The facies distribution of a reservoir is one of the biggest concerns for geologists,geophysicists,reservoir modelers,and reservoir engineers due to its high importance in the setting of any reliable decisionmaking/op...The facies distribution of a reservoir is one of the biggest concerns for geologists,geophysicists,reservoir modelers,and reservoir engineers due to its high importance in the setting of any reliable decisionmaking/optimization of field development planning.The approach for parameterizing the facies distribution as a random variable comes naturally through using the probability fields.Since the prior probability fields of facies come either from a seismic inversion or from other sources of geologic information,they are not conditioned to the data observed from the cores extracted from the wells.This paper presents a regularized element-free Galerkin(R-EFG)method for conditioning facies probability fields to facies observation.The conditioned probability fields respect all the conditions of the probability theory(i.e.all the values are between 0 and 1,and the sum of all fields is a uniform field of 1).This property achieves by an optimization procedure under equality and inequality constraints with the gradient projection method.The conditioned probability fields are further used as the input in the adaptive pluri-Gaussian simulation(APS)methodology and coupled with the ensemble smoother with multiple data assimilation(ES-MDA)for estimation and uncertainty quantification of the facies distribution.The history-matching of the facies models shows a good estimation and uncertainty quantification of facies distribution,a good data match and prediction capabilities.展开更多
In practical applications, the system observation error is widespread. If the observation equation of the system has not been verified or corrected under certain environmental conditions,the unknown system errors and ...In practical applications, the system observation error is widespread. If the observation equation of the system has not been verified or corrected under certain environmental conditions,the unknown system errors and filtering errors will come into being.The incremental observation equation is derived, which can eliminate the unknown observation errors effectively. Furthermore, an incremental Kalman smoother is presented. Moreover, a weighted measurement fusion incremental Kalman smoother applying the globally optimal weighted measurement fusion algorithm is given.The simulation results show their effectiveness and feasibility.展开更多
For improving the localization accuracy,a multi-interval extended finite impulse response(EFIR)-based Rauch-Tung-Striebel(R-T-S)smoother is proposed for the range-only ultra wide band(UWB)simultaneous localization and...For improving the localization accuracy,a multi-interval extended finite impulse response(EFIR)-based Rauch-Tung-Striebel(R-T-S)smoother is proposed for the range-only ultra wide band(UWB)simultaneous localization and mapping(SLAM)for robot localization.In this mode,the EFIR R-T-S(ERTS)smoother employs EFIR filter as the forward filter and the R-T-S smoothing method to smooth the EFIR filter’s output.When the east or the north position is considered as stance,the ERTS is used to smooth the position directly.Moreover,the estimation of the UWB Reference Nodes’(RNs’)position is smoothed by the R-T-S smooth method in parallel.The test illustrates that the proposedmulti-interval ERTS smoothing for range-only UWB SLAMis able to provide accurate estimation.Compared with the EFIR filter,the proposed method improves the localization accuracy by about 25.35%and 40.66%in east and north directions,respectively.展开更多
Identification of the location and intensity of groundwater pollution source contributes to the effect of pollution remediation,and is called groundwater contaminant source identification.This is a kind of typical gro...Identification of the location and intensity of groundwater pollution source contributes to the effect of pollution remediation,and is called groundwater contaminant source identification.This is a kind of typical groundwater inverse problem,and the solution is usually ill-posed.Especially considering the spatial variability of hydraulic conductivity field,the identification process is more challenging.In this paper,the solution framework of groundwater contaminant source identification is composed with groundwater pollutant transport model(MT3DMS)and a data assimilation method(Iterative local update ensemble smoother,ILUES).In addition,Karhunen-Loève expansion technique is adopted as a PCA method to realize dimension reduction.In practical problems,the geostatistical method is usually used to characterize the hydraulic conductivity field,and only the contaminant source information is inversely calculated in the identification process.In this study,the identification of contaminant source information under Kriging K-field is compared with simultaneous identification of source information and K-field.The results indicate that it is necessary to carry out simultaneous identification under heterogeneous site,and ILUES has good performance in solving high-dimensional parameter inversion problems.展开更多
A square-root version of the divided difference Rauch-Tung-Striebel (RTS) smoother is proposed in this paper. The square-root variant essentially propagates the square roots of the covariance matrices and can consiste...A square-root version of the divided difference Rauch-Tung-Striebel (RTS) smoother is proposed in this paper. The square-root variant essentially propagates the square roots of the covariance matrices and can consistently improve the numerical stability because all the resulting covariance matrices are guaranteed to stay positive semi-definite. Furthermore, the square-root form ensures reliable implementation in an embedded system with fixed or limited precision although it is algebraically equivalent to the standard form. The new smoothing algorithm is tested in a challenging two-dimensional maneuvering target tracking problem with unknown and time-varying turn rate, and its performance is compared with that of other de-facto standard filters and smoothers. The simulation results indicate that the proposed RTS smoother markedly outperforms the associated filters and gives slightly smaller error than an unscented-based RTS smoother.展开更多
Meta-learning provides a framework for the possibility of mimicking artificial intelligence.How-ever,data distribution of the training set fails to be consistent with the one of the testing set as the limited domain d...Meta-learning provides a framework for the possibility of mimicking artificial intelligence.How-ever,data distribution of the training set fails to be consistent with the one of the testing set as the limited domain differences among them.These factors often result in poor generalization in existing meta-learning models.In this work,a novel smoother manifold for graph meta-learning(SGML)is proposed,which derives the similarity parameters of node features from the relationship between nodes and edges in the graph structure,and then utilizes the similarity parameters to yield smoother manifold through embedded propagation module.Smoother manifold can naturally filter out noise from the most important components when generalizing the local mapping relationship to the global.Besides suiting for generalizing on unseen low data issues,the framework is capable to easily perform transductive inference.Experimental results on MiniImageNet and TieredImageNet consistently show that applying SGML to supervised and semi-supervised classification can improve the performance in reducing the noise of domain shift representation.展开更多
A new approach of smoothing the white noise for nonlinear stochastic system was proposed. Through presenting the Gaussian approximation about the white noise posterior smoothing probability density fimction, an optima...A new approach of smoothing the white noise for nonlinear stochastic system was proposed. Through presenting the Gaussian approximation about the white noise posterior smoothing probability density fimction, an optimal and unifying white noise smoothing framework was firstly derived on the basis of the existing state smoother. The proposed framework was only formal in the sense that it rarely could be directly used in practice since the model nonlinearity resulted in the intractability and infeasibility of analytically computing the smoothing gain. For this reason, a suboptimal and practical white noise smoother, which is called the unscented white noise smoother (UWNS), was further developed by applying unscented transformation to numerically approximate the smoothing gain. Simulation results show the superior performance of the proposed UWNS approach as compared to the existing extended white noise smoother (EWNS) based on the first-order linearization.展开更多
Almost estimators are designed for the white observation noise. In the estimation problems, rather than the white observation noise, there might be actual cases where the observation noise is modeled by the colored no...Almost estimators are designed for the white observation noise. In the estimation problems, rather than the white observation noise, there might be actual cases where the observation noise is modeled by the colored noise process. This paper examines to design a new estimation technique of recursive least-squares (RLS) Wiener fixed-point smoother and filter for colored observation noise in linear discrete-time wide-sense stationary stochastic systems. The observation y(k) is given as the sum of the signal z(k)=Hx(k) and the colored observation noise vc(k). The RLS Wiener estimators explicitly require the following information: 1) the system matrix for the state vector x(k);2) the observation matrix H;3) the variance of the state vector x(k);4) the system matrix for the colored observation noise vc(k);5) the variance of the colored observation noise;6) the input noise variance in the state equation for the colored observation noise.展开更多
This paper proposes a passive methodology for detecting a class of stealthy intermittent integrity attacks in cyberphysical systems subject to process disturbances and measurement noise.A stealthy intermittent integri...This paper proposes a passive methodology for detecting a class of stealthy intermittent integrity attacks in cyberphysical systems subject to process disturbances and measurement noise.A stealthy intermittent integrity attack strategy is first proposed by modifying a zero-dynamics attack model.The stealthiness of the generated attacks is rigorously investigated under the condition that the adversary does not know precisely the system state values.In order to help detect such attacks,a backward-in-time detection residual is proposed based on an equivalent quantity of the system state change,due to the attack,at a time prior to the attack occurrence time.A key characteristic of this residual is that its magnitude increases every time a new attack occurs.To estimate this unknown residual,an optimal fixed-point smoother is proposed by minimizing a piece-wise linear quadratic cost function with a set of specifically designed weighting matrices.The smoother design guarantees robustness with respect to process disturbances and measurement noise,and is also able to maintain sensitivity as time progresses to intermittent integrity attack by resetting the covariance matrix based on the weighting matrices.The adaptive threshold is designed based on the estimated backward-in-time residual,and the attack detectability analysis is rigorously investigated to characterize quantitatively the class of attacks that can be detected by the proposed methodology.Finally,a simulation example is used to demonstrate the effectiveness of the developed methodology.展开更多
针对杂波环境下的多个机动目标跟踪问题,本文将多模型概率假设密度(Multiple-model probability hypothesis density,MM-PHD)滤波器和平滑算法相结合,提出了MM-PHD前向–后向平滑器.为了避免引入复杂的随机有限集(Random finiteset,RFS...针对杂波环境下的多个机动目标跟踪问题,本文将多模型概率假设密度(Multiple-model probability hypothesis density,MM-PHD)滤波器和平滑算法相结合,提出了MM-PHD前向–后向平滑器.为了避免引入复杂的随机有限集(Random finiteset,RFS)理论,本文根据PHD的物理空间(Physical space)描述法推导得到了MM-PHD平滑器的后向更新公式.由于MM-PHD前向–后向平滑器的递推公式中包含有多个积分,因此它在非线性非高斯条件下没有解析的表达形式.故本文又给出了它的序贯蒙特卡洛(Sequential Monte Carlo,SMC)实现.100次蒙特卡洛(Monte Carlo,MC)仿真实验表明,与MM-PHD滤波器相比,MM-PHD平滑器能够更加精确地估计多个机动目标的个数和状态,但MM-PHD平滑器存在一定的时间滞后,并且需要耗费更大的计算代价.展开更多
文摘The facies distribution of a reservoir is one of the biggest concerns for geologists,geophysicists,reservoir modelers,and reservoir engineers due to its high importance in the setting of any reliable decisionmaking/optimization of field development planning.The approach for parameterizing the facies distribution as a random variable comes naturally through using the probability fields.Since the prior probability fields of facies come either from a seismic inversion or from other sources of geologic information,they are not conditioned to the data observed from the cores extracted from the wells.This paper presents a regularized element-free Galerkin(R-EFG)method for conditioning facies probability fields to facies observation.The conditioned probability fields respect all the conditions of the probability theory(i.e.all the values are between 0 and 1,and the sum of all fields is a uniform field of 1).This property achieves by an optimization procedure under equality and inequality constraints with the gradient projection method.The conditioned probability fields are further used as the input in the adaptive pluri-Gaussian simulation(APS)methodology and coupled with the ensemble smoother with multiple data assimilation(ES-MDA)for estimation and uncertainty quantification of the facies distribution.The history-matching of the facies models shows a good estimation and uncertainty quantification of facies distribution,a good data match and prediction capabilities.
基金supported by the National Natural Science Foundation of China(6110420961503126)
文摘In practical applications, the system observation error is widespread. If the observation equation of the system has not been verified or corrected under certain environmental conditions,the unknown system errors and filtering errors will come into being.The incremental observation equation is derived, which can eliminate the unknown observation errors effectively. Furthermore, an incremental Kalman smoother is presented. Moreover, a weighted measurement fusion incremental Kalman smoother applying the globally optimal weighted measurement fusion algorithm is given.The simulation results show their effectiveness and feasibility.
文摘For improving the localization accuracy,a multi-interval extended finite impulse response(EFIR)-based Rauch-Tung-Striebel(R-T-S)smoother is proposed for the range-only ultra wide band(UWB)simultaneous localization and mapping(SLAM)for robot localization.In this mode,the EFIR R-T-S(ERTS)smoother employs EFIR filter as the forward filter and the R-T-S smoothing method to smooth the EFIR filter’s output.When the east or the north position is considered as stance,the ERTS is used to smooth the position directly.Moreover,the estimation of the UWB Reference Nodes’(RNs’)position is smoothed by the R-T-S smooth method in parallel.The test illustrates that the proposedmulti-interval ERTS smoothing for range-only UWB SLAMis able to provide accurate estimation.Compared with the EFIR filter,the proposed method improves the localization accuracy by about 25.35%and 40.66%in east and north directions,respectively.
基金supported by the Fundamental Research Funds for the Central Universities(No.22120190013)National Natural Science Foundation of China(No.41807187)
文摘Identification of the location and intensity of groundwater pollution source contributes to the effect of pollution remediation,and is called groundwater contaminant source identification.This is a kind of typical groundwater inverse problem,and the solution is usually ill-posed.Especially considering the spatial variability of hydraulic conductivity field,the identification process is more challenging.In this paper,the solution framework of groundwater contaminant source identification is composed with groundwater pollutant transport model(MT3DMS)and a data assimilation method(Iterative local update ensemble smoother,ILUES).In addition,Karhunen-Loève expansion technique is adopted as a PCA method to realize dimension reduction.In practical problems,the geostatistical method is usually used to characterize the hydraulic conductivity field,and only the contaminant source information is inversely calculated in the identification process.In this study,the identification of contaminant source information under Kriging K-field is compared with simultaneous identification of source information and K-field.The results indicate that it is necessary to carry out simultaneous identification under heterogeneous site,and ILUES has good performance in solving high-dimensional parameter inversion problems.
基金the Fundamental Research Fund of Northwestern Polytechnical University( Grant No. JC20120210,JC20110238)
文摘A square-root version of the divided difference Rauch-Tung-Striebel (RTS) smoother is proposed in this paper. The square-root variant essentially propagates the square roots of the covariance matrices and can consistently improve the numerical stability because all the resulting covariance matrices are guaranteed to stay positive semi-definite. Furthermore, the square-root form ensures reliable implementation in an embedded system with fixed or limited precision although it is algebraically equivalent to the standard form. The new smoothing algorithm is tested in a challenging two-dimensional maneuvering target tracking problem with unknown and time-varying turn rate, and its performance is compared with that of other de-facto standard filters and smoothers. The simulation results indicate that the proposed RTS smoother markedly outperforms the associated filters and gives slightly smaller error than an unscented-based RTS smoother.
基金Supported by the National Natural Science Foundation of China(No.61171131)the Key R&D Program of Shandong Province(No.YD01033)the China Scholarship Council Project(No.021608370049).
文摘Meta-learning provides a framework for the possibility of mimicking artificial intelligence.How-ever,data distribution of the training set fails to be consistent with the one of the testing set as the limited domain differences among them.These factors often result in poor generalization in existing meta-learning models.In this work,a novel smoother manifold for graph meta-learning(SGML)is proposed,which derives the similarity parameters of node features from the relationship between nodes and edges in the graph structure,and then utilizes the similarity parameters to yield smoother manifold through embedded propagation module.Smoother manifold can naturally filter out noise from the most important components when generalizing the local mapping relationship to the global.Besides suiting for generalizing on unseen low data issues,the framework is capable to easily perform transductive inference.Experimental results on MiniImageNet and TieredImageNet consistently show that applying SGML to supervised and semi-supervised classification can improve the performance in reducing the noise of domain shift representation.
基金Projects(61203234,61135001,61075029,61074179) supported by the National Natural Science Foundation of ChinaProject(20110491692) supported by the Postdoctoral Science Foundation of China
文摘A new approach of smoothing the white noise for nonlinear stochastic system was proposed. Through presenting the Gaussian approximation about the white noise posterior smoothing probability density fimction, an optimal and unifying white noise smoothing framework was firstly derived on the basis of the existing state smoother. The proposed framework was only formal in the sense that it rarely could be directly used in practice since the model nonlinearity resulted in the intractability and infeasibility of analytically computing the smoothing gain. For this reason, a suboptimal and practical white noise smoother, which is called the unscented white noise smoother (UWNS), was further developed by applying unscented transformation to numerically approximate the smoothing gain. Simulation results show the superior performance of the proposed UWNS approach as compared to the existing extended white noise smoother (EWNS) based on the first-order linearization.
文摘Almost estimators are designed for the white observation noise. In the estimation problems, rather than the white observation noise, there might be actual cases where the observation noise is modeled by the colored noise process. This paper examines to design a new estimation technique of recursive least-squares (RLS) Wiener fixed-point smoother and filter for colored observation noise in linear discrete-time wide-sense stationary stochastic systems. The observation y(k) is given as the sum of the signal z(k)=Hx(k) and the colored observation noise vc(k). The RLS Wiener estimators explicitly require the following information: 1) the system matrix for the state vector x(k);2) the observation matrix H;3) the variance of the state vector x(k);4) the system matrix for the colored observation noise vc(k);5) the variance of the colored observation noise;6) the input noise variance in the state equation for the colored observation noise.
基金This work was supported by the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skodowska-Curie(101027980(CSPCPS-A-ICA),739551(KIOS CoE-TEAMING))the Italian Ministry for Research in the Framework of the 2017 Program for Research Projects of National Interest(PRIN)(2017YKXYXJ)+3 种基金the National Natural Science Foundation of China(61903188,62073165,62020106003)the Natural Science Foundation of Jiangsu Province(BK20190403)the 111 Project(B20007)the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘This paper proposes a passive methodology for detecting a class of stealthy intermittent integrity attacks in cyberphysical systems subject to process disturbances and measurement noise.A stealthy intermittent integrity attack strategy is first proposed by modifying a zero-dynamics attack model.The stealthiness of the generated attacks is rigorously investigated under the condition that the adversary does not know precisely the system state values.In order to help detect such attacks,a backward-in-time detection residual is proposed based on an equivalent quantity of the system state change,due to the attack,at a time prior to the attack occurrence time.A key characteristic of this residual is that its magnitude increases every time a new attack occurs.To estimate this unknown residual,an optimal fixed-point smoother is proposed by minimizing a piece-wise linear quadratic cost function with a set of specifically designed weighting matrices.The smoother design guarantees robustness with respect to process disturbances and measurement noise,and is also able to maintain sensitivity as time progresses to intermittent integrity attack by resetting the covariance matrix based on the weighting matrices.The adaptive threshold is designed based on the estimated backward-in-time residual,and the attack detectability analysis is rigorously investigated to characterize quantitatively the class of attacks that can be detected by the proposed methodology.Finally,a simulation example is used to demonstrate the effectiveness of the developed methodology.
文摘针对杂波环境下的多个机动目标跟踪问题,本文将多模型概率假设密度(Multiple-model probability hypothesis density,MM-PHD)滤波器和平滑算法相结合,提出了MM-PHD前向–后向平滑器.为了避免引入复杂的随机有限集(Random finiteset,RFS)理论,本文根据PHD的物理空间(Physical space)描述法推导得到了MM-PHD平滑器的后向更新公式.由于MM-PHD前向–后向平滑器的递推公式中包含有多个积分,因此它在非线性非高斯条件下没有解析的表达形式.故本文又给出了它的序贯蒙特卡洛(Sequential Monte Carlo,SMC)实现.100次蒙特卡洛(Monte Carlo,MC)仿真实验表明,与MM-PHD滤波器相比,MM-PHD平滑器能够更加精确地估计多个机动目标的个数和状态,但MM-PHD平滑器存在一定的时间滞后,并且需要耗费更大的计算代价.