Complex product development will inevitably face the design planning of the multi-coupled activities, and overlapping these activities could potentially reduce product development time, but there is a risk of the addi...Complex product development will inevitably face the design planning of the multi-coupled activities, and overlapping these activities could potentially reduce product development time, but there is a risk of the additional cost. Although the downstream task information dependence to the upstream task is already considered in the current researches, but the design process overall iteration caused by the information interdependence between activities is hardly discussed; especially the impact on the design process' overall iteration from the valid information accumulation process. Secondly, most studies only focus on the single overlapping process of two activities, rarely take multi-segment and multi-ply overlapping process of multi coupled activities into account; especially the inherent link between product development time and cost which originates from the overlapping process of multi coupled activities. For the purpose of solving the above problems, as to the insufficiency of the accumulated valid information in overlapping process, the function of the valid information evolution (VIE) degree is constructed. Stochastic process theory is used to describe the design information exchange and the valid information accumulation in the overlapping segment, and then the planning models of the single overlapping segment are built. On these bases, by analyzing overlapping processes and overlapping features of multi-coupling activities, multi-segment and multi-ply overlapping planning models are built; by sorting overlapping processes and analyzing the construction of these planning models, two conclusions are obtained: (1) As to multi-segment and multi-ply overlapping of multi coupled activities, the total decrement of the task set development time is the sum of the time decrement caused by basic overlapping segments, and minus the sum of the time increment caused by multiple overlapping segments; (2) the total increment of development cost is the sum of the cost increment caused by all overlapping process. And then, based on overlapping degree analysis of these planning models, by the V1E degree function, the four lemmas theory proofs are represented, and two propositions are finally proved: (1) The multi-ply overlapping of the multi coupled activities will weaken the basic overlapping effect on the development cycle time reduction (2) Overlapping the multi coupled activities will decrease product development cycle, but increase product development cost. And there is trade-off between development time and cost. And so, two methods are given to slacken and eliminate multi-ply overlapping effects. At last, an example about a vehicle upper subsystem design illustrates the application of the proposed models; compared with a sequential execution pattern, the decreasing of development cycle (22%) and the increasing of development cost (3%) show the validity of the method in the example The proposed research not only lays a theoretical foundation for correctly planning complex product development process, but also provides specific and effective operation methods for overlapping multi coupled activities.展开更多
<div style="text-align:justify;"> Rainfall infiltration is a porous medium flow problem with variable saturation. Based on the theoretical analysis of the flow field, electrical conductivity of rocks, ...<div style="text-align:justify;"> Rainfall infiltration is a porous medium flow problem with variable saturation. Based on the theoretical analysis of the flow field, electrical conductivity of rocks, the electrical field, the paper simulates the coupling relationship between the water saturation in soil and the apparent resistivity distribution. It combines the Richards equation, the Archie formula and the Laplace equation. The experiment simulates the potential field data by the Wenner setting in electrical exploration on a two-layer geologic model with continuous rainfall during 5 days, which shows that the effective saturation in soil is increasing with the rainfall time, while the apparent resistivity is decreasing. This can provide a theoretical basis for the analyzing the rainfall infiltration and porosity of the soil by using high-density electrical method in the future. </div>展开更多
基金sponsored by Jiangsu Provincial Colleges and Universities Natural Science Foundation of China (Grant No.08KJD410001)Humanities and Social Sciences Planning Fund of Ministry of Education of China (Grant No. 12YJAZH151)Humanities and Social Sciences Youth Fund of Ministry of Education of China (Grant No. 12YJCZH209)
文摘Complex product development will inevitably face the design planning of the multi-coupled activities, and overlapping these activities could potentially reduce product development time, but there is a risk of the additional cost. Although the downstream task information dependence to the upstream task is already considered in the current researches, but the design process overall iteration caused by the information interdependence between activities is hardly discussed; especially the impact on the design process' overall iteration from the valid information accumulation process. Secondly, most studies only focus on the single overlapping process of two activities, rarely take multi-segment and multi-ply overlapping process of multi coupled activities into account; especially the inherent link between product development time and cost which originates from the overlapping process of multi coupled activities. For the purpose of solving the above problems, as to the insufficiency of the accumulated valid information in overlapping process, the function of the valid information evolution (VIE) degree is constructed. Stochastic process theory is used to describe the design information exchange and the valid information accumulation in the overlapping segment, and then the planning models of the single overlapping segment are built. On these bases, by analyzing overlapping processes and overlapping features of multi-coupling activities, multi-segment and multi-ply overlapping planning models are built; by sorting overlapping processes and analyzing the construction of these planning models, two conclusions are obtained: (1) As to multi-segment and multi-ply overlapping of multi coupled activities, the total decrement of the task set development time is the sum of the time decrement caused by basic overlapping segments, and minus the sum of the time increment caused by multiple overlapping segments; (2) the total increment of development cost is the sum of the cost increment caused by all overlapping process. And then, based on overlapping degree analysis of these planning models, by the V1E degree function, the four lemmas theory proofs are represented, and two propositions are finally proved: (1) The multi-ply overlapping of the multi coupled activities will weaken the basic overlapping effect on the development cycle time reduction (2) Overlapping the multi coupled activities will decrease product development cycle, but increase product development cost. And there is trade-off between development time and cost. And so, two methods are given to slacken and eliminate multi-ply overlapping effects. At last, an example about a vehicle upper subsystem design illustrates the application of the proposed models; compared with a sequential execution pattern, the decreasing of development cycle (22%) and the increasing of development cost (3%) show the validity of the method in the example The proposed research not only lays a theoretical foundation for correctly planning complex product development process, but also provides specific and effective operation methods for overlapping multi coupled activities.
文摘<div style="text-align:justify;"> Rainfall infiltration is a porous medium flow problem with variable saturation. Based on the theoretical analysis of the flow field, electrical conductivity of rocks, the electrical field, the paper simulates the coupling relationship between the water saturation in soil and the apparent resistivity distribution. It combines the Richards equation, the Archie formula and the Laplace equation. The experiment simulates the potential field data by the Wenner setting in electrical exploration on a two-layer geologic model with continuous rainfall during 5 days, which shows that the effective saturation in soil is increasing with the rainfall time, while the apparent resistivity is decreasing. This can provide a theoretical basis for the analyzing the rainfall infiltration and porosity of the soil by using high-density electrical method in the future. </div>