基于云杉微观结构特征,建立代表体积元模型,对顺纹和横纹压缩下云杉大变形行为进行数值模拟,获得材料各向异性和宽平台应力特性。数值模拟涉及准静态、5,50,500 m/s 4种加载速率,结果表明剪切滑移和屈曲塌陷是木材顺纹压缩的主要失效模...基于云杉微观结构特征,建立代表体积元模型,对顺纹和横纹压缩下云杉大变形行为进行数值模拟,获得材料各向异性和宽平台应力特性。数值模拟涉及准静态、5,50,500 m/s 4种加载速率,结果表明剪切滑移和屈曲塌陷是木材顺纹压缩的主要失效模式;横纹压缩则体现为胞墙褶皱和循序塌陷。加载速率对顺纹压缩影响高于横纹方向加载,高速加载时木材在轴向压缩下呈现花瓣形破坏,而横纹压缩则表现为压缩膨胀断裂;相对于高速加载,低速加载下木材变形表现为更均匀、平稳。展开更多
文摘基于云杉微观结构特征,建立代表体积元模型,对顺纹和横纹压缩下云杉大变形行为进行数值模拟,获得材料各向异性和宽平台应力特性。数值模拟涉及准静态、5,50,500 m/s 4种加载速率,结果表明剪切滑移和屈曲塌陷是木材顺纹压缩的主要失效模式;横纹压缩则体现为胞墙褶皱和循序塌陷。加载速率对顺纹压缩影响高于横纹方向加载,高速加载时木材在轴向压缩下呈现花瓣形破坏,而横纹压缩则表现为压缩膨胀断裂;相对于高速加载,低速加载下木材变形表现为更均匀、平稳。