With the development of science and technology,the scale of industrial production continues to grow,and the types and quantities of gas raw materials used in industrial production and produced during the production pr...With the development of science and technology,the scale of industrial production continues to grow,and the types and quantities of gas raw materials used in industrial production and produced during the production process are also constantly increasing.These gases include flammable and explosive gases,and even contain toxic gases.Therefore,it is very important and necessary for gas sensors to detect and monitor these gases quickly and accurately.In recent years,a new two-dimensional material called MXene has attracted widespread attention in various applications.Their abundant surface functional groups and sites,excellent current conductivity,tunable surface chemistry,and outstanding stability make them promising for gas sensor applications.Since the birth of MXene materials,researchers have utilized the efficient and convenient solution etching preparation,high flexibility,and easily functionalize MXene with other materials to pre-pare composites for gas sensing.This has opened a new chapter in high-performance gas sensing materials and provided a new approach for advanced sensor research.However,previous reviews on MXene-based composite materials in gas sensing only focused on the performance of gas sensing,without systematically explaining the gas sensing mechanisms generated by different gases,as well as summarizing and predicting the advantages and disadvantages of MXene-based composite materials.This article reviews the latest progress in the application of MXene-based composite materials in gas sensing.Firstly,a brief summary was given of the commonly used methods for preparing gas sens-ing device structures,followed by an introduction to the key attributes of MXene related to gas sensing performance.This article focuses on the performance of MXene-based composite materials used for gas sensing,such as MXene/graphene,MXene/Metal oxide,MXene/Transition metal sulfides(TMDs),MXene/Metal-organic framework(MOF),MXene/Polymer.It summarizes the advantages and disadvantages of MXene com-posite materials with different composites and discusses the possible gas sensing mechanisms of MXene-based composite materials for different gases.Finally,future directions and inroads of MXenes-based composites in gas sensing are presented and discussed.展开更多
As information acquisition terminals for artificial olfaction,chemiresistive gas sensors are often troubled by their cross-sensitivity,and reducing their cross-response to ambient gases has always been a difficult and...As information acquisition terminals for artificial olfaction,chemiresistive gas sensors are often troubled by their cross-sensitivity,and reducing their cross-response to ambient gases has always been a difficult and important point in the gas sensing area.Pattern recognition based on sensor array is the most conspicuous way to overcome the cross-sensitivity of gas sensors.It is crucial to choose an appropriate pattern recognition method for enhancing data analysis,reducing errors and improving system reliability,obtaining better classification or gas concentration prediction results.In this review,we analyze the sensing mechanism of crosssensitivity for chemiresistive gas sensors.We further examine the types,working principles,characteristics,and applicable gas detection range of pattern recognition algorithms utilized in gas-sensing arrays.Additionally,we report,summarize,and evaluate the outstanding and novel advancements in pattern recognition methods for gas identification.At the same time,this work showcases the recent advancements in utilizing these methods for gas identification,particularly within three crucial domains:ensuring food safety,monitoring the environment,and aiding in medical diagnosis.In conclusion,this study anticipates future research prospects by considering the existing landscape and challenges.It is hoped that this work will make a positive contribution towards mitigating cross-sensitivity in gas-sensitive devices and offer valuable insights for algorithm selection in gas recognition applications.展开更多
Significant challenges are posed by the limitations of gas sensing mechanisms for trace-level detection of ammonia(NH3).In this study,we propose to exploit single-atom catalytic activation and targeted adsorption prop...Significant challenges are posed by the limitations of gas sensing mechanisms for trace-level detection of ammonia(NH3).In this study,we propose to exploit single-atom catalytic activation and targeted adsorption properties to achieve highly sensitive and selective NH3 gas detection.Specifically,Ni singleatom active sites based on N,C coordination(Ni-N-C)were interfacially confined on the surface of two-dimensional(2D)MXene nanosheets(Ni-N-C/Ti_(3)C_(2)Tx),and a fully flexible gas sensor(MNPE-Ni-N-C/Ti_(3)C_(2)Tx)was integrated.The sensor demonstrates a remarkable response value to 5 ppm NH3(27.3%),excellent selectivity for NH3,and a low theoretical detection limit of 12.1 ppb.Simulation analysis by density functional calculation reveals that the Ni single-atom center with N,C coordination exhibits specific targeted adsorption properties for NH3.Additionally,its catalytic activation effect effectively reduces the Gibbs free energy of the sensing elemental reaction,while its electronic structure promotes the spill-over effect of reactive oxygen species at the gas-solid interface.The sensor has a dual-channel sensing mechanism of both chemical and electronic sensitization,which facilitates efficient electron transfer to the 2D MXene conductive network,resulting in the formation of the NH3 gas molecule sensing signal.Furthermore,the passivation of MXene edge defects by a conjugated hydrogen bond network enhances the long-term stability of MXene-based electrodes under high humidity conditions.This work achieves highly sensitive room-temperature NH3 gas detection based on the catalytic mechanism of Ni single-atom active center with N,C coordination,which provides a novel gas sensing mechanism for room-temperature trace gas detection research.展开更多
A new silicon beam resonator design for a novel gas sensor based on simultaneous conductivity and mass change measurement is investigated. High selectivity and sensitivity in gas detection can be obtained by measuring...A new silicon beam resonator design for a novel gas sensor based on simultaneous conductivity and mass change measurement is investigated. High selectivity and sensitivity in gas detection can be obtained by measuring the charge-to-mass ratio of gas molecules. Structures of silicon beam resonators are designed, simulated, and optimized. This gas sensor is fabricated using sacrificial layer microelectronmechanical system technology, and the resonant frequency of the microbeam is measured.展开更多
Three-dimensional (3D) hierarchical Co3O4 microcrystal with radial dendritic morphologies was prepared through hydrothermal reactions followed by subsequent annealing treatment. Structural and morphological characte...Three-dimensional (3D) hierarchical Co3O4 microcrystal with radial dendritic morphologies was prepared through hydrothermal reactions followed by subsequent annealing treatment. Structural and morphological characterizations were performed by X-ray diffraction, scan-ning electron microscopy and transmission electron microscopy. The gas sensing properties of the as-obtained microcrystal were investigated at 110 oC, which revealed that the 3D hierarchical porous Co3O4 microcrystal exhibited high sensitivity to ammonia, as well as a short response time of 10 s. The response characteristic indicates that the sensor has a good stability and reversibility. Detections of toxic and flammable gases, such as ethanol, acetone and benzene were also carried out at a relative low temperature. The results indicate that such hierarchical Co3O4 microcrystal would be a potential material in the field of gas sensing.展开更多
In order to simplify the fabrication process,distribute the temperature uniformly and reduce the power consumption of the micro-hotplate(MHP) gas sensor,a planar-type gas sensor based on SnO2 thin film with suspende...In order to simplify the fabrication process,distribute the temperature uniformly and reduce the power consumption of the micro-hotplate(MHP) gas sensor,a planar-type gas sensor based on SnO2 thin film with suspended structure is designed through a MEMS process.Steady-state thermal analysis of the gas sensor and the closed membrane type sensor where the membrane overlaps the Si substrate is carried out with the finite element model,and it is shown that the suspended planar-type gas sensor has a more homogeneous temperature distribution and a lower power consumption.When the maximum temperature on the sensor reaches 383℃,the power consumption is only 7 mW,and the temperature gradient across the thin film is less than 14℃.To overcome the fragility of the suspended beams,a novel fabrication process in which the deposition of the gas sensing film occurs prior to the formation of suspended beams is proposed.The back side of the Si substrate is etched through deep reactive ion etching(DRIE) to avoid chemical pollution of the front side.The fabrication steps in which only four masks are used for the photolithography are described in detail.The Fe doped SnO2 thin film synthesized by sol-gel spin-coating is used as the gas sensing element.The device is tested on hydrogen and exhibits satisfactory sensing performance.The sensitivity increases with the rise of the concentration from 50×10-6 to 2000×10-6,and reaches about 30 at 2000×10-6.展开更多
SnO2 nanofibers were synthesized by electrospinning and modified with Co3O4 via impregnation in this work. Chemical composition and morphology of the nanofibers were system- atically characterized, and their gas sensi...SnO2 nanofibers were synthesized by electrospinning and modified with Co3O4 via impregnation in this work. Chemical composition and morphology of the nanofibers were system- atically characterized, and their gas sensing properties were investigated. Results showed that Co3O4 modification significantly enhanced the sensing performance of SnO2 nanofibers to ethanol gas. For a sample with 1.2 mol% Co3O4, the response to 100 ppm ethanol was 38.0 at 300 ℃, about 6.7 times larger than that of SnO2 nanofibers. In addition, the response/recovery time was also greatly reduced. A power-law dependence of the sensor response on the ethanol concentration as well as excellent ethanol selectivity was observed for the Co3O4/SnO2 sensor. The enhanced ethanol sensing performance may be attributed to the formation of p-n heterojunctions between the two oxides.展开更多
Because of the interesting and multifunctional properties,recently,ZnO nanostructures are considered as excellent material for fabrication of highly sensitive and selective gas sensors.Thus,ZnO nanomaterials are widel...Because of the interesting and multifunctional properties,recently,ZnO nanostructures are considered as excellent material for fabrication of highly sensitive and selective gas sensors.Thus,ZnO nanomaterials are widely used to fabricate efficient gas sensors for the detection of various hazardous and toxic gases.The presented review article is focusing on the recent developments of NO2gas sensors based on ZnO nanomaterials.The review presents the general introduction of some metal oxide nanomaterials for gas sensing application and finally focusing on the structure of ZnO and its gas sensing mechanisms.Basic gas sensing characteristics such as gas response,response time,recovery time,selectivity,detection limit,stability and recyclability,etc are also discussed in this article.Further,the utilization of various ZnO nanomaterials such as nanorods,nanowires,nano-micro flowers,quantum dots,thin films and nanosheets,etc for the fabrication of NO2gas sensors are also presented.Moreover,various factors such as NO2concentrations,annealing temperature,ZnO morphologies and particle sizes,relative humidity,operating temperatures which are affecting the NO2gas sensing properties are discussed in this review.Finally,the review article is concluded and future directions are presented.展开更多
Graphene-based gas/vapor sensors have attracted much attention in recent years due to their variety of structures, unique sensing performances, room-temperature working conditions, and tremendous application prospects...Graphene-based gas/vapor sensors have attracted much attention in recent years due to their variety of structures, unique sensing performances, room-temperature working conditions, and tremendous application prospects, etc.Herein, we summarize recent advantages in graphene preparation, sensor construction, and sensing properties of various graphene-based gas/vapor sensors, such as NH_3, NO_2, H_2, CO, SO_2, H_2S, as well as vapor of volatile organic compounds.The detection mechanisms pertaining to various gases are also discussed. In conclusion part, some existing problems which may hinder the sensor applications are presented. Several possible methods to solve these problems are proposed, for example, conceived solutions, hybrid nanostructures, multiple sensor arrays, and new recognition algorithm.展开更多
Chemi-resistive sensors based on hybrid functional materials are promising candidates for gas sensing with high responsivity,good selectivity,fast response/recovery,great stability/repeatability,room-working temperatu...Chemi-resistive sensors based on hybrid functional materials are promising candidates for gas sensing with high responsivity,good selectivity,fast response/recovery,great stability/repeatability,room-working temperature,low cost,and easy-to-fabricate,for versatile applications.This progress report reviews the advantages and advances of these sensing structures compared with the single constituent,according to five main sensing forms:manipulating/constructing heterojunctions,catalytic reaction,charge transfer,charge carrier transport,molecular binding/sieving,and their combinations.Promises and challenges of the advances of each form are presented and discussed.Critical thinking and ideas regarding the orientation of the development of hybrid material-based gas sensor in the future are discussed.展开更多
Room-temperature gas sensors have aroused great attention in current gas sensor technology because of deemed demand of cheap,low power consumption and portable sensors for rapidly growing Internet of things applicatio...Room-temperature gas sensors have aroused great attention in current gas sensor technology because of deemed demand of cheap,low power consumption and portable sensors for rapidly growing Internet of things applications.As an important approach,light illumination has been exploited for room-temperature operation with improving gas sensor's attributes including sensitivity,speed and selectivity.This review provides an overview of the utilization of photoactivated nanomaterials in gas sensing field.First,recent advances in gas sensing of some exciting different nanostructures and hybrids of metal oxide semiconductors under light illumination are highlighted.Later,excellent gas sensing performance of emerging two-dimensional materialsbased sensors under light illumination is discussed in details with proposed gas sensing mechanism.Originated impressive features from the interaction of photons with sensing materials are elucidated in the context of modulating sensing characteristics.Finally,the review concludes with key and constructive insights into current and future perspectives in the light-activated nanomaterials for optoelectronic gas sensor applications.展开更多
Nitrogen dioxide(NO2),a hazardous gas with acidic nature,is continuously being liberated in the atmosphere due to human activity.The NO2 sensors based on traditional materials have limitations of high-temperature requ...Nitrogen dioxide(NO2),a hazardous gas with acidic nature,is continuously being liberated in the atmosphere due to human activity.The NO2 sensors based on traditional materials have limitations of high-temperature requirements,slow recovery,and performance degradation under harsh environmental conditions.These limitations of traditional materials are forcing the scientific community to discover future alternative NO2 sensitive materials.Molybdenum disulfide(MoS2)has emerged as a potential candidate for developing next-generation NO2 gas sensors.MoS2 has a large surface area for NO2 molecules adsorption with controllable morphologies,facile integration with other materials and compatibility with internet of things(IoT)devices.The aim of this review is to provide a detailed overview of the fabrication of MoS2 chemiresistance sensors in terms of devices(resistor and transistor),layer thickness,morphology control,defect tailoring,heterostructure,metal nanoparticle doping,and through light illumination.Moreover,the experimental and theoretical aspects used in designing MoS2-based NO2 sensors are also discussed extensively.Finally,the review concludes the challenges and future perspectives to further enhance the gas-sensing performance of MoS2.Understanding and addressing these issues are expected to yield the development of highly reliable and industry standard chemiresistance NO2 gas sensors for environmental monitoring.展开更多
With the rapid development of the Internet of Things,there is a great demand for portable gas sensors.Metal oxide semiconductors(MOS)are one of the most traditional and well-studied gas sensing materials and have been...With the rapid development of the Internet of Things,there is a great demand for portable gas sensors.Metal oxide semiconductors(MOS)are one of the most traditional and well-studied gas sensing materials and have been widely used to prepare various commercial gas sensors.However,it is limited by high operating temperature.The current research works are directed towards fabricating high-performance flexible room-temperature(FRT)gas sensors,which are effective in simplifying the structure of MOS-based sensors,reducing power consumption,and expanding the application of portable devices.This article presents the recent research progress of MOS-based FRT gas sensors in terms of sensing mechanism,performance,flexibility characteristics,and applications.This review comprehensively summarizes and discusses five types of MOS-based FRT gas sensors,including pristine MOS,noble metal nanoparticles modified MOS,organic polymers modified MOS,carbon-based materials(carbon nanotubes and graphene derivatives)modified MOS,and two-dimensional transition metal dichalcogenides materials modified MOS.The effect of light-illuminated to improve gas sensing performance is further discussed.Furthermore,the applications and future perspectives of FRT gas sensors are also discussed.展开更多
Mobile robots behaving as humans should possess multifunctional flexible sensing systems including vision,hearing,touch,smell,and taste.A gas sensor array(GSA),also known as electronic nose,is a possible solution for ...Mobile robots behaving as humans should possess multifunctional flexible sensing systems including vision,hearing,touch,smell,and taste.A gas sensor array(GSA),also known as electronic nose,is a possible solution for a robotic olfactory system that can detect and discriminate a wide variety of gas molecules.Artificial intelligence(AI)applied to an electronic nose involves a diverse set of machine learning algorithms which can generate a smell print by analyzing the signal pattern from the GSA.A combination of GSA and AI algorithms can empower intelligent robots with great capabilities in many areas such as environmental monitoring,gas leakage detection,food and beverage production and storage,and especially disease diagnosis through detection of different types and concentrations of target gases with the advantages of portability,low-powerconsumption and ease-of-operation.It is exciting to envisage robots equipped with a"nose"acting as family doctor who will guard every family member's health and keep their home safe.In this review,we give a summary of the state-of the-art research progress in the fabrication techniques for GSAs and typical algorithms employed in artificial olfactory systems,exploring their potential applications in disease diagnosis,environmental monitoring,and explosive detection.We also discuss the key limitations of gas sensor units and their possible solutions.Finally,we present the outlook of GSAs over the horizon of smart homes and cities.展开更多
Gas identification and concentration measurements are important for both understanding and monitoring a variety of phenomena from industrial processes to environmental change.Here a novel mid-IR plasmonic gas sensor w...Gas identification and concentration measurements are important for both understanding and monitoring a variety of phenomena from industrial processes to environmental change.Here a novel mid-IR plasmonic gas sensor with on-chip direct readout is proposed based on unity integration of narrowband spectral response,localized field enhancement and thermal detection.A systematic investigation consisting of both optical and thermal simulations for gas sensing is presented for the first time in three sensing modes including refractive index sensing,absorption sensing and spectroscopy,respectively.It is found that a detection limit less than 100 ppm for CO2 could be realized by a combination of surface plasmon resonance enhancement and metal-organic framework gas enrichment with an enhancement factor over 8000 in an ultracompact optical interaction length of only several microns.Moreover,on-chip spectroscopy is demonstrated with the compressive sensing algorithm via a narrowband plasmonic sensor array.An array of 80 such sensors with an average resonance linewidth of 10 nm reconstructs the CO2 molecular absorption spectrum with the estimated resolution of approximately 0.01 nm far beyond the state-of-the-art spectrometer.The novel device design and analytical method are expected to provide a promising technique for extensive applications of distributed or portable mid-IR gas sensor.展开更多
Real-time rapid detection of toxic gases at room temperature is particularly important for public health and environmental monitoring.Gas sensors based on conventional bulk materials often suffer from their poor surfa...Real-time rapid detection of toxic gases at room temperature is particularly important for public health and environmental monitoring.Gas sensors based on conventional bulk materials often suffer from their poor surface-sensitive sites,leading to a very low gas adsorption ability.Moreover,the charge transportation efficiency is usually inhibited by the low defect density of surface-sensitive area than that in the interior.In this work,a gas sensing structure model based on CuS quantum dots/Bi_(2)S_(3) nanosheets(CuS QDs/Bi_(2)S_(3) NSs)inspired by artificial neuron network is constructed.Simulation analysis by density functional calculation revealed that CuS QDs and Bi_(2)S_(3) NSs can be used as the main adsorption sites and charge transport pathways,respectively.Thus,the high-sensitivity sensing of NO_(2) can be realized by designing the artificial neuron-like sensor.The experimental results showed that the CuS QDs with a size of about 8 nm are highly adsorbable,which can enhance the NO_(2) sensitivity due to the rich sensitive sites and quantum size effect.The Bi_(2)S_(3) NSs can be used as a charge transfer network channel to achieve efficient charge collection and transmission.The neuron-like sensor that simulates biological smell shows a significantly enhanced response value(3.4),excellent responsiveness(18 s)and recovery rate(338 s),low theoretical detection limit of 78 ppb,and excellent selectivity for NO_(2).Furthermore,the developed wearable device can also realize the visual detection of NO2 through real-time signal changes.展开更多
Wearable smart sensors are considered to be the new generation of personal portable devices for health monitoring.By attaching to the skin surface,these sensors are closely related to body signals(such as heart rate,b...Wearable smart sensors are considered to be the new generation of personal portable devices for health monitoring.By attaching to the skin surface,these sensors are closely related to body signals(such as heart rate,blood oxygen saturation,breath markers,etc.)and ambient signals(such as ultraviolet radiation,inflammable and explosive,toxic and harmful gases),thus providing new opportunities for human activity monitoring and personal telemedicine care.Here we focus on photodetectors and gas sensors built from metal chalcogenide,which have made great progress in recent years.Firstly,we present an overview of healthcare applications based on photodetectors and gas sensors,and discuss the requirement associated with these applications in detail.We then discuss advantages and properties of solution-processable metal chalcogenides,followed by some recent achievements in health monitoring with photodetectors and gas sensors based on metal chalcogenides.Last we present further research directions and challenges to develop an integrated wearable platform for monitoring human activity and personal healthcare.展开更多
A sensitive optical waveguide(OWG) sensor which can be used to detect volatile organic compounds(VOCs) was presented.The sensing device(element) was fabricated by means of the immobilization of polyvinyl pyrroli...A sensitive optical waveguide(OWG) sensor which can be used to detect volatile organic compounds(VOCs) was presented.The sensing device(element) was fabricated by means of the immobilization of polyvinyl pyrrolidone(PVP)-cyclodextrin(CD) composite film over a single-mode potassium ion exchanged glass OWG via spin-coating method.The sensor shows higher response to styrene gas than to other VOCs and displays a linear response to styrene gas in a range of 1―1000 μL/L.展开更多
The Internet of things for environment monitoring requires high performance with low power-consumption gas sensors which could be easily integrated into large-scale sensor network.While semiconductor gas sensors have ...The Internet of things for environment monitoring requires high performance with low power-consumption gas sensors which could be easily integrated into large-scale sensor network.While semiconductor gas sensors have many advantages such as excellent sensitivity and low cost,their application is limited by their high operating temperature.Two-dimensional(2D)layered materials,typically molybdenum disulfide(MoS2)nanosheets,are emerging as promising gas-sensing materials candidates owing to their abundant edge sites and high in-plane carrier mobility.This work aims to overcome the sluggish and weak response as well as incomplete recovery of MoS2 gas sensors at room temperature by sensitizing MoS2 nanosheets with PbS quantum dots(QDs).The huge amount of surface dangling bonds of QDs enables them to be ideal receptors for gas molecules.The sensitized MoS2 gas sensor exhibited fast and recoverable response when operated at room temperature,and the limit of NO2 detection was estimated to be 94 ppb.The strategy of sensitizing 2D nanosheets with sensitive QD receptors may enhance receptor and transducer functions as well as the utility factor that determine the sensor performance,offering a powerful new degree of freedom to the surface and interface engineering of semiconductor gas sensors.展开更多
Two-dimensional(2D)nanomaterials have demonstrated great potential in the field of flexible gas sensing due to their inherent high specific surface areas,unique electronic properties and flexibility property.However,n...Two-dimensional(2D)nanomaterials have demonstrated great potential in the field of flexible gas sensing due to their inherent high specific surface areas,unique electronic properties and flexibility property.However,numerous challenges including sensitivity,selectivity,response time,recovery time,and stability have to be addressed before their practical application in gas detection field.Development of graphene-like 2D/2D nanocomposites as an efficient strategy to achieve high-performance 2D gas sensor has been reported recently.This review aims to discuss the latest advancements in the 2D/2D nanocomposites for gas sensors.We first elaborate the gas-sensing mechanisms and the collective benefits of 2D/2D hybridization as sensor materials.Then,we systematically present the current gas-sensing applications based on different categories of 2D/2D nanocomposites.Finally,we conclude the future prospect of 2D/2D nanocomposites in gas sensing applications.展开更多
基金supported by the National Natural Science Foundation of China(No.11375136).
文摘With the development of science and technology,the scale of industrial production continues to grow,and the types and quantities of gas raw materials used in industrial production and produced during the production process are also constantly increasing.These gases include flammable and explosive gases,and even contain toxic gases.Therefore,it is very important and necessary for gas sensors to detect and monitor these gases quickly and accurately.In recent years,a new two-dimensional material called MXene has attracted widespread attention in various applications.Their abundant surface functional groups and sites,excellent current conductivity,tunable surface chemistry,and outstanding stability make them promising for gas sensor applications.Since the birth of MXene materials,researchers have utilized the efficient and convenient solution etching preparation,high flexibility,and easily functionalize MXene with other materials to pre-pare composites for gas sensing.This has opened a new chapter in high-performance gas sensing materials and provided a new approach for advanced sensor research.However,previous reviews on MXene-based composite materials in gas sensing only focused on the performance of gas sensing,without systematically explaining the gas sensing mechanisms generated by different gases,as well as summarizing and predicting the advantages and disadvantages of MXene-based composite materials.This article reviews the latest progress in the application of MXene-based composite materials in gas sensing.Firstly,a brief summary was given of the commonly used methods for preparing gas sens-ing device structures,followed by an introduction to the key attributes of MXene related to gas sensing performance.This article focuses on the performance of MXene-based composite materials used for gas sensing,such as MXene/graphene,MXene/Metal oxide,MXene/Transition metal sulfides(TMDs),MXene/Metal-organic framework(MOF),MXene/Polymer.It summarizes the advantages and disadvantages of MXene com-posite materials with different composites and discusses the possible gas sensing mechanisms of MXene-based composite materials for different gases.Finally,future directions and inroads of MXenes-based composites in gas sensing are presented and discussed.
基金supported by the National Key Research and Development Program of China(2021YFB3200400)the National Natural Science Foundation of China(62371299,62301314,and 62020106006)the China Postdoctoral Science Foundation(2023M732198).
文摘As information acquisition terminals for artificial olfaction,chemiresistive gas sensors are often troubled by their cross-sensitivity,and reducing their cross-response to ambient gases has always been a difficult and important point in the gas sensing area.Pattern recognition based on sensor array is the most conspicuous way to overcome the cross-sensitivity of gas sensors.It is crucial to choose an appropriate pattern recognition method for enhancing data analysis,reducing errors and improving system reliability,obtaining better classification or gas concentration prediction results.In this review,we analyze the sensing mechanism of crosssensitivity for chemiresistive gas sensors.We further examine the types,working principles,characteristics,and applicable gas detection range of pattern recognition algorithms utilized in gas-sensing arrays.Additionally,we report,summarize,and evaluate the outstanding and novel advancements in pattern recognition methods for gas identification.At the same time,this work showcases the recent advancements in utilizing these methods for gas identification,particularly within three crucial domains:ensuring food safety,monitoring the environment,and aiding in medical diagnosis.In conclusion,this study anticipates future research prospects by considering the existing landscape and challenges.It is hoped that this work will make a positive contribution towards mitigating cross-sensitivity in gas-sensitive devices and offer valuable insights for algorithm selection in gas recognition applications.
基金supported by the National Key Research and Development Program of China(2022YFB3205500)the National Natural Science Foundation of China(62371299,62301314 and 62101329)+2 种基金the China Postdoctoral Science Foundation(2023M732198)the Natural Science Foundation of Shanghai(23ZR1430100)supported by the Center for High-Performance Computing at Shanghai Jiao Tong University.
文摘Significant challenges are posed by the limitations of gas sensing mechanisms for trace-level detection of ammonia(NH3).In this study,we propose to exploit single-atom catalytic activation and targeted adsorption properties to achieve highly sensitive and selective NH3 gas detection.Specifically,Ni singleatom active sites based on N,C coordination(Ni-N-C)were interfacially confined on the surface of two-dimensional(2D)MXene nanosheets(Ni-N-C/Ti_(3)C_(2)Tx),and a fully flexible gas sensor(MNPE-Ni-N-C/Ti_(3)C_(2)Tx)was integrated.The sensor demonstrates a remarkable response value to 5 ppm NH3(27.3%),excellent selectivity for NH3,and a low theoretical detection limit of 12.1 ppb.Simulation analysis by density functional calculation reveals that the Ni single-atom center with N,C coordination exhibits specific targeted adsorption properties for NH3.Additionally,its catalytic activation effect effectively reduces the Gibbs free energy of the sensing elemental reaction,while its electronic structure promotes the spill-over effect of reactive oxygen species at the gas-solid interface.The sensor has a dual-channel sensing mechanism of both chemical and electronic sensitization,which facilitates efficient electron transfer to the 2D MXene conductive network,resulting in the formation of the NH3 gas molecule sensing signal.Furthermore,the passivation of MXene edge defects by a conjugated hydrogen bond network enhances the long-term stability of MXene-based electrodes under high humidity conditions.This work achieves highly sensitive room-temperature NH3 gas detection based on the catalytic mechanism of Ni single-atom active center with N,C coordination,which provides a novel gas sensing mechanism for room-temperature trace gas detection research.
文摘A new silicon beam resonator design for a novel gas sensor based on simultaneous conductivity and mass change measurement is investigated. High selectivity and sensitivity in gas detection can be obtained by measuring the charge-to-mass ratio of gas molecules. Structures of silicon beam resonators are designed, simulated, and optimized. This gas sensor is fabricated using sacrificial layer microelectronmechanical system technology, and the resonant frequency of the microbeam is measured.
基金ACKNOWLEDGMENTS This work was supported by the 211 project of Anhui University, the National Natural Science Foundation of China (No.11374013, No.61290301, No.51072001, No.51272001, and No.51272003), Anhui Provincial Natural Science Fund (No.l1040606M49), Higher Educational Natural Science Foundation of Anhui Province (No.KJ2012A007), and the PhD Start-up Fund of Anhui University (No.33190209). Ming-zai Wu thanks Dr. Fan-li Meng and Miss Hui-hua Li from the Institute of Intelligent Machines, CAS for the help with gas sensing experiment.
文摘Three-dimensional (3D) hierarchical Co3O4 microcrystal with radial dendritic morphologies was prepared through hydrothermal reactions followed by subsequent annealing treatment. Structural and morphological characterizations were performed by X-ray diffraction, scan-ning electron microscopy and transmission electron microscopy. The gas sensing properties of the as-obtained microcrystal were investigated at 110 oC, which revealed that the 3D hierarchical porous Co3O4 microcrystal exhibited high sensitivity to ammonia, as well as a short response time of 10 s. The response characteristic indicates that the sensor has a good stability and reversibility. Detections of toxic and flammable gases, such as ethanol, acetone and benzene were also carried out at a relative low temperature. The results indicate that such hierarchical Co3O4 microcrystal would be a potential material in the field of gas sensing.
基金The National Natural Science Foundation of China (No.58175122)the Natural Science Foundation of Jiangsu Province (No.BK2007185)+1 种基金the Natural Science Foundation of Higher Education Institutions of Jiangsu Province(No.07KJB460044)the Scientific Research Innovation Project for College Graduates in Jiangsu Province (No.CXZZ11_0340)
文摘In order to simplify the fabrication process,distribute the temperature uniformly and reduce the power consumption of the micro-hotplate(MHP) gas sensor,a planar-type gas sensor based on SnO2 thin film with suspended structure is designed through a MEMS process.Steady-state thermal analysis of the gas sensor and the closed membrane type sensor where the membrane overlaps the Si substrate is carried out with the finite element model,and it is shown that the suspended planar-type gas sensor has a more homogeneous temperature distribution and a lower power consumption.When the maximum temperature on the sensor reaches 383℃,the power consumption is only 7 mW,and the temperature gradient across the thin film is less than 14℃.To overcome the fragility of the suspended beams,a novel fabrication process in which the deposition of the gas sensing film occurs prior to the formation of suspended beams is proposed.The back side of the Si substrate is etched through deep reactive ion etching(DRIE) to avoid chemical pollution of the front side.The fabrication steps in which only four masks are used for the photolithography are described in detail.The Fe doped SnO2 thin film synthesized by sol-gel spin-coating is used as the gas sensing element.The device is tested on hydrogen and exhibits satisfactory sensing performance.The sensitivity increases with the rise of the concentration from 50×10-6 to 2000×10-6,and reaches about 30 at 2000×10-6.
基金This work was supported by the National Natural Science Foundation of China (No.U1432108) and the Fundamental Research Funds for the Central Universities (No.WK2320000034).
文摘SnO2 nanofibers were synthesized by electrospinning and modified with Co3O4 via impregnation in this work. Chemical composition and morphology of the nanofibers were system- atically characterized, and their gas sensing properties were investigated. Results showed that Co3O4 modification significantly enhanced the sensing performance of SnO2 nanofibers to ethanol gas. For a sample with 1.2 mol% Co3O4, the response to 100 ppm ethanol was 38.0 at 300 ℃, about 6.7 times larger than that of SnO2 nanofibers. In addition, the response/recovery time was also greatly reduced. A power-law dependence of the sensor response on the ethanol concentration as well as excellent ethanol selectivity was observed for the Co3O4/SnO2 sensor. The enhanced ethanol sensing performance may be attributed to the formation of p-n heterojunctions between the two oxides.
基金supported by NSTIP strategic technologies programs,number(12-NAN2551-02)in the Kingdom of Saudi Arabia
文摘Because of the interesting and multifunctional properties,recently,ZnO nanostructures are considered as excellent material for fabrication of highly sensitive and selective gas sensors.Thus,ZnO nanomaterials are widely used to fabricate efficient gas sensors for the detection of various hazardous and toxic gases.The presented review article is focusing on the recent developments of NO2gas sensors based on ZnO nanomaterials.The review presents the general introduction of some metal oxide nanomaterials for gas sensing application and finally focusing on the structure of ZnO and its gas sensing mechanisms.Basic gas sensing characteristics such as gas response,response time,recovery time,selectivity,detection limit,stability and recyclability,etc are also discussed in this article.Further,the utilization of various ZnO nanomaterials such as nanorods,nanowires,nano-micro flowers,quantum dots,thin films and nanosheets,etc for the fabrication of NO2gas sensors are also presented.Moreover,various factors such as NO2concentrations,annealing temperature,ZnO morphologies and particle sizes,relative humidity,operating temperatures which are affecting the NO2gas sensing properties are discussed in this review.Finally,the review article is concluded and future directions are presented.
基金financial supports provided by the National Basic Research Program of China(2013CB932500)the National Natural Science Foundation of China(21171117 and 61574091)+3 种基金the Program for New Century Excellent Talents in University(NCET-12-0356)the Program of Shanghai Academic/Technology Research Leader(15XD1525200)Shanghai Jiao Tong University Agri-X Funding(Agri-X2015007)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning
文摘Graphene-based gas/vapor sensors have attracted much attention in recent years due to their variety of structures, unique sensing performances, room-temperature working conditions, and tremendous application prospects, etc.Herein, we summarize recent advantages in graphene preparation, sensor construction, and sensing properties of various graphene-based gas/vapor sensors, such as NH_3, NO_2, H_2, CO, SO_2, H_2S, as well as vapor of volatile organic compounds.The detection mechanisms pertaining to various gases are also discussed. In conclusion part, some existing problems which may hinder the sensor applications are presented. Several possible methods to solve these problems are proposed, for example, conceived solutions, hybrid nanostructures, multiple sensor arrays, and new recognition algorithm.
基金the Phase-II Grand Challenges Explorations award from the Bill,Melinda Gates Foundation(Grant ID:OPP1109493)International Research Fellow of the Japan Society of the Promotion of Science(JSPS,Postdoctoral Fellowships for Research in Japan(Standard),P18334)+2 种基金the National Natural Science Foundation of China(21801243)the Natural Science Foundation of Shaanxi province(2018JM6045,2018JM1046)Research funding was received from Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration(SHUES2019A02).
文摘Chemi-resistive sensors based on hybrid functional materials are promising candidates for gas sensing with high responsivity,good selectivity,fast response/recovery,great stability/repeatability,room-working temperature,low cost,and easy-to-fabricate,for versatile applications.This progress report reviews the advantages and advances of these sensing structures compared with the single constituent,according to five main sensing forms:manipulating/constructing heterojunctions,catalytic reaction,charge transfer,charge carrier transport,molecular binding/sieving,and their combinations.Promises and challenges of the advances of each form are presented and discussed.Critical thinking and ideas regarding the orientation of the development of hybrid material-based gas sensor in the future are discussed.
基金the financial support of the Department of Science and Engineering Research Board (SERB) (Sanction Order No. CRG/2019/000112)。
文摘Room-temperature gas sensors have aroused great attention in current gas sensor technology because of deemed demand of cheap,low power consumption and portable sensors for rapidly growing Internet of things applications.As an important approach,light illumination has been exploited for room-temperature operation with improving gas sensor's attributes including sensitivity,speed and selectivity.This review provides an overview of the utilization of photoactivated nanomaterials in gas sensing field.First,recent advances in gas sensing of some exciting different nanostructures and hybrids of metal oxide semiconductors under light illumination are highlighted.Later,excellent gas sensing performance of emerging two-dimensional materialsbased sensors under light illumination is discussed in details with proposed gas sensing mechanism.Originated impressive features from the interaction of photons with sensing materials are elucidated in the context of modulating sensing characteristics.Finally,the review concludes with key and constructive insights into current and future perspectives in the light-activated nanomaterials for optoelectronic gas sensor applications.
基金the Department of Atomic Energy(DAE)under Project No.34/20/09/2015/BRNSthe Department of Physics,IIT Ropar for providing financial support and the research facility。
文摘Nitrogen dioxide(NO2),a hazardous gas with acidic nature,is continuously being liberated in the atmosphere due to human activity.The NO2 sensors based on traditional materials have limitations of high-temperature requirements,slow recovery,and performance degradation under harsh environmental conditions.These limitations of traditional materials are forcing the scientific community to discover future alternative NO2 sensitive materials.Molybdenum disulfide(MoS2)has emerged as a potential candidate for developing next-generation NO2 gas sensors.MoS2 has a large surface area for NO2 molecules adsorption with controllable morphologies,facile integration with other materials and compatibility with internet of things(IoT)devices.The aim of this review is to provide a detailed overview of the fabrication of MoS2 chemiresistance sensors in terms of devices(resistor and transistor),layer thickness,morphology control,defect tailoring,heterostructure,metal nanoparticle doping,and through light illumination.Moreover,the experimental and theoretical aspects used in designing MoS2-based NO2 sensors are also discussed extensively.Finally,the review concludes the challenges and future perspectives to further enhance the gas-sensing performance of MoS2.Understanding and addressing these issues are expected to yield the development of highly reliable and industry standard chemiresistance NO2 gas sensors for environmental monitoring.
基金This work is supported by This work was supported by the National Key R&D Program of China(Nos.2020YFB2008604 and 2021YFB3202500)the National Natural Science Foundation of China(Nos.61874034 and 51861135105)+1 种基金the International Science and Technology Cooperation Program of Shanghai Science and Technology Innovation Action Plan(No.21520713300)Fudan University-CIOMP Joint Fund(E02632Y7H0).
文摘With the rapid development of the Internet of Things,there is a great demand for portable gas sensors.Metal oxide semiconductors(MOS)are one of the most traditional and well-studied gas sensing materials and have been widely used to prepare various commercial gas sensors.However,it is limited by high operating temperature.The current research works are directed towards fabricating high-performance flexible room-temperature(FRT)gas sensors,which are effective in simplifying the structure of MOS-based sensors,reducing power consumption,and expanding the application of portable devices.This article presents the recent research progress of MOS-based FRT gas sensors in terms of sensing mechanism,performance,flexibility characteristics,and applications.This review comprehensively summarizes and discusses five types of MOS-based FRT gas sensors,including pristine MOS,noble metal nanoparticles modified MOS,organic polymers modified MOS,carbon-based materials(carbon nanotubes and graphene derivatives)modified MOS,and two-dimensional transition metal dichalcogenides materials modified MOS.The effect of light-illuminated to improve gas sensing performance is further discussed.Furthermore,the applications and future perspectives of FRT gas sensors are also discussed.
基金supported by the Hong Kong Innovation and Technology Fund (ITS/115/18) from the Innovation and Technology CommissionShenzhen Science and Technology Innovation Commission (Project No. J CYJ20180306174923335)
文摘Mobile robots behaving as humans should possess multifunctional flexible sensing systems including vision,hearing,touch,smell,and taste.A gas sensor array(GSA),also known as electronic nose,is a possible solution for a robotic olfactory system that can detect and discriminate a wide variety of gas molecules.Artificial intelligence(AI)applied to an electronic nose involves a diverse set of machine learning algorithms which can generate a smell print by analyzing the signal pattern from the GSA.A combination of GSA and AI algorithms can empower intelligent robots with great capabilities in many areas such as environmental monitoring,gas leakage detection,food and beverage production and storage,and especially disease diagnosis through detection of different types and concentrations of target gases with the advantages of portability,low-powerconsumption and ease-of-operation.It is exciting to envisage robots equipped with a"nose"acting as family doctor who will guard every family member's health and keep their home safe.In this review,we give a summary of the state-of the-art research progress in the fabrication techniques for GSAs and typical algorithms employed in artificial olfactory systems,exploring their potential applications in disease diagnosis,environmental monitoring,and explosive detection.We also discuss the key limitations of gas sensor units and their possible solutions.Finally,we present the outlook of GSAs over the horizon of smart homes and cities.
基金We are grateful for financial supports from National Key Research and Development Program of China(No.2019YFB2203402)National Natural Science Foundation of China(Nos.11774383,11774099,11874029)+3 种基金Guangdong Science and Technology Program International Cooperation Program(2018A050506039)Guangdong Natural Science Founds for Distinguished Young Scholars(No.2020B151502074),Pearl River Talent Plan Program of Guangdong(No.2019QN01X120)Fundamental Research Funds for the Central Universities,Royal Society Newton Advanced Fellowship(No.NA140301)Key Frontier Scientific Research Program of the Chinese Academy of Sciences(No.QYZDBSSW-JSC014).
文摘Gas identification and concentration measurements are important for both understanding and monitoring a variety of phenomena from industrial processes to environmental change.Here a novel mid-IR plasmonic gas sensor with on-chip direct readout is proposed based on unity integration of narrowband spectral response,localized field enhancement and thermal detection.A systematic investigation consisting of both optical and thermal simulations for gas sensing is presented for the first time in three sensing modes including refractive index sensing,absorption sensing and spectroscopy,respectively.It is found that a detection limit less than 100 ppm for CO2 could be realized by a combination of surface plasmon resonance enhancement and metal-organic framework gas enrichment with an enhancement factor over 8000 in an ultracompact optical interaction length of only several microns.Moreover,on-chip spectroscopy is demonstrated with the compressive sensing algorithm via a narrowband plasmonic sensor array.An array of 80 such sensors with an average resonance linewidth of 10 nm reconstructs the CO2 molecular absorption spectrum with the estimated resolution of approximately 0.01 nm far beyond the state-of-the-art spectrometer.The novel device design and analytical method are expected to provide a promising technique for extensive applications of distributed or portable mid-IR gas sensor.
基金supported by the National Natural Science Foundation of China(61971284)the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(SL2020ZD203 and SL2020MS031)+2 种基金Scientific Research Fund of Second Institute of Oceanography,Ministry of Natural Resources of P.R.China(SL2003)Shanghai Sailing Program(21YF1421400)Startup Fund for Youngman Research at Shanghai Jiao Tong University.
文摘Real-time rapid detection of toxic gases at room temperature is particularly important for public health and environmental monitoring.Gas sensors based on conventional bulk materials often suffer from their poor surface-sensitive sites,leading to a very low gas adsorption ability.Moreover,the charge transportation efficiency is usually inhibited by the low defect density of surface-sensitive area than that in the interior.In this work,a gas sensing structure model based on CuS quantum dots/Bi_(2)S_(3) nanosheets(CuS QDs/Bi_(2)S_(3) NSs)inspired by artificial neuron network is constructed.Simulation analysis by density functional calculation revealed that CuS QDs and Bi_(2)S_(3) NSs can be used as the main adsorption sites and charge transport pathways,respectively.Thus,the high-sensitivity sensing of NO_(2) can be realized by designing the artificial neuron-like sensor.The experimental results showed that the CuS QDs with a size of about 8 nm are highly adsorbable,which can enhance the NO_(2) sensitivity due to the rich sensitive sites and quantum size effect.The Bi_(2)S_(3) NSs can be used as a charge transfer network channel to achieve efficient charge collection and transmission.The neuron-like sensor that simulates biological smell shows a significantly enhanced response value(3.4),excellent responsiveness(18 s)and recovery rate(338 s),low theoretical detection limit of 78 ppb,and excellent selectivity for NO_(2).Furthermore,the developed wearable device can also realize the visual detection of NO2 through real-time signal changes.
基金supported by National Natural Science Foundation of China (61861136004)the National Key R&D Program of China (2016YFB0402705)+1 种基金the Innovation Fund of WNLOProgram for HUST Academic Frontier Youth Team (2018QYTD06)
文摘Wearable smart sensors are considered to be the new generation of personal portable devices for health monitoring.By attaching to the skin surface,these sensors are closely related to body signals(such as heart rate,blood oxygen saturation,breath markers,etc.)and ambient signals(such as ultraviolet radiation,inflammable and explosive,toxic and harmful gases),thus providing new opportunities for human activity monitoring and personal telemedicine care.Here we focus on photodetectors and gas sensors built from metal chalcogenide,which have made great progress in recent years.Firstly,we present an overview of healthcare applications based on photodetectors and gas sensors,and discuss the requirement associated with these applications in detail.We then discuss advantages and properties of solution-processable metal chalcogenides,followed by some recent achievements in health monitoring with photodetectors and gas sensors based on metal chalcogenides.Last we present further research directions and challenges to develop an integrated wearable platform for monitoring human activity and personal healthcare.
基金Supported by the National Natural Science Foundation of China(No.20965008)
文摘A sensitive optical waveguide(OWG) sensor which can be used to detect volatile organic compounds(VOCs) was presented.The sensing device(element) was fabricated by means of the immobilization of polyvinyl pyrrolidone(PVP)-cyclodextrin(CD) composite film over a single-mode potassium ion exchanged glass OWG via spin-coating method.The sensor shows higher response to styrene gas than to other VOCs and displays a linear response to styrene gas in a range of 1―1000 μL/L.
基金National Natural Science Foundation of China(Nos.61861136004 and 61922032).
文摘The Internet of things for environment monitoring requires high performance with low power-consumption gas sensors which could be easily integrated into large-scale sensor network.While semiconductor gas sensors have many advantages such as excellent sensitivity and low cost,their application is limited by their high operating temperature.Two-dimensional(2D)layered materials,typically molybdenum disulfide(MoS2)nanosheets,are emerging as promising gas-sensing materials candidates owing to their abundant edge sites and high in-plane carrier mobility.This work aims to overcome the sluggish and weak response as well as incomplete recovery of MoS2 gas sensors at room temperature by sensitizing MoS2 nanosheets with PbS quantum dots(QDs).The huge amount of surface dangling bonds of QDs enables them to be ideal receptors for gas molecules.The sensitized MoS2 gas sensor exhibited fast and recoverable response when operated at room temperature,and the limit of NO2 detection was estimated to be 94 ppb.The strategy of sensitizing 2D nanosheets with sensitive QD receptors may enhance receptor and transducer functions as well as the utility factor that determine the sensor performance,offering a powerful new degree of freedom to the surface and interface engineering of semiconductor gas sensors.
基金supported by Zhejiang Provincial Natural Science Foundation of China (No. LY18F010009)Ningbo Natural Science Foundation (No. 2018A610002)
文摘Two-dimensional(2D)nanomaterials have demonstrated great potential in the field of flexible gas sensing due to their inherent high specific surface areas,unique electronic properties and flexibility property.However,numerous challenges including sensitivity,selectivity,response time,recovery time,and stability have to be addressed before their practical application in gas detection field.Development of graphene-like 2D/2D nanocomposites as an efficient strategy to achieve high-performance 2D gas sensor has been reported recently.This review aims to discuss the latest advancements in the 2D/2D nanocomposites for gas sensors.We first elaborate the gas-sensing mechanisms and the collective benefits of 2D/2D hybridization as sensor materials.Then,we systematically present the current gas-sensing applications based on different categories of 2D/2D nanocomposites.Finally,we conclude the future prospect of 2D/2D nanocomposites in gas sensing applications.