In the aircraft control system,sensor networks are used to sample the attitude and environmental data.As a result of the external and internal factors(e.g.,environmental and task complexity,inaccurate sensing and comp...In the aircraft control system,sensor networks are used to sample the attitude and environmental data.As a result of the external and internal factors(e.g.,environmental and task complexity,inaccurate sensing and complex structure),the aircraft control system contains several uncertainties,such as imprecision,incompleteness,redundancy and randomness.The information fusion technology is usually used to solve the uncertainty issue,thus improving the sampled data reliability,which can further effectively increase the performance of the fault diagnosis decision-making in the aircraft control system.In this work,we first analyze the uncertainties in the aircraft control system,and also compare different uncertainty quantitative methods.Since the information fusion can eliminate the effects of the uncertainties,it is widely used in the fault diagnosis.Thus,this paper summarizes the recent work in this aera.Furthermore,we analyze the application of information fusion methods in the fault diagnosis of the aircraft control system.Finally,this work identifies existing problems in the use of information fusion for diagnosis and outlines future trends.展开更多
The multisensor information fusion technology is adopted for real time measuring the four parameters which are connected closely with the weld nugget size(welding current, electrode displacement, dynamic resistance, ...The multisensor information fusion technology is adopted for real time measuring the four parameters which are connected closely with the weld nugget size(welding current, electrode displacement, dynamic resistance, welding time), thus much more original information is obtained. In this way, the difficulty caused by measuring indirectly weld nugget size can be decreased in spot welding quality control, and the stability of spot welding quality can be improved. According to this method, two-dimensional fuzzy controllers are designed with the information fusion result as input and the thyristor control signal as output. The spot welding experimental results indicate that the spot welding quality intelligent control method based on multiscnsor information fusion technology can compensate the influence caused by variable factors in welding process and ensure the stability of welding quality.展开更多
This paper derives a square-root information-type filtering algorithm for nonlinear multi-sensor fusion problems using the cubature Kalman filter theory. The resulting filter is called the square-root cubature Informa...This paper derives a square-root information-type filtering algorithm for nonlinear multi-sensor fusion problems using the cubature Kalman filter theory. The resulting filter is called the square-root cubature Information filter (SCIF). The SCIF propagates the square-root information matrices derived from numerically stable matrix operations and is therefore numerically robust. The SCIF is applied to a highly maneuvering target tracking problem in a distributed sensor network with feedback. The SCIF’s performance is finally compared with the regular cubature information filter and the traditional extended information filter. The results, presented herein, indicate that the SCIF is the most reliable of all three filters and yields a more accurate estimate than the extended information filter.展开更多
In the applications of water regime monitoring, incompleteness, and inaccuracy of sensor data may directly affect the reliability of acquired monitoring information. Based on the spatial and temporal correlation of wa...In the applications of water regime monitoring, incompleteness, and inaccuracy of sensor data may directly affect the reliability of acquired monitoring information. Based on the spatial and temporal correlation of water regime monitoring information, this paper addresses this issue and proposes an information fusion method to implement data rectification. An improved Back Propagation (BP) neural network is used to perform data fusion on the hardware platform of a stantion unit, which takes Field-Programmable Gate Array (FPGA) as the core component. In order to verify the effectiveness, five measurements including water level, discharge and velocity are selected from three different points in a water regime monitoring station. The simulation results show that this method can recitify random errors as well as gross errors significantly.展开更多
Multi-sensor system is becoming increasingly important in a variety of military and civilian applications. In general, single sensor system can only provide partial information about environment while multi-sensor sys...Multi-sensor system is becoming increasingly important in a variety of military and civilian applications. In general, single sensor system can only provide partial information about environment while multi-sensor system provides a synergistic effect, which improves the quality and availability of information. Data fusion techniques can effectively combine this environmental information from similar and/or dissimilar sensors. Sensor management, aiming at improving data fusion performance by controlling sensor behavior, plays an important role in a data fusion process. This paper presents a method using fisher information gain based sensor effectiveness metric for sensor assignment in multi-sensor and multi-target tracking applications. The fisher information gain is computed for every sensor-target pairing on each scan. The advantage for this metric over other ones is that the fisher information gain for the target obtained by multi-sensors is equal to the sum of ones obtained by the individual sensor, so standard transportation problem formulation can be used to solve this problem without importing the concept of pseudo sensor. The simulation results show the effectiveness of the method.展开更多
The concepts of information fusion and the basic principles of neural networks are introduced. Neural net-works were introduced as a way of building an information fusion model in a coal mine monitoring system. This a...The concepts of information fusion and the basic principles of neural networks are introduced. Neural net-works were introduced as a way of building an information fusion model in a coal mine monitoring system. This assures the accurate transmission of the multi-sensor information that comes from the coal mine monitoring systems. The in-formation fusion mode was analyzed. An algorithm was designed based on this analysis and some simulation results were given. Finally,conclusions that could provide auxiliary decision making information to the coal mine dispatching officers were presented.展开更多
Altitude regulation is a fundamental problem in UAV(unmanned aerial vehicles) control to ensure hovering and autonomous navigation performance.However,data from altitude sensors may be unstable by interference.A digit...Altitude regulation is a fundamental problem in UAV(unmanned aerial vehicles) control to ensure hovering and autonomous navigation performance.However,data from altitude sensors may be unstable by interference.A digital-filter-based improved adaptive Kalman method is proposed to improve accuracy and reliability of the altitude measurement information.A unique sensor data fusion structure is designed to make different sensors switch automatically in different environment.Simulation and experimental results show that an improved Sage-Husa adaptive extended Kalman filter(SHAEKF) is adopted in altitude data fusion which means that altitude error is limited to 1.5m in high altitude and 1.2m near the ground.This method is proved feasible and effective through hovering flight test and three-dimensional track flight experiment.展开更多
Gas-path performance estimation plays an important role in aero-engine health management, and Kalman Filter(KF) is a well-known technique to estimate performance degradation. In previous studies, it is assumed that di...Gas-path performance estimation plays an important role in aero-engine health management, and Kalman Filter(KF) is a well-known technique to estimate performance degradation. In previous studies, it is assumed that different kinds of sensors are with the same sampling rate, and they are used for state estimation by the KF simultaneously. However, it is hard to achieve state estimation using various kinds of sensor measurements at the same sampling rate due to a complex network and physical characteristic differences between sensors, especially in an advanced multisensor architecture. For this purpose, a multi-rate sensor fusion using the information filtering approach is proposed based on the square-root cubature rule, which is called Multi-rate Squareroot Cubature Information Filter(MSCIF) to track engine performance degradation. Soft measurement synchronization of the MSCIF is designed to provide a sensor fusion condition for multiple sampling rates of measurement, and a fault sensor is isolated by maximum likelihood validation before state estimation. The contribution of this paper is to supply a novel multi-rate informationfilter approach for sensor fault tolerant health estimation of an aero-engine in a multi-sensor system. Tests are conducted for aero-engine performance degradation estimation with multiple sampling rates of sensor measurement on both digital simulation and semi-physical experiment.Experimental results illustrate the superiority of the proposed algorithm in terms of degradation estimation accuracy and robustness to sensor failure in a multi-sensor system.展开更多
Underwater wireless sensor networks(UWSNs)can provide a promising solution to underwater target tracking.Due to limited energy and bandwidth resources,only a small number of nodes are selected to track a target at eac...Underwater wireless sensor networks(UWSNs)can provide a promising solution to underwater target tracking.Due to limited energy and bandwidth resources,only a small number of nodes are selected to track a target at each interval.Because all measurements are fused together to provide information in a fusion center,fusion weights of all selected nodes may affect the performance of target tracking.As far as we know,almost all existing tracking schemes neglect this problem.We study a weighted fusion scheme for target tracking in UWSNs.First,because the mutual information(MI)between a node’s measurement and the target state can quantify target information provided by the node,it is calculated to determine proper fusion weights.Second,we design a novel multi-sensor weighted particle filter(MSWPF)using fusion weights determined by MI.Third,we present a local node selection scheme based on posterior Cramer-Rao lower bound(PCRLB)to improve tracking efficiency.Finally,simulation results are presented to verify the performance improvement of our scheme with proper fusion weights.展开更多
According to fault type diversity and fault information uncertainty problem of the hydraulic driven rocket launcher servo system(HDRLSS) , the fault diagnosis method based on the evidence theory and neural network e...According to fault type diversity and fault information uncertainty problem of the hydraulic driven rocket launcher servo system(HDRLSS) , the fault diagnosis method based on the evidence theory and neural network ensemble is proposed. In order to overcome the shortcomings of the single neural network, two improved neural network models are set up at the com-mon nodes to simplify the network structure. The initial fault diagnosis is based on the iron spectrum data and the pressure, flow and temperature(PFT) characteristic parameters as the input vectors of the two improved neural network models, and the diagnosis result is taken as the basic probability distribution of the evidence theory. Then the objectivity of assignment is real-ized. The initial diagnosis results of two improved neural networks are fused by D-S evidence theory. The experimental results show that this method can avoid the misdiagnosis of neural network recognition and improve the accuracy of the fault diagnosis of HDRLSS.展开更多
For the multi-sensor linear discrete time-invariant stochastic systems with correlated measurement noises and unknown noise statistics,an on-line noise statistics estimator is obtained using the correlation method.Sub...For the multi-sensor linear discrete time-invariant stochastic systems with correlated measurement noises and unknown noise statistics,an on-line noise statistics estimator is obtained using the correlation method.Substituting it into the optimal weighted fusion steady-state white noise deconvolution estimator based on the Kalman filtering,a self-tuning weighted measurement fusion white noise deconvolution estimator is presented.By the Dynamic Error System Analysis(DESA) method,it proved that the self-tuning fusion white noise deconvolution estimator converges to the steady-state optimal fusion white noise deconvolution estimator in a realization.Therefore,it has the asymptotically global optimality.A simulation example for the tracking system with 3 sensors and the Bernoulli-Gaussian input white noise shows its effectiveness.展开更多
基金supported by the National Natural Science Foundation of China(62273176)the Aeronautical Science Foundation of China(20200007018001)the China Scholarship Council(202306830096).
文摘In the aircraft control system,sensor networks are used to sample the attitude and environmental data.As a result of the external and internal factors(e.g.,environmental and task complexity,inaccurate sensing and complex structure),the aircraft control system contains several uncertainties,such as imprecision,incompleteness,redundancy and randomness.The information fusion technology is usually used to solve the uncertainty issue,thus improving the sampled data reliability,which can further effectively increase the performance of the fault diagnosis decision-making in the aircraft control system.In this work,we first analyze the uncertainties in the aircraft control system,and also compare different uncertainty quantitative methods.Since the information fusion can eliminate the effects of the uncertainties,it is widely used in the fault diagnosis.Thus,this paper summarizes the recent work in this aera.Furthermore,we analyze the application of information fusion methods in the fault diagnosis of the aircraft control system.Finally,this work identifies existing problems in the use of information fusion for diagnosis and outlines future trends.
基金This project is supported by Municipal Key Science Foundation of Shenyang,China(No.1041020-1-04)Provincial Natural Science Foundation of Liaoning,China(No.20031022).
文摘The multisensor information fusion technology is adopted for real time measuring the four parameters which are connected closely with the weld nugget size(welding current, electrode displacement, dynamic resistance, welding time), thus much more original information is obtained. In this way, the difficulty caused by measuring indirectly weld nugget size can be decreased in spot welding quality control, and the stability of spot welding quality can be improved. According to this method, two-dimensional fuzzy controllers are designed with the information fusion result as input and the thyristor control signal as output. The spot welding experimental results indicate that the spot welding quality intelligent control method based on multiscnsor information fusion technology can compensate the influence caused by variable factors in welding process and ensure the stability of welding quality.
文摘This paper derives a square-root information-type filtering algorithm for nonlinear multi-sensor fusion problems using the cubature Kalman filter theory. The resulting filter is called the square-root cubature Information filter (SCIF). The SCIF propagates the square-root information matrices derived from numerically stable matrix operations and is therefore numerically robust. The SCIF is applied to a highly maneuvering target tracking problem in a distributed sensor network with feedback. The SCIF’s performance is finally compared with the regular cubature information filter and the traditional extended information filter. The results, presented herein, indicate that the SCIF is the most reliable of all three filters and yields a more accurate estimate than the extended information filter.
基金Supported by the National Natural Science Foundation of China (No. 60774092, No. 60901003)the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20070294027)
文摘In the applications of water regime monitoring, incompleteness, and inaccuracy of sensor data may directly affect the reliability of acquired monitoring information. Based on the spatial and temporal correlation of water regime monitoring information, this paper addresses this issue and proposes an information fusion method to implement data rectification. An improved Back Propagation (BP) neural network is used to perform data fusion on the hardware platform of a stantion unit, which takes Field-Programmable Gate Array (FPGA) as the core component. In order to verify the effectiveness, five measurements including water level, discharge and velocity are selected from three different points in a water regime monitoring station. The simulation results show that this method can recitify random errors as well as gross errors significantly.
文摘Multi-sensor system is becoming increasingly important in a variety of military and civilian applications. In general, single sensor system can only provide partial information about environment while multi-sensor system provides a synergistic effect, which improves the quality and availability of information. Data fusion techniques can effectively combine this environmental information from similar and/or dissimilar sensors. Sensor management, aiming at improving data fusion performance by controlling sensor behavior, plays an important role in a data fusion process. This paper presents a method using fisher information gain based sensor effectiveness metric for sensor assignment in multi-sensor and multi-target tracking applications. The fisher information gain is computed for every sensor-target pairing on each scan. The advantage for this metric over other ones is that the fisher information gain for the target obtained by multi-sensors is equal to the sum of ones obtained by the individual sensor, so standard transportation problem formulation can be used to solve this problem without importing the concept of pseudo sensor. The simulation results show the effectiveness of the method.
基金project BK2001073 supported by Jiangsu Province Natural Science Foundation
文摘The concepts of information fusion and the basic principles of neural networks are introduced. Neural net-works were introduced as a way of building an information fusion model in a coal mine monitoring system. This assures the accurate transmission of the multi-sensor information that comes from the coal mine monitoring systems. The in-formation fusion mode was analyzed. An algorithm was designed based on this analysis and some simulation results were given. Finally,conclusions that could provide auxiliary decision making information to the coal mine dispatching officers were presented.
基金Supported by the National Natural Science Foundation of China(No.61304017,11372309)Key Technology Development Project of Jilin Province(No.20150204074GX)+1 种基金the Project Development Plan of Science and Technology(No.20150520111zh)the Provincial Special Funds Project of Science and Technology Cooperation(No.2014SYHZ0004)
文摘Altitude regulation is a fundamental problem in UAV(unmanned aerial vehicles) control to ensure hovering and autonomous navigation performance.However,data from altitude sensors may be unstable by interference.A digital-filter-based improved adaptive Kalman method is proposed to improve accuracy and reliability of the altitude measurement information.A unique sensor data fusion structure is designed to make different sensors switch automatically in different environment.Simulation and experimental results show that an improved Sage-Husa adaptive extended Kalman filter(SHAEKF) is adopted in altitude data fusion which means that altitude error is limited to 1.5m in high altitude and 1.2m near the ground.This method is proved feasible and effective through hovering flight test and three-dimensional track flight experiment.
基金the financial supports of the National Natural Science Foundation of China(No.61304113)the Fundamental Research Funds for the Central Universities,China(No.NS2018018)Qinglan Project of Jiangsu Province
文摘Gas-path performance estimation plays an important role in aero-engine health management, and Kalman Filter(KF) is a well-known technique to estimate performance degradation. In previous studies, it is assumed that different kinds of sensors are with the same sampling rate, and they are used for state estimation by the KF simultaneously. However, it is hard to achieve state estimation using various kinds of sensor measurements at the same sampling rate due to a complex network and physical characteristic differences between sensors, especially in an advanced multisensor architecture. For this purpose, a multi-rate sensor fusion using the information filtering approach is proposed based on the square-root cubature rule, which is called Multi-rate Squareroot Cubature Information Filter(MSCIF) to track engine performance degradation. Soft measurement synchronization of the MSCIF is designed to provide a sensor fusion condition for multiple sampling rates of measurement, and a fault sensor is isolated by maximum likelihood validation before state estimation. The contribution of this paper is to supply a novel multi-rate informationfilter approach for sensor fault tolerant health estimation of an aero-engine in a multi-sensor system. Tests are conducted for aero-engine performance degradation estimation with multiple sampling rates of sensor measurement on both digital simulation and semi-physical experiment.Experimental results illustrate the superiority of the proposed algorithm in terms of degradation estimation accuracy and robustness to sensor failure in a multi-sensor system.
基金Project supported by the National Natural Science Foundation of China(Nos.61531015,61673345,and 61374021)the NSFC-Zhejiang Joint Fund for the Integration of Industrialization and Informatization(Nos.U1609204 and U1709203)
文摘Underwater wireless sensor networks(UWSNs)can provide a promising solution to underwater target tracking.Due to limited energy and bandwidth resources,only a small number of nodes are selected to track a target at each interval.Because all measurements are fused together to provide information in a fusion center,fusion weights of all selected nodes may affect the performance of target tracking.As far as we know,almost all existing tracking schemes neglect this problem.We study a weighted fusion scheme for target tracking in UWSNs.First,because the mutual information(MI)between a node’s measurement and the target state can quantify target information provided by the node,it is calculated to determine proper fusion weights.Second,we design a novel multi-sensor weighted particle filter(MSWPF)using fusion weights determined by MI.Third,we present a local node selection scheme based on posterior Cramer-Rao lower bound(PCRLB)to improve tracking efficiency.Finally,simulation results are presented to verify the performance improvement of our scheme with proper fusion weights.
文摘According to fault type diversity and fault information uncertainty problem of the hydraulic driven rocket launcher servo system(HDRLSS) , the fault diagnosis method based on the evidence theory and neural network ensemble is proposed. In order to overcome the shortcomings of the single neural network, two improved neural network models are set up at the com-mon nodes to simplify the network structure. The initial fault diagnosis is based on the iron spectrum data and the pressure, flow and temperature(PFT) characteristic parameters as the input vectors of the two improved neural network models, and the diagnosis result is taken as the basic probability distribution of the evidence theory. Then the objectivity of assignment is real-ized. The initial diagnosis results of two improved neural networks are fused by D-S evidence theory. The experimental results show that this method can avoid the misdiagnosis of neural network recognition and improve the accuracy of the fault diagnosis of HDRLSS.
基金Supported by National Natural Science Foundation of China (No.60874063)Key Laboratory of Electronics Engineering,College of Heilongjiang Province (No.DZZD2010-5),and Science and Automatic Control Key Laboratory of Heilongjiang University
文摘For the multi-sensor linear discrete time-invariant stochastic systems with correlated measurement noises and unknown noise statistics,an on-line noise statistics estimator is obtained using the correlation method.Substituting it into the optimal weighted fusion steady-state white noise deconvolution estimator based on the Kalman filtering,a self-tuning weighted measurement fusion white noise deconvolution estimator is presented.By the Dynamic Error System Analysis(DESA) method,it proved that the self-tuning fusion white noise deconvolution estimator converges to the steady-state optimal fusion white noise deconvolution estimator in a realization.Therefore,it has the asymptotically global optimality.A simulation example for the tracking system with 3 sensors and the Bernoulli-Gaussian input white noise shows its effectiveness.