In this work,cathode materials of spent lithium-ion ternary batteries are recovered and used as metal precursor to prepare multi-metal oxides MnO_(x)(SY)and GdMnO_(3)(SY)via combustion method and sol-gel method,respec...In this work,cathode materials of spent lithium-ion ternary batteries are recovered and used as metal precursor to prepare multi-metal oxides MnO_(x)(SY)and GdMnO_(3)(SY)via combustion method and sol-gel method,respectively.Furthermore,a series of MnO_(x)(SY)-n and GdMnO_(3)(SY)-n(n=0.05,0.10,1.00,4.00,n represents the dilute HNO_(3) concentration)catalysts are fabricated by acid treatment of MnO_(x)(SY)and GdMnO_(3)(SY)samples and catalytic activities of oxygenated VOCs oxidation over all the prepared catalysts are investigated.Catalytic evaluation results show that acid-treated MnO_(x)(SY)-0.10 and GdMnO_(3)(SY)-0.05 samples perform the optimum VOCs removal efficiency respectively,which may be attributed to their obvious enhancement of physicochemical properties.In detail,Mn O_(x)(SY)-0.10 and GdMnO_(3)(SY)-0.05 samples exhibit the larger specific surface area,bigger amount of surface high-valence metal ions(Mn^(4+),Co^(3+),Ni^(3+)),more abundant adsorbed oxygen species and better low-temperature reducibility,which can play a crucial role in the significant improvement of VOCs oxidation.In situ DRIFTS results imply that the possible main intermediates are-OCO,-COO and-C-O species produced during VOCs oxidation.Possible by-products are further determined via TD/GC-MS analysis.展开更多
基金supported by the National Natural Science Foundation of China(Grant numbers 21876107,21607103)。
文摘In this work,cathode materials of spent lithium-ion ternary batteries are recovered and used as metal precursor to prepare multi-metal oxides MnO_(x)(SY)and GdMnO_(3)(SY)via combustion method and sol-gel method,respectively.Furthermore,a series of MnO_(x)(SY)-n and GdMnO_(3)(SY)-n(n=0.05,0.10,1.00,4.00,n represents the dilute HNO_(3) concentration)catalysts are fabricated by acid treatment of MnO_(x)(SY)and GdMnO_(3)(SY)samples and catalytic activities of oxygenated VOCs oxidation over all the prepared catalysts are investigated.Catalytic evaluation results show that acid-treated MnO_(x)(SY)-0.10 and GdMnO_(3)(SY)-0.05 samples perform the optimum VOCs removal efficiency respectively,which may be attributed to their obvious enhancement of physicochemical properties.In detail,Mn O_(x)(SY)-0.10 and GdMnO_(3)(SY)-0.05 samples exhibit the larger specific surface area,bigger amount of surface high-valence metal ions(Mn^(4+),Co^(3+),Ni^(3+)),more abundant adsorbed oxygen species and better low-temperature reducibility,which can play a crucial role in the significant improvement of VOCs oxidation.In situ DRIFTS results imply that the possible main intermediates are-OCO,-COO and-C-O species produced during VOCs oxidation.Possible by-products are further determined via TD/GC-MS analysis.