocity increases, so there is a critical velocity of the axially moving beam. (2) The mass loss. The changing of the mass density of some part of the beam increases the beam natural frequencies. (3) The thermal effect.' The temperature increase will decrease the beam elastic modulus and induce the vibration frequencies descending.展开更多
文摘EDITOR’S NOTE: Tangmei Gungior Baimo, the former Vice-Chairwoman of the Tibet Committee of the Chinese People’s Political Consultative Conference, is a celebrity in Tibet. In the early days after the peaceful liberation of Tibet in 1951,she moved out of an aristocrat family in order to word in the public interest.
文摘A prediction framework based on the evolution of pattern motion probability density is proposed for the output prediction and estimation problem of non-Newtonian mechanical systems,assuming that the system satisfies the generalized Lipschitz condition.As a complex nonlinear system primarily governed by statistical laws rather than Newtonian mechanics,the output of non-Newtonian mechanics systems is difficult to describe through deterministic variables such as state variables,which poses difficulties in predicting and estimating the system’s output.In this article,the temporal variation of the system is described by constructing pattern category variables,which are non-deterministic variables.Since pattern category variables have statistical attributes but not operational attributes,operational attributes are assigned to them by posterior probability density,and a method for analyzing their motion laws using probability density evolution is proposed.Furthermore,a data-driven form of pattern motion probabilistic density evolution prediction method is designed by combining pseudo partial derivative(PPD),achieving prediction of the probability density satisfying the system’s output uncertainty.Based on this,the final prediction estimation of the system’s output value is realized by minimum variance unbiased estimation.Finally,a corresponding PPD estimation algorithm is designed using an extended state observer(ESO)to estimate the parameters to be estimated in the proposed prediction method.The effectiveness of the parameter estimation algorithm and prediction method is demonstrated through theoretical analysis,and the accuracy of the algorithm is verified by two numerical simulation examples.
文摘Eavesdropping attacks have become one of the most common attacks on networks because of their easy implementation. Eavesdropping attacks not only lead to transmission data leakage but also develop into other more harmful attacks. Routing randomization is a relevant research direction for moving target defense, which has been proven to be an effective method to resist eavesdropping attacks. To counter eavesdropping attacks, in this study, we analyzed the existing routing randomization methods and found that their security and usability need to be further improved. According to the characteristics of eavesdropping attacks, which are “latent and transferable”, a routing randomization defense method based on deep reinforcement learning is proposed. The proposed method realizes routing randomization on packet-level granularity using programmable switches. To improve the security and quality of service of legitimate services in networks, we use the deep deterministic policy gradient to generate random routing schemes with support from powerful network state awareness. In-band network telemetry provides real-time, accurate, and comprehensive network state awareness for the proposed method. Various experiments show that compared with other typical routing randomization defense methods, the proposed method has obvious advantages in security and usability against eavesdropping attacks.
基金financially supported by the Health and Family Planning Commission of Hubei Province(No.WJ2017F047)the Health and Family Planning Commission of Wuhan(No.WG17D05)
文摘Outbreaks of hand-foot-mouth disease(HFMD) have occurred many times and caused serious health burden in China since 2008. Application of modern information technology to prediction and early response can be helpful for efficient HFMD prevention and control. A seasonal auto-regressive integrated moving average(ARIMA) model for time series analysis was designed in this study. Eighty-four-month(from January 2009 to December 2015) retrospective data obtained from the Chinese Information System for Disease Prevention and Control were subjected to ARIMA modeling. The coefficient of determination(R^2), normalized Bayesian Information Criterion(BIC) and Q-test P value were used to evaluate the goodness-of-fit of constructed models. Subsequently, the best-fitted ARIMA model was applied to predict the expected incidence of HFMD from January 2016 to December 2016. The best-fitted seasonal ARIMA model was identified as(1,0,1)(0,1,1)12, with the largest coefficient of determination(R^2=0.743) and lowest normalized BIC(BIC=3.645) value. The residuals of the model also showed non-significant autocorrelations(P_(Box-Ljung(Q))=0.299). The predictions by the optimum ARIMA model adequately captured the pattern in the data and exhibited two peaks of activity over the forecast interval, including a major peak during April to June, and again a light peak for September to November. The ARIMA model proposed in this study can forecast HFMD incidence trend effectively, which could provide useful support for future HFMD prevention and control in the study area. Besides, further observations should be added continually into the modeling data set, and parameters of the models should be adjusted accordingly.
基金Supported by the National Natural Science Foundation of China(60802005,60965002,50803016)Science Foundation forthe Excellent Youth Scholars at East China University of Science and Technology(YH0157127)Undergraduate Innovational Experimentation Program in ECUST(X1033)
文摘A prediction-aided routing algorithm based on ant colony optimization mode (PRACO) to achieve energy-aware data-gathering routing structure in wireless sensor networks (WSN) is presented. We adopt autoregressive moving average model (ARMA) to predict dynamic tendency in data traffic and deduce the construction of load factor, which can help to reveal the future energy status of sensor in WSN. By checking the load factor in heuristic factor and guided by novel pheromone updating rule, multi-agent, i. e. , artificial ants, can adaptively foresee the local energy state of networks and the corresponding actions could be taken to enhance the energy efficiency in routing construction. Compared with some classic energy-saving routing schemes, the simulation results show that the proposed routing building scheme can ① effectively reinforce the robustness of routing structure by mining the temporal associability and introducing multi-agent optimization to balance the total energy cost for data transmission, ② minimize the total communication consumption, and ③prolong the lifetime of networks.
基金This work was supported by the National Natural Science Foundation of China(62076025).
文摘This paper addresses a modified auxiliary model stochastic gradient recursive parameter identification algorithm(M-AM-SGRPIA)for a class of single input single output(SISO)linear output error models with multi-threshold quantized observations.It proves the convergence of the designed algorithm.A pattern-moving-based system dynamics description method with hybrid metrics is proposed for a kind of practical single input multiple output(SIMO)or SISO nonlinear systems,and a SISO linear output error model with multi-threshold quantized observations is adopted to approximate the unknown system.The system input design is accomplished using the measurement technology of random repeatability test,and the probabilistic characteristic of the explicit metric value is employed to estimate the implicit metric value of the pattern class variable.A modified auxiliary model stochastic gradient recursive algorithm(M-AM-SGRA)is designed to identify the model parameters,and the contraction mapping principle proves its convergence.Two numerical examples are given to demonstrate the feasibility and effectiveness of the achieved identification algorithm.
基金Project supported by the DST-FIST Program for Higher Education Institutions of India(No. SR/FST/MS-I/2018/23(C))。
文摘The thermal examination of a non-integer-ordered mobile fin with a magnetism in the presence of a trihybrid nanofluid(Fe_3O_4-Au-Zn-blood) is carried out. Three types of nanoparticles, each having a different shape, are considered. These shapes include spherical(Fe_3O_4), cylindrical(Au), and platelet(Zn) configurations. The combination approach is utilized to evaluate the physical and thermal characteristics of the trihybrid and hybrid nanofluids, excluding the thermal conductivity and dynamic viscosity. These two properties are inferred by means of the interpolation method based on the volume fraction of nanoparticles. The governing equation is transformed into a dimensionless form, and the Adomian decomposition Sumudu transform method(ADSTM) is adopted to solve the conundrum of a moving fin immersed in a trihybrid nanofluid. The obtained results agree well with those numerical simulation results, indicating that this research is reliable. The influence of diverse factors on the thermal overview for varying noninteger values of γ is analyzed and presented in graphical representations. Furthermore, the fluctuations in the heat transfer concerning the pertinent parameters are studied. The results show that the heat flux in the presence of the combination of spherical, cylindrical, and platelet nanoparticles is higher than that in the presence of the combination of only spherical and cylindrical nanoparticles. The temperature at the fin tip increases by 0.705 759% when the value of the Peclet number increases by 400%, while decreases by 11.825 13% when the value of the Hartman number increases by 400%.
文摘This study is focused on the effect of vibration induced by moving trains in tunnels on the surrounding ground and structures.A three-dimensional finite element model is established for a one-track railway tunnel and an adjacent twelve-storey building frame by using commercial software Midas GTS-NX(2019)and Midas Gen.This study considered the moving load effect of a complete train,which varies with space as well as with time.The effect of factors such as train speed,overburden pressure on the tunnel and variation in soil properties are studied in the time domain.As a result,the variations in horizontal and vertical acceleration for two different sites,i.e.,the free ground surface(without structure)and the area containing the structure,are compared.Also,the displacement pattern of the raft foundation is plotted for different train velocities.At lower speeds,the heaving phenomenon is negligible,but as the speed increases,both the heaving and differential settlement increase in the foundation.This study demonstrates that the effect of moving train vibrations should be considered in the design of new nearby structures and proper ground improvement should be considered for existing structures.
文摘Should the government or the market determine resource allocation? China Economist (CE):The financial crisis that originated in the U.S.continues to brew around the world and has severely
基金This research was funded through the National Natural Science Foundation of China(Grant Nos.52108299 and 52178312)the China Postdoctoral Science Foundation(Grant No.2021M693740)the Basal Research Fund Support by Chongqing University.
文摘The performance of geosynthetic-reinforced embankments under traffic moving loads is always a hotspot in the geotechnical engineering field.A three-dimensional(3D)model of a geosynthetic-reinforced embankment without drainage consolidation was established using the finite element software ABAQUS.In this model,the traffic loads were simulated by two moving loads of rectangular pattern,and their amplitude,range,and moving speed were realized by a Fortran subroutine.The embankment fill was simulated by an equivalent linear viscoelastic model,which can reflect its viscoelasticity.The geogrid was simulated by the truss element,and the geocell was simulated by the membrane element.Infinite elements were utilized to weaken the boundary effect caused by the model geometry at the boundaries.Validation of the established numerical model was conducted by comparing the predicted deformations in the cross-section of the geosynthetic-reinforced embankment with those from the existing literature.On this basis,the dynamic stress and strain distribution in the pavement structure layer of the geosynthetic-reinforced embankment under a moving load was also analyzed.Finally,a parametric study was conducted to examine the influences of the different types of reinforcement,overload,and the moving load velocity on the geosynthetic-reinforced embankment.
文摘The article introduces a finite element procedure using the bilinear quadrilateral element or four-node rectangular element(namely Q4 element) based on a refined first-order shear deformation theory(rFSDT) and Monte Carlo simulation(MCS), so-called refined stochastic finite element method to investigate the random vibration of functionally graded material(FGM) plates subjected to the moving load.The advantage of the proposed method is to use r-FSDT to improve the accuracy of classical FSDT, satisfy the stress-free condition at the plate boundaries, and combine with MCS to analyze the vibration of the FGM plate when the parameter inputs are random quantities following a normal distribution. The obtained results show that the distribution characteristics of the vibration response of the FGM plate depend on the standard deviation of the input parameters and the velocity of the moving load.Furthermore, the numerical results in this study are expected to contribute to improving the understanding of FGM plates subjected to moving loads with uncertain input parameters.
基金funded by the National Natural Science Foundation of China,grant number 42074176,U1939204。
文摘Frequency modulated continuous wave(FMCW)radar is an advantageous sensor scheme for target estimation and environmental perception.However,existing algorithms based on discrete Fourier transform(DFT),multiple signal classification(MUSIC)and compressed sensing,etc.,cannot achieve both low complexity and high resolution simultaneously.This paper proposes an efficient 2-D MUSIC algorithm for super-resolution target estimation/tracking based on FMCW radar.Firstly,we enhance the efficiency of 2-D MUSIC azimuth-range spectrum estimation by incorporating 2-D DFT and multi-level resolution searching strategy.Secondly,we apply the gradient descent method to tightly integrate the spatial continuity of object motion into spectrum estimation when processing multi-epoch radar data,which improves the efficiency of continuous target tracking.These two approaches have improved the algorithm efficiency by nearly 2-4 orders of magnitude without losing accuracy and resolution.Simulation experiments are conducted to validate the effectiveness of the algorithm in both single-epoch estimation and multi-epoch tracking scenarios.
基金Project supported by the IACAS Young Elite Researcher Project(Grant No.QNYC201703)the Rising Star Foundation of Integrated Research Center for Islands and Reefs Sciences,CAS(Grant No.ZDRW-XH-2021-2-04)the Key Laboratory Foundation of Acoustic Science and Technology(Grant No.2021-JCJQ-LB-066-08).
文摘Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a moving rough sea surface is studied based on integral equation and parabolic equation.And with the principles of grating and constructive interference,the mechanism of this acoustic scattering modulation is explained.The periodicity of the interference of moving rough sea surface will lead to the interference of the scattering field at a series of discrete angles,which will form comb-like and frequency-shift characteristics on the intensity and the frequency spectrum of the acoustic scattering field,respectively,which is a high-order Bragg scattering phenomenon.Unlike the conventional Doppler effect,the frequency shifts of the Bragg scattering phenomenon are multiples of the undulating sea surface frequency and are independent of the incident sound wave frequency.Therefore,even if a low-frequency underwater acoustic field is incident,it will produce obvious frequency shifts.Moreover,under the action of ideal sinusoidal waves,swells,fully grown wind waves,unsteady wind waves,or mixed waves,different moving rough sea surfaces create different acoustic scattering processes and possess different frequency shift characteristics.For the swell wave,which tends to be a single harmonic wave,the moving rough sea surface produces more obvious high-order scattering and frequency shifts.The same phenomena are observed on the sea surface under fully grown wind waves,however,the frequency shift slightly offsets the multiple peak frequencies of the wind wave spectrum.Comparing with the swell and fully-grown wind waves,the acoustic scattering and frequency shift are not obvious for the sea surface under unsteady wind waves.
文摘Due to the importance of vibration effects on the functional accuracy of mechanical systems,this research aims to develop a precise model of a nonlinearly vibrating single-link mobile flexible manipulator.The manipulator consists of an elastic arm,a rotary motor,and a rigid carrier,and undergoes general in-plane rigid body motion along with elastic transverse deformation.To accurately model the elastic behavior,Timoshenko’s beam theory is used to describe the flexible arm,which accounts for rotary inertia and shear deformation effects.By applying Newton’s second law,the nonlinear governing equations of motion for the manipulator are derived as a coupled system of ordinary differential equations(ODEs)and partial differential equations(PDEs).Then,the assumed mode method(AMM)is used to solve this nonlinear system of governing equations with appropriate shape functions.The assumed modes can be obtained after solving the characteristic equation of a Timoshenko beam with clamped boundary conditions at one end and an attached mass/inertia at the other.In addition,the effect of the transverse vibration of the inextensible arm on its axial behavior is investigated.Despite the axial rigidity,the effect makes the rigid body dynamics invalid for the axial behavior of the arm.Finally,numerical simulations are conducted to evaluate the performance of the developed model,and the results are compared with those obtained by the finite element approach.The comparison confirms the validity of the proposed dynamic model for the system.According to the mentioned features,this model can be reliable for investigating the system’s vibrational behavior and implementing vibration control algorithms.
基金WJD,JYZ,CLC,ZX,and ZGY were supported by the National Natural Science Foundation of China(Grant Number 51705143)the Education Department of Hunan Province(Grant Number 22B0464)the Postgraduate Scientific Research Innovation Project of Hunan Province(Grant Number QL20230249).
文摘Applying numerical simulation technology to investigate fluid-solid interaction involving complex curved bound-aries is vital in aircraft design,ocean,and construction engineering.However,current methods such as Lattice Boltzmann(LBM)and the immersion boundary method based on solid ratio(IMB)have limitations in identifying custom curved boundaries.Meanwhile,IBM based on velocity correction(IBM-VC)suffers from inaccuracies and numerical instability.Therefore,this study introduces a high-accuracy curve boundary recognition method(IMB-CB),which identifies boundary nodes by moving the search box,and corrects the weighting function in LBM by calculating the solid ratio of the boundary nodes,achieving accurate recognition of custom curve boundaries.In addition,curve boundary image and dot methods are utilized to verify IMB-CB.The findings revealed that IMB-CB can accurately identify the boundary,showing an error of less than 1.8%with 500 lattices.Also,the flow in the custom curve boundary and aerodynamic characteristics of the NACA0012 airfoil are calculated and compared to IBM-VC.Results showed that IMB-CB yields lower lift and drag coefficient errors than IBM-VC,with a 1.45%drag coefficient error.In addition,the characteristic curve of IMB-CB is very stable,whereas that of IBM-VC is not.For the moving boundary problem,LBM-IMB-CB with discrete element method(DEM)is capable of accurately simulating the physical phenomena of multi-moving particle flow in complex curved pipelines.This research proposes a new curve boundary recognition method,which can significantly promote the stability and accuracy of fluid-solid interaction simulations and thus has huge applications in engineering.
文摘This investigation aims to analyze the effects of heat transport characteristics in the unsteady flow of nanofluids over a moving plate caused by a moving slot factor.The BRS variable is utilized for the purpose of analyzing these characteristics.The process of mathematical computation involves converting the governing partial differential equations into ordinary differential equations that have suitable similarity components.The Keller-Box technique is employed to solve the ordinary differential equations(ODEs)and derive the corresponding mathematical outcomes.Figures and tables present the relationship between growth characteristics and various parameters such as temperature,velocity,skin friction coefficient,concentration,Sherwood number,and Nusselt number.The results are assessed by comparing them to previous findings.The observation reveals that higher dimensionless reference temperature and variable values of the moving slot parameter have a suppressing effect on the velocity and temperature patterns of nanofluids.Higher values of the dimensionless reference temperature and moving slot parameter lead to enhancements in the Sherwood number,skin friction coefficient,and Nusselt number.The conductivity of the nanofluid is ultimately affected by these enhancements.
文摘This paper reviews works on the dynamic analysis of flexible and rigid pavements under moving vehicles on the basis of continuum-based plane strain models and linear theories.The purpose of this review is to provide in-formation about the existing works on the subject,critically discuss them and make suggestions for further research.The reviewed papers are presented on the basis of the various models for pavement-vehicle systems and the various methods for dynamically analyzing these systems.Flexible pavements are modeled by a homogeneous or layered half-plane with isotropic or anisotropic and linear elastic,viscoelastic or poroelastic material behavior.Rigid pavements are modeled by a beam or plate on a homogeneous or layered half-plane with material properties like the ones for flexible pavements.The vehicles are modeled as concentrated or distributed over a finite area loads moving with constant or time dependent speed.The above pavement-vehicle models are dynamically analyzed by analytical,analytical/numerical or purely numerical methods working in the time or frequency domain.Representative examples are presented to illustrate the models and methods of analysis,demonstrate their merits and assess the effects of the various parameters on pavement response.The paper closes with con-clusions and suggestions for further research in the area.The significance of this research effort has to do with the presentation of the existing literature on the subject in a critical and easy to understand way with the aid of representative examples and the identification of new research areas.
文摘Spatial variation is often encountered when large scale field trials are conducted which can result in biased estimation or prediction of treatment (i.e. genotype) values. An effective removal of spatial variation is needed to ensure unbiased estimation or prediction and thus increase the accuracy of field data evaluation. A moving grid adjustment (MGA) method, which was proposed by Technow, was evaluated through Monte Carlo simulation for its statistical properties regarding field spatial variation control. Our simulation results showed that the MGA method can effectively account for field spatial variation if it does exist;however, this method will not change phenotype results if field spatial variation does not exist. The MGA method was applied to a large-scale cotton field trial data set with two representative agronomic traits: lint yield (strong field spatial pattern) and lint percentage (no field spatial pattern). The results suggested that the MGA method was able to effectively separate the spatial variation including blocking effects from random error variation for lint yield while the adjusted data remained almost identical to the original phenotypic data. With application of the MGA method, the estimated variance for residuals was significantly reduced (62.2% decrease) for lint yield while more genetic variation (29.7% increase) was detected compared to the original data analysis subject to the conventional randomized complete block design analysis. On the other hand, the results were almost identical for lint percentage with and without the application of the MGA method. Therefore, the MGA method can be a useful addition to enhance data analysis when field spatial pattern exists.
文摘The existing research results show that a fixed single station must conduct three consecutive frequency shift measurements and obtain the target’s moving speed by constructing two frequency difference equations. This article proposes a new method that requires only two consecutive measurements. While using the azimuth measurement to obtain the angular difference between two radial distances, it also conducts two consecutive Doppler frequency shift measurements at the same target azimuth. On the basis of this measurement, a frequency difference equation is first constructed and solved jointly with the Doppler frequency shift equation. By eliminating the velocity variable and using the measured angular difference to obtain the target’s lead angle, the target’s velocity can be solved by using the Doppler frequency shift equation again. The new method avoids the condition that the target must move equidistantly, which not only provides an achievable method for engineering applications but also lays a good foundation for further exploring the use of steady-state signals to achieve passive positioning.
基金Supported by the National Natural Science Foundation of China(10972104)~~
文摘The vibration characteristics of transverse oscillation of an axially moving beam with high velocity is in- vestigated. The vibration equation and boundary conditions of the free-free axially moving beam are derived using Hamilton's principle. Furthermore, the linearized equations are set up based on Galerkinl s method for the ap- proximation solution. Finally, three influencing factors on the vibration frequency of the beam are considered: (1) The axially moving speed. The first order natural frequency decreases as the axial velocity increases, so there is a critical velocity of the axially moving beam. (2) The mass loss. The changing of the mass density of some part of the beam increases the beam natural frequencies. (3) The thermal effect.' The temperature increase will decrease the beam elastic modulus and induce the vibration frequencies descending.