In this study, sludge from the aluminum profile factory and pyrophyllite were used as major raw materials to prepare mullite. Through determining optimum formula, the optimum calcination temperature and optimum temper...In this study, sludge from the aluminum profile factory and pyrophyllite were used as major raw materials to prepare mullite. Through determining optimum formula, the optimum calcination temperature and optimum temperature retention time as well as the effects of BaF2 mineralizer on the crystal structure, microstructure and properties of mullite were studied and the optimum BaF2 mineralizer dosage was determined. With XRD and SEM methods, the crystal structure and microstructure of each sample were characterized. With Rietveld Quantification method, crystal phase content in each sample was determined and properties of each sample were tested. Based on the comprehensive analysis result, it was determined that optimum BaF2 dosage was 0.5%, the fairly good calcination temperature was 1550 ℃, and the corresponding mullite solid solution content was 95.8%.展开更多
Al12Si3.75Ge0.25O26 ceramic powder was prepared by sol-gel method using Al(NO3)3,Si(OC2H5)4 and Cl3GeCH2-CH2COOH as precursors.The structural formation of Al12Si3.75Ge0.25O26 ceramic powder was analyzed by XRD.Aft...Al12Si3.75Ge0.25O26 ceramic powder was prepared by sol-gel method using Al(NO3)3,Si(OC2H5)4 and Cl3GeCH2-CH2COOH as precursors.The structural formation of Al12Si3.75Ge0.25O26 ceramic powder was analyzed by XRD.After reduction by flowing H2/Ar mixture gas,strong room temperature photoluminescence (PL) can be observed at 565 nm,613 nm,682 nm,731 nm and 777 nm,respectively.The PL intensity scarcely depends on the reduction temperature and duration,while the sample reduced at 500 ℃ for A^3 hours has the highest PL intensity.Before and after reduction at 500 ℃,the volume of unit cell of mullite solid solution decreases to 0.4699 3.Based on the analysis of XPS and Raman spectra,it can be approved that the PL phenomenon at room temperature is caused by the embedded Ge nanoparticles with the average size of about 1.95 nm.展开更多
In this research,the mullite material with sludge from aluminum profile factory and pyrophyllite as primary raw materials was prepared. Based on the optimal formula,optimal calcining temperature and holding time deter...In this research,the mullite material with sludge from aluminum profile factory and pyrophyllite as primary raw materials was prepared. Based on the optimal formula,optimal calcining temperature and holding time determined in the research,effects of Na2SiF6 mineralizer on crystal structure,microstructure and properties of mullite were discussed to determine the optimal addition of Na2SiF6 mineralizer. With XRD and SEM methods,crystal structure and microstructure of the test samples were characterized; with Rietveld Quantification method,contents of various crystal phases in the test samples were determined; properties of the test samples were tested. In combination with the structural and property analysis results,the optimal Na2SiF6 addition was determined to be 2%. Correspondingly,the content of solid solution of mullite-Al4.59Si1.41O9.7 was 96.9wt%,the bulk density was 2.10 g/cm3,the degree of porosity was 27.0%,the water absorption rate was 12.8%,the rupture strength was 24.30 MPa and primary thermal-shock rupture strength retention rate was 87.4%.展开更多
A two-step sintering method was used to prepare Al8.31Si1.91Mg3.78O20 (corundum solid solution)/Al4.8Si1.2O9.6 (mullite solid solution)/Mg2.0Al4.02Si4.98O18 (cordierite solid solution) multiphase material, for t...A two-step sintering method was used to prepare Al8.31Si1.91Mg3.78O20 (corundum solid solution)/Al4.8Si1.2O9.6 (mullite solid solution)/Mg2.0Al4.02Si4.98O18 (cordierite solid solution) multiphase material, for the purposes of making these three crystal structures have point defects which could help the particles diffuse and transfer at high temperature, accelerate the sintering efficiently and enhance the material strength as well as the bulk density. The impacts of different formulas on the structure and properties of the multiphase material were investigated. With XRD and SEM analyses, for each sample, the crystal structure and microstructure were characterized, the crystalline phase content and cell parameters were determined with Rietveld Quantification software, and the properties were tested. The comparative optimal formula determined was calcinated chamotte of 80wt% and calcinated sludge of 20wt%; and its corresponding bending strength and retention rate of bending strength after a thermal shock were 29.74 MPa and 80.15%, respectively.展开更多
In the study, sludge from the aluminum profile factory and kaolin were used as the raw materials. Through adding ZrO2 mineralizer in different contents, Al2-xZrx+yTi1-yO5 and Al4.54Si1.46O9.73 solid solution multipha...In the study, sludge from the aluminum profile factory and kaolin were used as the raw materials. Through adding ZrO2 mineralizer in different contents, Al2-xZrx+yTi1-yO5 and Al4.54Si1.46O9.73 solid solution multiphase material was prepared to effectively inhibit the decomposition of aluminum titanate solid solution and optimize high temperature property of the multiphase material. With XRD and SEM means, crystalline structure and microstructure of each sample were characterized, and properties of each sample were tested. According to experimental results, the optimal addition amount of ZrO2 mineralizer was determined to be 1.5%. Correspondingly, contents for aluminum titanate solid solution, mullite solid solution and α-Al2O3 were 70.3%, 26.8% and 2.9% respectively, bulk density was 3.20 g/cm3, degree of porosity was 5.57%, water absorption rate was 1.74%, and the once thermal shock rupture strength retention rate was 90.52%.展开更多
基金Supported by the Fujian Provincial Development and Reform Commission
文摘In this study, sludge from the aluminum profile factory and pyrophyllite were used as major raw materials to prepare mullite. Through determining optimum formula, the optimum calcination temperature and optimum temperature retention time as well as the effects of BaF2 mineralizer on the crystal structure, microstructure and properties of mullite were studied and the optimum BaF2 mineralizer dosage was determined. With XRD and SEM methods, the crystal structure and microstructure of each sample were characterized. With Rietveld Quantification method, crystal phase content in each sample was determined and properties of each sample were tested. Based on the comprehensive analysis result, it was determined that optimum BaF2 dosage was 0.5%, the fairly good calcination temperature was 1550 ℃, and the corresponding mullite solid solution content was 95.8%.
基金Funded by the Program for New Century Excellent Talents in Univer-sity (NCET-05-0658)SRF for ROCS, SEM
文摘Al12Si3.75Ge0.25O26 ceramic powder was prepared by sol-gel method using Al(NO3)3,Si(OC2H5)4 and Cl3GeCH2-CH2COOH as precursors.The structural formation of Al12Si3.75Ge0.25O26 ceramic powder was analyzed by XRD.After reduction by flowing H2/Ar mixture gas,strong room temperature photoluminescence (PL) can be observed at 565 nm,613 nm,682 nm,731 nm and 777 nm,respectively.The PL intensity scarcely depends on the reduction temperature and duration,while the sample reduced at 500 ℃ for A^3 hours has the highest PL intensity.Before and after reduction at 500 ℃,the volume of unit cell of mullite solid solution decreases to 0.4699 3.Based on the analysis of XPS and Raman spectra,it can be approved that the PL phenomenon at room temperature is caused by the embedded Ge nanoparticles with the average size of about 1.95 nm.
基金Sponsored by the Fujian Provincial Reform and Development Commission
文摘In this research,the mullite material with sludge from aluminum profile factory and pyrophyllite as primary raw materials was prepared. Based on the optimal formula,optimal calcining temperature and holding time determined in the research,effects of Na2SiF6 mineralizer on crystal structure,microstructure and properties of mullite were discussed to determine the optimal addition of Na2SiF6 mineralizer. With XRD and SEM methods,crystal structure and microstructure of the test samples were characterized; with Rietveld Quantification method,contents of various crystal phases in the test samples were determined; properties of the test samples were tested. In combination with the structural and property analysis results,the optimal Na2SiF6 addition was determined to be 2%. Correspondingly,the content of solid solution of mullite-Al4.59Si1.41O9.7 was 96.9wt%,the bulk density was 2.10 g/cm3,the degree of porosity was 27.0%,the water absorption rate was 12.8%,the rupture strength was 24.30 MPa and primary thermal-shock rupture strength retention rate was 87.4%.
基金Sponsored by the Fujian Provincial Key Project (2011 H0003)
文摘A two-step sintering method was used to prepare Al8.31Si1.91Mg3.78O20 (corundum solid solution)/Al4.8Si1.2O9.6 (mullite solid solution)/Mg2.0Al4.02Si4.98O18 (cordierite solid solution) multiphase material, for the purposes of making these three crystal structures have point defects which could help the particles diffuse and transfer at high temperature, accelerate the sintering efficiently and enhance the material strength as well as the bulk density. The impacts of different formulas on the structure and properties of the multiphase material were investigated. With XRD and SEM analyses, for each sample, the crystal structure and microstructure were characterized, the crystalline phase content and cell parameters were determined with Rietveld Quantification software, and the properties were tested. The comparative optimal formula determined was calcinated chamotte of 80wt% and calcinated sludge of 20wt%; and its corresponding bending strength and retention rate of bending strength after a thermal shock were 29.74 MPa and 80.15%, respectively.
基金Sponsored by the Fujian Provincial Reform and Development Commission
文摘In the study, sludge from the aluminum profile factory and kaolin were used as the raw materials. Through adding ZrO2 mineralizer in different contents, Al2-xZrx+yTi1-yO5 and Al4.54Si1.46O9.73 solid solution multiphase material was prepared to effectively inhibit the decomposition of aluminum titanate solid solution and optimize high temperature property of the multiphase material. With XRD and SEM means, crystalline structure and microstructure of each sample were characterized, and properties of each sample were tested. According to experimental results, the optimal addition amount of ZrO2 mineralizer was determined to be 1.5%. Correspondingly, contents for aluminum titanate solid solution, mullite solid solution and α-Al2O3 were 70.3%, 26.8% and 2.9% respectively, bulk density was 3.20 g/cm3, degree of porosity was 5.57%, water absorption rate was 1.74%, and the once thermal shock rupture strength retention rate was 90.52%.