The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the bas...The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the basic function and of the weight function,and is mainly determined by that of the weight function.Therefore,the weight function greatly affects the accuracy of results obtained.Different kinds of weight functions,such as the spline function, the Gauss function and so on,are proposed recently by many researchers.In the present work,the features of various weight functions are illustrated through solving elasto-static problems using the local boundary integral equation method.The effect of various weight functions on the accuracy, convergence and stability of results obtained is also discussed.Examples show that the weight function proposed by Zhou Weiyuan and Gauss and the quartic spline weight function are better than the others if parameters c and α in Gauss and exponential weight functions are in the range of reasonable values,respectively,and the higher the smoothness of the weight function,the better the features of the solutions.展开更多
When the source nodes are on the global boundary in the implementation of local boundary integral equation method (LBIEM), singularities in the local boundary integrals need to be treated specially. In the current p...When the source nodes are on the global boundary in the implementation of local boundary integral equation method (LBIEM), singularities in the local boundary integrals need to be treated specially. In the current paper, local integral equations are adopted for the nodes inside the domain and moving least square approximation (MLSA) for the nodes on the global boundary, thus singularities will not occur in the new al- gorithm. At the same time, approximation errors of boundary integrals are reduced significantly. As applications and numerical tests, Laplace equation and Helmholtz equation problems are considered and excellent numerical results are obtained. Furthermore, when solving the Helmholtz problems, the modified basis functions with wave solutions are adapted to replace the usually-used monomial basis functions. Numerical results show that this treatment is simple and effective and its application is promising in solutions for the wave propagation problem with high wave number.展开更多
In this paper, a meshfree boundary integral equation (BIE) method, called the moving Kriging interpolation- based boundary node method (MKIBNM), is developed for solving two-dimensional potential problems. This st...In this paper, a meshfree boundary integral equation (BIE) method, called the moving Kriging interpolation- based boundary node method (MKIBNM), is developed for solving two-dimensional potential problems. This study combines the DIE method with the moving Kriging interpolation to present a boundary-type meshfree method, and the corresponding formulae of the MKIBNM are derived. In the present method, the moving Kriging interpolation is applied instead of the traditional moving least-square approximation to overcome Kronecker's delta property, then the boundary conditions can be imposed directly and easily. To verify the accuracy and stability of the present formulation, three selected numerical examples are presented to demonstrate the efficiency of MKIBNM numerically.展开更多
In this paper, the meshless integral method based on the regularized boundary integral equation [1] has been extended to analyze the large deformation of elastoplastic materials. The updated Lagrangian governing integ...In this paper, the meshless integral method based on the regularized boundary integral equation [1] has been extended to analyze the large deformation of elastoplastic materials. The updated Lagrangian governing integral equation is obtained from the weak form of elastoplasticity based on Green-Naghdi’s theory over a local sub-domain, and the moving least-squares approximation is used for meshless function approximation. Green-Naghdi’s theory starts with the additive decomposition of the Green-Lagrange strain into elastic and plastic parts and considers aJ2elastoplastic constitutive law that relates the Green-Lagrange strain to the second Piola-Kirchhoff stress. A simple, generalized collocation method is proposed to enforce essential boundary conditions straightforwardly and accurately, while natural boundary conditions are incorporated in the system governing equations and require no special handling. The solution algorithm for large deformation analysis is discussed in detail. Numerical examples show that meshless integral method with large deformation is accurate and robust.展开更多
We classify all positive solutions for the following integral system:{ui(x)=∫Rn1/│x-y│^n-α fi(u(y))dy,x∈R^n,i=1,…,m,0〈α〈n,and u(x)=(u1(x),u2(x)…,um(x)).Here fi(u), 1 ≤ i ≤m, monotone non...We classify all positive solutions for the following integral system:{ui(x)=∫Rn1/│x-y│^n-α fi(u(y))dy,x∈R^n,i=1,…,m,0〈α〈n,and u(x)=(u1(x),u2(x)…,um(x)).Here fi(u), 1 ≤ i ≤m, monotone nondecreasing are real-valued functions of homogeneous degree n+α/n-α and are monotone nondecreasing with respect to all the independent variables U1, u2, ..., urn.In the special case n ≥ 3 and α = 2. we show that the above system is equivalent to thefollowing elliptic PDE system:This system is closely related to the stationary SchrSdinger system with critical exponents for Bose-Einstein condensate展开更多
The hybrid boundary node method (HBNM) is a promising method for solving boundary value problems with the hybrid displacement variational formulation and shape functions from the moving least squares(MLS) approxim...The hybrid boundary node method (HBNM) is a promising method for solving boundary value problems with the hybrid displacement variational formulation and shape functions from the moving least squares(MLS) approximation. The main idea is to reduce the dimensionality of the former and keep the meshless advantage of the latter. Following its application in solving potential problems, it is further developed and numerically implemented for 2D solids in this paper. The rigid movement method is employed to solve the hyper-singular integrations. Numerical examples for some 2D solids have been given to show the characteristics. The computation results obtained by the present method are in excellent agreement with the analytical solution. The parameters that influence the performance of this method are studied through numerical examples.展开更多
Diffraction of plane P waves around an alluvial valley of arbitrary shape in poroelastic half-space is investigated by using an indirect boundary integral equation method. Based on the Green's fimctions of line sourc...Diffraction of plane P waves around an alluvial valley of arbitrary shape in poroelastic half-space is investigated by using an indirect boundary integral equation method. Based on the Green's fimctions of line source in poroelastic half-space, the scattered waves are constructed using the fictitious wave sources close to the interface of the valley and the density of ficti- tious wave sources are determined by boundary conditions. The precision of the method is verified by the satisfaction extent of boundary conditions, and the comparison between the degenerated solutions and available results in single-phase case. Finally, the nature of diffraction of plane P waves around an alluvial valley in poroelastic half-space is investigated in detail through nu- merical examples.展开更多
In this paper, we consider the following integral system: u(x) = R n v q (y) | x y | nα dy, v(x) = R n u p (y) | x y | nμ dy, (0.1) where 0 〈 α, μ 〈 n; p, q ≥ 1. Using the method of moving planes...In this paper, we consider the following integral system: u(x) = R n v q (y) | x y | nα dy, v(x) = R n u p (y) | x y | nμ dy, (0.1) where 0 〈 α, μ 〈 n; p, q ≥ 1. Using the method of moving planes in an integral form which was recently introduced by Chen, Li, and Ou in [2, 4, 8], we show that all positive solutions of (0.1) are radially symmetric and decreasing with respect to some point under some general conditions of integrability. The results essentially improve and extend previously known results [4, 8].展开更多
A numerical method is proposed to simulate the transverse vibrations of a viscoelastic moving string constituted by an integral law. In the numerical computation, the Galerkin method based on the Hermite functions is ...A numerical method is proposed to simulate the transverse vibrations of a viscoelastic moving string constituted by an integral law. In the numerical computation, the Galerkin method based on the Hermite functions is applied to discretize the state variables, and the Runge- Kutta method is applied to solve the resulting differential-integral equation system. A linear iterative process is designed to compute the integral terms at each time step, which makes the numerical method more efficient and accurate. As examples, nonlinear parametric vibrations of an axially moving viscoelastic string are analyzed.展开更多
The meshless local Petrov_Galerkin (MLPG) method for solving the bending problem of the thin plate were presented and discussed. The method used the moving least_squares approximation to interpolate the solution varia...The meshless local Petrov_Galerkin (MLPG) method for solving the bending problem of the thin plate were presented and discussed. The method used the moving least_squares approximation to interpolate the solution variables, and employed a local symmetric weak form. The present method was a truly meshless one as it did not need a finite element or boundary element mesh, either for purpose of interpolation of the solution, or for the integration of the energy. All integrals could be easily evaluated over regularly shaped domains (in general, spheres in three_dimensional problems) and their boundaries. The essential boundary conditions were enforced by the penalty method. Several numerical examples were presented to illustrate the implementation and performance of the present method. The numerical examples presented show that high accuracy can be achieved for arbitrary grid geometries for clamped and simply_supported edge conditions. No post processing procedure is required to computer the strain and stress, since the original solution from the present method, using the moving least squares approximation, is already smooth enough.展开更多
In this paper, Liouville-type theorems of nonnegative solutions for some elliptic integral systems are considered. We use a new type of moving plane method introduced by Chen-Li-Ou. Our new ingredient is the use of St...In this paper, Liouville-type theorems of nonnegative solutions for some elliptic integral systems are considered. We use a new type of moving plane method introduced by Chen-Li-Ou. Our new ingredient is the use of Stein-Weiss inequality instead of Maximum Principle.展开更多
In this paper, we consider the semilinear equation involving the fractional Laplacian in the Euclidian space R^n:(-△)^α/2u(x) : f(xn)u^p(x), x ∈R^n(0.1)in the subcritical case with 1〈 p〈n+a/n-a.Inste...In this paper, we consider the semilinear equation involving the fractional Laplacian in the Euclidian space R^n:(-△)^α/2u(x) : f(xn)u^p(x), x ∈R^n(0.1)in the subcritical case with 1〈 p〈n+a/n-a.Instead of carrying out direct investigations on pseudo-differential equation (0.1), we first seek its equivalent form in an integral equation as below:u(x)=∫R^nG∞(x, y) f(yn) u^p(y)dy,where G∞(x, y) is the Green's function associated with the fractional Laplacian in R^n. Employing the method of moving planes in integral forms, we are able to derive the nonexistence of positive solutions for (0.2) in the subcritical case. Thanks to the equivalence, same con- clusion is true for (0.1).展开更多
A meshless approach to analysis of arbitrary Kirechhoff plates bythe local boundary integral equation (LBIF) method is presented. Themethod combines the advantageous features of all the three meth- ods:the Galerkin fi...A meshless approach to analysis of arbitrary Kirechhoff plates bythe local boundary integral equation (LBIF) method is presented. Themethod combines the advantageous features of all the three meth- ods:the Galerkin finite element method (GFEM), the boundary elementmethod (BEM) and the element- free Galerkin method (EFGM). It is atruly meshless method, which means that the discretization is inde-pendent of geometric subdivision into elements or cells, but is onlyboundary integration, however over a local boundary cen- tered) overa domain in question.展开更多
We give the direct method of moving planes for solutions to the conformally invariant fractional power sub Laplace equation on the Heisenberg group.The method is based on four maximum principles derived here.Then symm...We give the direct method of moving planes for solutions to the conformally invariant fractional power sub Laplace equation on the Heisenberg group.The method is based on four maximum principles derived here.Then symmetry and nonexistence of positive cylindrical solutions are proved.展开更多
In this paper, by using the method of moving planes, we are concerned with the symmetry and monotonicity of positive solutions for the fractional Hartree equation.
文摘The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the basic function and of the weight function,and is mainly determined by that of the weight function.Therefore,the weight function greatly affects the accuracy of results obtained.Different kinds of weight functions,such as the spline function, the Gauss function and so on,are proposed recently by many researchers.In the present work,the features of various weight functions are illustrated through solving elasto-static problems using the local boundary integral equation method.The effect of various weight functions on the accuracy, convergence and stability of results obtained is also discussed.Examples show that the weight function proposed by Zhou Weiyuan and Gauss and the quartic spline weight function are better than the others if parameters c and α in Gauss and exponential weight functions are in the range of reasonable values,respectively,and the higher the smoothness of the weight function,the better the features of the solutions.
文摘When the source nodes are on the global boundary in the implementation of local boundary integral equation method (LBIEM), singularities in the local boundary integrals need to be treated specially. In the current paper, local integral equations are adopted for the nodes inside the domain and moving least square approximation (MLSA) for the nodes on the global boundary, thus singularities will not occur in the new al- gorithm. At the same time, approximation errors of boundary integrals are reduced significantly. As applications and numerical tests, Laplace equation and Helmholtz equation problems are considered and excellent numerical results are obtained. Furthermore, when solving the Helmholtz problems, the modified basis functions with wave solutions are adapted to replace the usually-used monomial basis functions. Numerical results show that this treatment is simple and effective and its application is promising in solutions for the wave propagation problem with high wave number.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.10902076)the Natural Science Foundation of Shanxi Province of China(Grant No.2007011009)+1 种基金the Scientific Research and Development Program of the Shanxi Higher Education Institutions(Grant No.20091131)the Doctoral Startup Foundation of Taiyuan University of Science and Technology(Grant No.200708)
文摘In this paper, a meshfree boundary integral equation (BIE) method, called the moving Kriging interpolation- based boundary node method (MKIBNM), is developed for solving two-dimensional potential problems. This study combines the DIE method with the moving Kriging interpolation to present a boundary-type meshfree method, and the corresponding formulae of the MKIBNM are derived. In the present method, the moving Kriging interpolation is applied instead of the traditional moving least-square approximation to overcome Kronecker's delta property, then the boundary conditions can be imposed directly and easily. To verify the accuracy and stability of the present formulation, three selected numerical examples are presented to demonstrate the efficiency of MKIBNM numerically.
文摘In this paper, the meshless integral method based on the regularized boundary integral equation [1] has been extended to analyze the large deformation of elastoplastic materials. The updated Lagrangian governing integral equation is obtained from the weak form of elastoplasticity based on Green-Naghdi’s theory over a local sub-domain, and the moving least-squares approximation is used for meshless function approximation. Green-Naghdi’s theory starts with the additive decomposition of the Green-Lagrange strain into elastic and plastic parts and considers aJ2elastoplastic constitutive law that relates the Green-Lagrange strain to the second Piola-Kirchhoff stress. A simple, generalized collocation method is proposed to enforce essential boundary conditions straightforwardly and accurately, while natural boundary conditions are incorporated in the system governing equations and require no special handling. The solution algorithm for large deformation analysis is discussed in detail. Numerical examples show that meshless integral method with large deformation is accurate and robust.
基金supported by NSF Grant DMS-0604638Li partially supported by NSF Grant DMS-0401174
文摘We classify all positive solutions for the following integral system:{ui(x)=∫Rn1/│x-y│^n-α fi(u(y))dy,x∈R^n,i=1,…,m,0〈α〈n,and u(x)=(u1(x),u2(x)…,um(x)).Here fi(u), 1 ≤ i ≤m, monotone nondecreasing are real-valued functions of homogeneous degree n+α/n-α and are monotone nondecreasing with respect to all the independent variables U1, u2, ..., urn.In the special case n ≥ 3 and α = 2. we show that the above system is equivalent to thefollowing elliptic PDE system:This system is closely related to the stationary SchrSdinger system with critical exponents for Bose-Einstein condensate
基金Project supported by the Key Lab of Geomechanics, Chinese Academy of Sciences (No.Z110202).
文摘The hybrid boundary node method (HBNM) is a promising method for solving boundary value problems with the hybrid displacement variational formulation and shape functions from the moving least squares(MLS) approximation. The main idea is to reduce the dimensionality of the former and keep the meshless advantage of the latter. Following its application in solving potential problems, it is further developed and numerically implemented for 2D solids in this paper. The rigid movement method is employed to solve the hyper-singular integrations. Numerical examples for some 2D solids have been given to show the characteristics. The computation results obtained by the present method are in excellent agreement with the analytical solution. The parameters that influence the performance of this method are studied through numerical examples.
基金supported by National Natural Science Foundation of China (50978183)
文摘Diffraction of plane P waves around an alluvial valley of arbitrary shape in poroelastic half-space is investigated by using an indirect boundary integral equation method. Based on the Green's fimctions of line source in poroelastic half-space, the scattered waves are constructed using the fictitious wave sources close to the interface of the valley and the density of ficti- tious wave sources are determined by boundary conditions. The precision of the method is verified by the satisfaction extent of boundary conditions, and the comparison between the degenerated solutions and available results in single-phase case. Finally, the nature of diffraction of plane P waves around an alluvial valley in poroelastic half-space is investigated in detail through nu- merical examples.
基金Supported by National Natural Science Foundation of China-NSAF (10976026)
文摘In this paper, we consider the following integral system: u(x) = R n v q (y) | x y | nα dy, v(x) = R n u p (y) | x y | nμ dy, (0.1) where 0 〈 α, μ 〈 n; p, q ≥ 1. Using the method of moving planes in an integral form which was recently introduced by Chen, Li, and Ou in [2, 4, 8], we show that all positive solutions of (0.1) are radially symmetric and decreasing with respect to some point under some general conditions of integrability. The results essentially improve and extend previously known results [4, 8].
基金supported by the National Outstanding Young Scientists Fund of China (No. 10725209)the National ScienceFoundation of China (No. 10672092)+1 种基金Shanghai Municipal Education Commission Scientific Research Project (No. 07ZZ07)Shanghai Leading Academic Discipline Project (No. Y0103).
文摘A numerical method is proposed to simulate the transverse vibrations of a viscoelastic moving string constituted by an integral law. In the numerical computation, the Galerkin method based on the Hermite functions is applied to discretize the state variables, and the Runge- Kutta method is applied to solve the resulting differential-integral equation system. A linear iterative process is designed to compute the integral terms at each time step, which makes the numerical method more efficient and accurate. As examples, nonlinear parametric vibrations of an axially moving viscoelastic string are analyzed.
文摘The meshless local Petrov_Galerkin (MLPG) method for solving the bending problem of the thin plate were presented and discussed. The method used the moving least_squares approximation to interpolate the solution variables, and employed a local symmetric weak form. The present method was a truly meshless one as it did not need a finite element or boundary element mesh, either for purpose of interpolation of the solution, or for the integration of the energy. All integrals could be easily evaluated over regularly shaped domains (in general, spheres in three_dimensional problems) and their boundaries. The essential boundary conditions were enforced by the penalty method. Several numerical examples were presented to illustrate the implementation and performance of the present method. The numerical examples presented show that high accuracy can be achieved for arbitrary grid geometries for clamped and simply_supported edge conditions. No post processing procedure is required to computer the strain and stress, since the original solution from the present method, using the moving least squares approximation, is already smooth enough.
文摘In this paper, Liouville-type theorems of nonnegative solutions for some elliptic integral systems are considered. We use a new type of moving plane method introduced by Chen-Li-Ou. Our new ingredient is the use of Stein-Weiss inequality instead of Maximum Principle.
文摘In this paper, we consider the semilinear equation involving the fractional Laplacian in the Euclidian space R^n:(-△)^α/2u(x) : f(xn)u^p(x), x ∈R^n(0.1)in the subcritical case with 1〈 p〈n+a/n-a.Instead of carrying out direct investigations on pseudo-differential equation (0.1), we first seek its equivalent form in an integral equation as below:u(x)=∫R^nG∞(x, y) f(yn) u^p(y)dy,where G∞(x, y) is the Green's function associated with the fractional Laplacian in R^n. Employing the method of moving planes in integral forms, we are able to derive the nonexistence of positive solutions for (0.2) in the subcritical case. Thanks to the equivalence, same con- clusion is true for (0.1).
基金the National Natural Science Foundation of China(No.19972019)
文摘A meshless approach to analysis of arbitrary Kirechhoff plates bythe local boundary integral equation (LBIF) method is presented. Themethod combines the advantageous features of all the three meth- ods:the Galerkin finite element method (GFEM), the boundary elementmethod (BEM) and the element- free Galerkin method (EFGM). It is atruly meshless method, which means that the discretization is inde-pendent of geometric subdivision into elements or cells, but is onlyboundary integration, however over a local boundary cen- tered) overa domain in question.
基金supported by the National Natural Science Foundation of China(No.11771354)。
文摘We give the direct method of moving planes for solutions to the conformally invariant fractional power sub Laplace equation on the Heisenberg group.The method is based on four maximum principles derived here.Then symmetry and nonexistence of positive cylindrical solutions are proved.
基金supported by NSFC(11761082)Yunnan Province,Young Academic and Technical Leaders Program(2015HB028)
文摘In this paper, by using the method of moving planes, we are concerned with the symmetry and monotonicity of positive solutions for the fractional Hartree equation.