期刊文献+
共找到524篇文章
< 1 2 27 >
每页显示 20 50 100
Bayesian seismic multi-scale inversion in complex Laplace mixed domains 被引量:5
1
作者 Kun Li Xing-Yao Yin Zhao-Yun Zong 《Petroleum Science》 SCIE CAS CSCD 2017年第4期694-710,共17页
Seismic inversion performed in the time or frequency domain cannot always recover the long-wavelength background of subsurface parameters due to the lack of low-frequency seismic records. Since the low-frequency respo... Seismic inversion performed in the time or frequency domain cannot always recover the long-wavelength background of subsurface parameters due to the lack of low-frequency seismic records. Since the low-frequency response becomes much richer in the Laplace mixed domains, one novel Bayesian impedance inversion approach in the complex Laplace mixed domains is established in this study to solve the model dependency problem. The derivation of a Laplace mixed-domain formula of the Robinson convolution is the first step in our work. With this formula, the Laplace seismic spectrum, the wavelet spectrum and time-domain reflectivity are joined together. Next, to improve inversion stability, the object inversion function accompanied by the initial constraint of the linear increment model is launched under a Bayesian framework. The likelihood function and prior probability distribution can be combined together by Bayesian formula to calculate the posterior probability distribution of subsurface parameters. By achieving the optimal solution corresponding to maximum posterior probability distribution, the low-frequency background of subsurface parameters can be obtained successfully. Then, with the regularization constraint of estimated low frequency in the Laplace mixed domains, multi-scale Bayesian inversion inthe pure frequency domain is exploited to obtain the absolute model parameters. The effectiveness, anti-noise capability and lateral continuity of Laplace mixed-domain inversion are illustrated by synthetic tests. Furthermore,one field case in the east of China is discussed carefully with different input frequency components and different inversion algorithms. This provides adequate proof to illustrate the reliability improvement in low-frequency estimation and resolution enhancement of subsurface parameters, in comparison with conventional Bayesian inversion in the frequency domain. 展开更多
关键词 LOW-FREQUENCY Complex mixed-domain Laplace inversion Bayesian estimation multi-scale inversion
下载PDF
Seismic energy dispersion compensation by multi-scale morphology
2
作者 Yu Junqing Wang Runqiu +5 位作者 Liu Taoran Zhang Zhenglong Wu Jian Jiang Yongyong Sun Lipeng Xia Pei 《Petroleum Science》 SCIE CAS CSCD 2014年第3期376-384,共9页
Seismic energy decays while propagating subsurface, which may reduce the resolution of seismic data. This paper studies the method of seismic energy dispersion compensation which provides the basic principles for mult... Seismic energy decays while propagating subsurface, which may reduce the resolution of seismic data. This paper studies the method of seismic energy dispersion compensation which provides the basic principles for multi-scale morphology and the spectrum simulation method. These methods are applied in seismic energy compensation. First of all, the seismic data is decomposed into multiple scales and the effective frequency bandwidth is selectively broadened for some scales by using a spectrum simulation method. In this process, according to the amplitude spectrum of each scale, the best simulation range is selected to simulate the middle and low frequency components to ensure the authenticity of the simulation curve which is calculated by the median method, and the high frequency component is broadened. Finally, these scales are reconstructed with reasonable coefficients, and the compensated seismic data can be obtained. Examples are shown to illustrate the feasibility of the energy compensation method. 展开更多
关键词 Seismic wave multi-scale morphology dispersion compensation high resolution median method spectrum simulation
下载PDF
多尺度残差密集注意力网络图像超分辨率重建 被引量:1
3
作者 倪水平 王仕杰 +1 位作者 李慧芳 李朋坤 《河南理工大学学报(自然科学版)》 CAS 北大核心 2024年第1期140-148,共9页
目的使用单一尺度卷积网络提取低分辨率(low-resolution,LR)图像特征会造成大量图像高频特征丢失,为了获取更多高频特征,重建更清晰的超分辨率图像,方法提出一种基于多尺度残差密集注意力网络(multi-scale residual dense attention net... 目的使用单一尺度卷积网络提取低分辨率(low-resolution,LR)图像特征会造成大量图像高频特征丢失,为了获取更多高频特征,重建更清晰的超分辨率图像,方法提出一种基于多尺度残差密集注意力网络(multi-scale residual dense attention network)的单幅图像超分辨率重建算法。首先,使用卷积网络从低分辨率图像中提取浅层特征并将其作为后续网络各级输入;其次,采用各级多尺度残差密集注意力块(multi-scale residual dense attention block)处理前级网络图像特征并从中提取图像高频特征,多尺度残差密集网络善于提取更丰富的图像特征,并融入注意力机制,增强网络对高频区域特征的关注;然后,将网络各级提取不同深度的图像特征进行全局特征融合;最后,融合后的特征经上采样输出重建的超分辨率图像。结果放大因子为4时,网络在SET5,SET14,BSDS100,URBAN100和MANGA109数据集上测试,峰值信噪比分别为31.97,28.58,27.57,25.85,29.79 dB;网络中基本模块分别由多尺度残差密集注意力块、残差块和密集块替换提取特征,以峰值信噪比作为模块性能评估标准,多尺度残差密集注意力块表现更优异。结论该网络结合多尺度残差密集网络能够获取更丰富图像高低频信息,融入注意力机制有效对网络中高频信息进行提取,能重建纹理更清晰的超分辨率图像。 展开更多
关键词 多尺度残差 密集注意力网络 超分辨率重建 注意力机制 高频区域
下载PDF
基于天塞主镜的多尺度长焦成像系统设计
4
作者 刘飞 太智超 +3 位作者 张敏洁 相萌 于纯 邵晓鹏 《航空兵器》 CSCD 北大核心 2024年第1期111-116,共6页
针对提升多尺度成像系统的分辨率以满足对远距离目标精确识别的需求,从提升主镜焦距的角度出发,本文提出一种基于天塞结构主镜的多尺度长焦成像系统设计,分析了为满足次级镜头的线性排布而需要对主镜添加的两个约束条件,针对次级镜头阵... 针对提升多尺度成像系统的分辨率以满足对远距离目标精确识别的需求,从提升主镜焦距的角度出发,本文提出一种基于天塞结构主镜的多尺度长焦成像系统设计,分析了为满足次级镜头的线性排布而需要对主镜添加的两个约束条件,针对次级镜头阵列中随离轴角增加使系统在对应视场成像质量下降的问题,对邻近区域次级镜头进行协同优化,同时在离轴位置次级镜头的优化中应用自由曲面面型完成像差校正。所设计系统不同视场区域成像的MTF曲线一致性较好,表明系统在全视场范围内成像质量理想。采用天塞结构主镜设计的多尺度成像系统,其空间分辨率达14μrad,相较于共心球透镜的多尺度系统有显著提高。 展开更多
关键词 多尺度系统 高分辨率 天塞结构 长焦系统 光学设计 光电成像
下载PDF
基于多层残差网络的地震提频处理在薄储集层识别中的应用
5
作者 张文起 李春雷 《新疆石油地质》 CAS CSCD 北大核心 2024年第1期102-108,共7页
基于多层残差网络的地震提频处理方法,通过智能化网络将测井高频信息与地震数据相结合,能有效提升纵向分辨率,保持横向连续可追踪,利于薄储集层识别。针对AMH地区常规处理的地震数据仅能识别厚度大于30 m的碳酸盐岩层,无法有效识别厚度... 基于多层残差网络的地震提频处理方法,通过智能化网络将测井高频信息与地震数据相结合,能有效提升纵向分辨率,保持横向连续可追踪,利于薄储集层识别。针对AMH地区常规处理的地震数据仅能识别厚度大于30 m的碳酸盐岩层,无法有效识别厚度较小的薄储集层的问题,提出基于多层残差网络的地震提频处理方法,以井旁地震振幅作为训练数据,测井相对波阻抗作为训练标签,利用深度学习网络多层残差网络开展训练,获取相对波阻抗曲线的预测模型;通过将地震数据作为输入,利用深度网络训练模型计算得到相对波阻抗数据体,进而得到提频后的地震数据体相对应的反射系数体。通过对靶区地质情况的分析认识,对宽频子波进行标定后提取合适的宽频子波,与反射系数体进行褶积,得到提频后的地震数据体;利用提频后的地震数据体开展储集层反演,反演结果纵向具有较高分辨率,与主要目的层能够较好匹配,横向可以进行识别和追踪,利用高分辨地震数据反演结果实现AMH地区的薄储集层识别。结果表明,通过基于多层残差网络的地震提频处理及相应的高分辨模型反演,在AMH地区能够识别厚度大于10 m的薄储集层,较好地解决由于地震分辨率低无法识别薄储集层的问题,有效提高了薄储集层预测的精度,对同类型薄储集层识别具有借鉴意义。 展开更多
关键词 碳酸盐岩 地震数据 提频处理 薄储集层 多层残差网络 相对波阻抗 高分辨反演 深度学习
下载PDF
结合多尺度多注意力的遥感图像超分辨率重构
6
作者 熊承义 郑瑞华 +2 位作者 高志荣 何缘 完颜静萱 《中南民族大学学报(自然科学版)》 CAS 2024年第5期692-700,共9页
视觉Transformer在改进图像超分辨率性能方面展现了良好的潜能.然而,遥感图像中不同目标表现的尺度多样性限制了其超分辨率的图像质量.为此,研究了一种结合多尺度多注意力的Transformer遥感图像超分辨率网络,旨在增强其特征学习能力,从... 视觉Transformer在改进图像超分辨率性能方面展现了良好的潜能.然而,遥感图像中不同目标表现的尺度多样性限制了其超分辨率的图像质量.为此,研究了一种结合多尺度多注意力的Transformer遥感图像超分辨率网络,旨在增强其特征学习能力,从而有效提升遥感图像的超分辨率性能.具体来说,输入特征首先通过多级下采样,得到多个尺度的特征;然后,逐级将低维特征通过一种交替密集注意力与稀疏注意力的Transformer网络进行变换,并将输出结果升维后与高维特征融合.密集注意力与稀疏注意力的结合可同时兼顾对局部相关性和全局相关性的有效提取,而多通路多尺度变换能够增强对图像小目标的建模能力.基于两个开源的遥感数据集的大量实验结果,验证了该方法的有效性. 展开更多
关键词 视觉Transformer 遥感图像超分辨率 多尺度 密集注意力 稀疏注意力
下载PDF
跨尺度混合注意力的遥感图像超分辨率重建
7
作者 肖振久 苏婷 +1 位作者 曲海成 翟宇琦 《计算机系统应用》 2024年第6期153-160,共8页
为了解决现有遥感图像超分辨率重建模型对长期特征相似性和多尺度特征相关性关注不足的问题,提出了一种基于跨尺度混合注意力机制的遥感图像超分辨率重建算法.首先提出了一个全局层注意力机制(global layer attention,GLA),利用层注意... 为了解决现有遥感图像超分辨率重建模型对长期特征相似性和多尺度特征相关性关注不足的问题,提出了一种基于跨尺度混合注意力机制的遥感图像超分辨率重建算法.首先提出了一个全局层注意力机制(global layer attention,GLA),利用层注意力机制加权融合不同层级的全局特征,建模低分辨率与高分辨率图像特征间的长期依赖关系.同时,设计了跨尺度局部注意力机制(cross-scale local attention,CSLA),在多尺度的低分辨率特征图中寻找与高分辨率图像匹配的局部信息补丁,并融合不同尺度的补丁特征,以优化模型对图像细节信息的恢复能力.最后,提出一种局部信息感知损失函数来指导图像的重建过程,进一步提高了重建图像的视觉质量和细节保留能力.在UC-Merced数据集上的实验结果表明,本文方法在3种放大倍数下的平均PSNR/SSIM优于大多数主流方法,并在视觉效果方面展现出更高的质量和更好的细节保留能力. 展开更多
关键词 遥感图像 超分辨率重建 多尺度特征融合 注意力机制 特征相似性
下载PDF
基于小波多尺度分析大气边界层高度提取方法研究
8
作者 李猛 李佳欣 +2 位作者 郭心骞 吴德成 刘苏悦 《红外与激光工程》 EI CSCD 北大核心 2024年第5期164-172,共9页
大气边界层物理演变特征及复杂边界层结构对大气污染过程的影响机制研究中,迫切需要边界层精细化结构的探测手段。通常使用梯度法和小波协方差变换法的方式进行边界层高度提取,但由于该方式容易受到噪声和气溶胶层结构的影响,实验误差... 大气边界层物理演变特征及复杂边界层结构对大气污染过程的影响机制研究中,迫切需要边界层精细化结构的探测手段。通常使用梯度法和小波协方差变换法的方式进行边界层高度提取,但由于该方式容易受到噪声和气溶胶层结构的影响,实验误差较大。提出使用小波多尺度分析方法细化边界层特征结构,从而筛选出有效的细节信息,提高对探索边界层高度的准确性。此外,基于GBQ L-01激光雷达设备实测合肥地区全天气溶胶分布情况,使用小波多尺度分析方法分析对应的平行分量距离平方矫正信号、垂直分量距离平方矫正信号和退偏振比全天分布情况。实验结果表明,该方法准确性高,与梯度法、小波协方差法相比具有更高的稳定性与连续性。对特殊时间点进行数据分析,明确主要影响边界层高度的主要因素,并确定各个时间段的大气边界层高度值。 展开更多
关键词 激光雷达 大气边界层 小波多尺度分析 精细结构 高时空分辨率
下载PDF
适用于图像超分辨率的多路径融合增强网络 被引量:1
9
作者 沈俊晖 薛丽霞 +1 位作者 汪荣贵 杨娟 《微电子学与计算机》 2024年第3期59-70,共12页
卷积神经网络(Convolutional Neural Network,CNN)在单幅图像的超分辨率重建方面表现出了非常强大的能力,相比传统方法有着明显的改进。然而,尽管这些方法非常成功,但是由于需要大量的计算资源,直接应用于一些边缘设备并不现实。为了解... 卷积神经网络(Convolutional Neural Network,CNN)在单幅图像的超分辨率重建方面表现出了非常强大的能力,相比传统方法有着明显的改进。然而,尽管这些方法非常成功,但是由于需要大量的计算资源,直接应用于一些边缘设备并不现实。为了解决该问题,设计了一种轻量级的图像超分辨率重建网络——多路径融合增强网络(Multi-path Fusion Enhancement Network,MFEN)。具体来说,提出了一个新颖的融合注意力增强模块(Fusion Attention Enhancement Block,FAEB)作为多路径融合增强网络的主要构建模块。融合注意力增强模块由一条主干分支和两条层级分支构成:主干分支由堆叠的增强像素注意力模块组成,负责对特征图实现深度特征学习;层级分支则负责提取并融合不同大小感受野的特征图,从而实现多尺度特征学习。层级分支的融合方式则是以相邻的增强像素注意力模块输出为分支输入,通过自适应注意力模块(Self-Adaptive Attention Module,SAAM)来动态地增强不同大小感受野特征的融合程度,进一步补全特征信息,从而实现更全面、更精准的特征学习。大量实验表明,该多路径融合增强网络在基准测试集上具有更高的准确性。 展开更多
关键词 多路径融合增强网络 轻量化图像超分辨率重建 多尺度特征融合 自适应注意力 卷积神经网络
下载PDF
基于多尺度及DESTIN约束的高分遥感影像田块语义分割方法研究
10
作者 肖庆云 程涛 +2 位作者 顾兴健 朱艳 黄芬 《南京农业大学学报》 CAS CSCD 北大核心 2024年第5期989-999,共11页
[目的]本研究旨在改善基于深度学习的遥感影像田块语义分割中出现的区域不封闭、边缘不贴合、噪点问题,并进一步修正语义分割的识别错误。[方法]以安徽省阜南县、江苏省淮安市为研究地点,自建了农田田块数据集,引入考虑影像多尺度特征... [目的]本研究旨在改善基于深度学习的遥感影像田块语义分割中出现的区域不封闭、边缘不贴合、噪点问题,并进一步修正语义分割的识别错误。[方法]以安徽省阜南县、江苏省淮安市为研究地点,自建了农田田块数据集,引入考虑影像多尺度特征的尺度分割思想与基于物候学的DESTIN(delineation by fusing spatial and temporal information)分割算法,提出了基于多尺度及DESTIN约束的高分遥感影像农田田块语义分割方法。[结果]多尺度与DESTIN约束下基于深度模型的田块语义分割有效改善模型出现的区域不封闭、边缘不贴合、噪点和块状模糊等问题,一定程度修正了深度模型语义分割的错误识别,IoU指标在2个测试集上分别达到94.08%和90.79%,相较深度模型的遥感影像田块语义分割分别提高1.65%和2.32%,对研究区域的田块提取区域更完整、精度更高。[结论]多尺度及DESTIN约束进一步改善了田块语义分割问题,有助于提高高分遥感影像的田块识别精度。 展开更多
关键词 语义分割 多尺度分割 DESTIN分割 农田田块提取 高分遥感影像
下载PDF
多阶段特征蒸馏加权的轻量级图像超分辨率网络
11
作者 杨胜荣 车文刚 +1 位作者 高盛祥 赵云莱 《计算机工程与科学》 CSCD 北大核心 2024年第8期1433-1443,共11页
针对在轻量化网络中提取底层特征感受野不足以及缺乏对局部关键特征强化的问题,提出一种多阶段特征蒸馏加权的轻量级图像超分辨率网络LMSWN。首先,通过类金字塔模块扩大对浅层特征提取时的感受野,融合不同尺度的特征信息,丰富网络的信息... 针对在轻量化网络中提取底层特征感受野不足以及缺乏对局部关键特征强化的问题,提出一种多阶段特征蒸馏加权的轻量级图像超分辨率网络LMSWN。首先,通过类金字塔模块扩大对浅层特征提取时的感受野,融合不同尺度的特征信息,丰富网络的信息流;其次,设计多阶段残差蒸馏加权模块用于增强方形卷积提取局部关键特征的能力,以恢复更多细节信息提高重建性能,同时将通道分离与1×1卷积结合共同实现对特征的逐级蒸馏,减少网络参数量;最后,引入2个自适应参数对多阶段残差蒸馏加权模块的2条支路特征进行联合学习,提升对不同层次特征信息的关注度,进一步增强网络的表征能力。实验结果表明,在Set 5、Set 14、BSD 100、Urban 100和Manga 109这5个基准测试集上的实验充分验证了所提网络的有效性,其性能超过了当前主流轻量级网络。 展开更多
关键词 图像超分辨率 轻量级 特征蒸馏 多尺度卷积
下载PDF
多尺度特征融合与空间优化的弱监督高分遥感建筑变化检测
12
作者 鄢薪 慎利 +4 位作者 潘俊杰 戴延帅 王继成 郑晓莉 李志林 《测绘学报》 EI CSCD 北大核心 2024年第8期1586-1597,共12页
针对建筑物变化检测中深度学习方法严重依赖大量高成本高难度的像素级标注样本进行模型训练的问题,本文提出一种基于图像级标注样本的高分辨率遥感建筑物弱监督变化检测方法MDF-LSR-Net。该方法首先提取双时相多尺度差异特征,并对多尺... 针对建筑物变化检测中深度学习方法严重依赖大量高成本高难度的像素级标注样本进行模型训练的问题,本文提出一种基于图像级标注样本的高分辨率遥感建筑物弱监督变化检测方法MDF-LSR-Net。该方法首先提取双时相多尺度差异特征,并对多尺度差异特征进行渐进式融合,利用充分融合后的多层次多尺度差异特征来生成变化热力图;然后,利用低层融合差异特征的局部空间相似性来优化初始的变化热力图,进一步增强热力图中变化区域的完整性和准确性;最后,基于高质量的变化热力图训练最终的变化检测模型。在公开的建筑物变化检测数据集WHU和LEVIR上的多组试验结果表明,本文方法能够获取更加完整且准确的变化热力图,从而使得基于此训练的变化检测模型也取得更高的检测精度,其中最终的变化检测模型在WHU数据集上的IOU和F 1值分别可达65%和79%以上。 展开更多
关键词 高分辨率遥感影像 建筑物变化检测 深度学习 弱监督学习 多尺度特征融合
下载PDF
量子多尺度融合的高分卫星影像建筑物变化检测
13
作者 张燕平 张卡 +5 位作者 赵立科 陶厦 张帮 王玉军 顾桢 刘浩林 《测绘通报》 CSCD 北大核心 2024年第6期65-70,126,共7页
为了提高传统基于像元的高分辨率卫星影像变化检测方法的精度,本文提出了一种基于量子多尺度融合的高分卫星影像建筑物变化检测算法。首先,对双时相高分辨率卫星影像进行多尺度分割,构成多尺度影像数据集;然后,对多尺度影像数据集进行... 为了提高传统基于像元的高分辨率卫星影像变化检测方法的精度,本文提出了一种基于量子多尺度融合的高分卫星影像建筑物变化检测算法。首先,对双时相高分辨率卫星影像进行多尺度分割,构成多尺度影像数据集;然后,对多尺度影像数据集进行迭代慢特征变换,得到不同尺度的变化强度图,再利用量子理论对多尺度变化强度图进行融合,以得到融合后的变化强度图;最后,通过最大类间方差法完成变化强度图的阈值分割,得到二值化变化检测结果。利用两组不同时相的实际高分卫星影像,对本文算法进行了试验验证。试验结果表明,与单一尺度面向对象变化检测方法和熵权法多尺度融合方法相比,本文算法可以取得更高的建筑物变化检测精度。 展开更多
关键词 高分卫星影像 建筑物变化检测 量子理论 迭代慢特征分析 多尺度融合
下载PDF
融合多重多尺度特征的高分辨率遥感影像建筑物提取网络
14
作者 庞兆峻 胡荣明 +2 位作者 竞霞 任乐宽 廖雨欣 《遥感信息》 CSCD 北大核心 2024年第5期162-170,共9页
针对高分辨率遥感影像因复杂背景信息导致的建筑物边界、角点以及内部信息出现的错分、漏分问题,提出了一种融合多重多尺度目标特征的DPRS-Net深度学习网络。DPRS-Net采用Resnet50与Swin-T(Tiny)的并行编码结构以结合两种编码优势,进而... 针对高分辨率遥感影像因复杂背景信息导致的建筑物边界、角点以及内部信息出现的错分、漏分问题,提出了一种融合多重多尺度目标特征的DPRS-Net深度学习网络。DPRS-Net采用Resnet50与Swin-T(Tiny)的并行编码结构以结合两种编码优势,进而获取特征图的大范围深层信息;利用跳跃连接降低建筑物的边界特征损失;引入特征金字塔注意力模块和密集空洞空间特征金字塔池化模块,使采样过程中的建筑物细节特征损失减弱。为验证模型的优势性、分析性能提升原因,在WHU和自建Changchun3建筑物数据集上进行对比和消融实验。结果表明,DPRS-Net在两种数据集上均取得更高的精度,提取的建筑物信息更为完整,且模型各结构均能有效提升预测效果。 展开更多
关键词 深度学习 高分辨率遥感影像 建筑物提取 多尺度特征 并行编码 特征金字塔
下载PDF
层次信息自适应聚合的图像超分辨率重建算法 被引量:1
15
作者 陈伟杰 黄国恒 +1 位作者 莫非 林俊宇 《计算机工程与应用》 CSCD 北大核心 2024年第5期221-231,共11页
随着卷积神经网络的发展,图像超分辨率重建算法取得了一定的突破。尽管如此,现有的图像超分辨率算法很少区分利用层次特征,并且存在多尺度特征提取代价大的问题。针对这些问题,提出了层次信息自适应聚合的图像超分辨率重建算法。具体来... 随着卷积神经网络的发展,图像超分辨率重建算法取得了一定的突破。尽管如此,现有的图像超分辨率算法很少区分利用层次特征,并且存在多尺度特征提取代价大的问题。针对这些问题,提出了层次信息自适应聚合的图像超分辨率重建算法。具体来说,采用多层次信息精炼机制对不同层次的特征进行自适应增强处理,解决层次特征没有区分利用的问题。构造细粒度的多尺度信息聚合块,解决多尺度信息提取代价大,特征表征能力弱的问题。提出对比度增强的重组注意力块,以较低的代价同时利用特征的通道和空间信息,实现对特征的自适应校准。大量实验表明,相比其他先进的算法,所提方法在Urban100等五个基准数据集上能取得更好的指标和视觉效果。 展开更多
关键词 超分辨率 多层次信息精炼 多尺度信息 重组注意力
下载PDF
基于多尺度自适应注意力的图像超分辨率网络 被引量:1
16
作者 周颖 裴盛虎 +1 位作者 陈海永 许士博 《光学精密工程》 EI CAS CSCD 北大核心 2024年第6期843-856,共14页
针对大多数图像超分辨率重建方法利用单尺度卷积进行特征提取,导致特征提取不充分的问题,提出基于多尺度自适应注意力的图像超分辨率网络。为充分利用各个层次特征中的上下文信息,设计了多尺度特征融合块,其基本单元由自适应双尺度块、... 针对大多数图像超分辨率重建方法利用单尺度卷积进行特征提取,导致特征提取不充分的问题,提出基于多尺度自适应注意力的图像超分辨率网络。为充分利用各个层次特征中的上下文信息,设计了多尺度特征融合块,其基本单元由自适应双尺度块、多路径渐进式交互块和自适应双维度注意力依次串联组成。首先,自适应双尺度块自主融合两个尺度的特征,获得了更丰富的上下文特征;其次,多路径渐进式交互块以渐进的方式交互自适应双尺度块的输出特征,提高了上下文特征之间的关联性;最后,自适应双维度注意力自主选择不同维度注意力细化输出特征后,提高了输出特征的鉴别力。实验结果表明,在Set5,Set14,BSD100和Urban100测试集上,本文方法在PSNR和SSIM定量指标上相比于其他主流方法相均有提升,尤其对于纹理细节难以恢复的Urban100测试集,本文方法在比例因子为×4时,相较于现有最优方法SwinIR,PSNR和SSIM指标分别提升了0.05 dB和0.0045;在视觉效果方面,本文的重建图像具有更多的纹理细节。 展开更多
关键词 超分辨率 多尺度特征 注意力机制 自适应权重 渐进式信息交互
下载PDF
注意力机制下的多尺度图像超分辨率重建
17
作者 何启琛 何蕾 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第9期1255-1261,共7页
文章结合目前较流行的多尺度卷积和通道注意力机制,提出一种新颖的卷积神经网络(convolutional neural network,CNN)结构,即注意力机制下的多尺度卷积神经网络。该网络结构中加入大量的残差结构,加深了网络的深度;多尺度卷积的使用使该... 文章结合目前较流行的多尺度卷积和通道注意力机制,提出一种新颖的卷积神经网络(convolutional neural network,CNN)结构,即注意力机制下的多尺度卷积神经网络。该网络结构中加入大量的残差结构,加深了网络的深度;多尺度卷积的使用使该网络能从图片中提取更加丰富的信息;注意力机制的引入使网络处理高频信息时有更大的权重。实验结果表明,多尺度注意力机制卷积神经网络在图像超分辨率(super-resolution,SR)重建上取得了良好的表现,图像细节恢复效果令人满意。 展开更多
关键词 超分辨率(SR) 深度学习 卷积神经网络(CNN) 注意力机制 多尺度
下载PDF
一种结合局部与半全局几何保持的影像匹配算法
18
作者 郑美艳 陈俊 +1 位作者 葛小青 张红 《中国科学院大学学报(中英文)》 CSCD 北大核心 2024年第1期107-116,共10页
遥感影像匹配是众多遥感应用中数据处理的关键前置步骤,但高程差导致的影像局部畸变和影像匹配的复杂性严重限制了高分辨率影像的匹配精度。提出一种适用于局部畸变和高外点比例的鲁棒匹配算法,首先利用Delaunay剖分算法在假定匹配点集... 遥感影像匹配是众多遥感应用中数据处理的关键前置步骤,但高程差导致的影像局部畸变和影像匹配的复杂性严重限制了高分辨率影像的匹配精度。提出一种适用于局部畸变和高外点比例的鲁棒匹配算法,首先利用Delaunay剖分算法在假定匹配点集上施加几何约束,得到特征点局部邻接关系;然后基于邻接信息进行预过滤;采用多尺度的策略建立局部邻接关系一致约束模型;最后定义三角形相似度函数实现匹配恢复。利用3组高分辨率影像开展对比实验,实验结果表明该算法的平均精度比RANSAC提高7.69%,在外点率高于90%时仍旧稳健。 展开更多
关键词 高分辨率遥感影像 图像匹配 DELAUNAY三角网 几何保持 多尺度
下载PDF
基于MFF-Deeplabv3+网络的高分辨率遥感影像建筑物提取方法
19
作者 陈经纬 李宇 +1 位作者 陈俊 张洪群 《中国科学院大学学报(中英文)》 CAS CSCD 北大核心 2024年第5期654-664,共11页
为提升高分辨率遥感影像中建筑物提取的精度,提出一种基于MFF-Deeplabv3+(multiscale feature fusion-Deeplabv3+)网络的高分辨率遥感影像建筑物提取方法。首先,设计多尺度特征增强模块,使网络能够捕获更多尺度的上下文信息;然后,设计... 为提升高分辨率遥感影像中建筑物提取的精度,提出一种基于MFF-Deeplabv3+(multiscale feature fusion-Deeplabv3+)网络的高分辨率遥感影像建筑物提取方法。首先,设计多尺度特征增强模块,使网络能够捕获更多尺度的上下文信息;然后,设计特征融合模块,有效融合深层特征与浅层特征,减少细节信息的丢失;最后,引入注意力机制模块,自适应地选择准确特征。在Inria建筑物数据集的对比实验中,MFF-Deeplabv3+在PA、MPA、FWIoU、MIoU指标中取得最高精度,分别为95.75%、91.22%、92.12%和85.01%,同时在WHU建筑物数据集的泛化实验中取得不错的结果。结果表明,本方法在高分辨率遥感影像中提取建筑物信息精度较高,且具有较好的泛化性。 展开更多
关键词 建筑物提取 深度学习 注意力机制 多尺度特征增强 高分辨率遥感影像
下载PDF
多路并行多尺度特征复用的遥感图像超分辨率
20
作者 赵旭 胡德敏 《电子科技》 2024年第6期61-68,共8页
遥感图像内部物体尺寸小、分布不均匀、耦合程度高,针对目前遥感图像超分辨率模型特征提取信息单一且利用不足的现状,文中提出一种多路并行多尺度特征复用网络模型以改进图像重建的性能。该模型使用局部特征级联和全局特征融合的结构融... 遥感图像内部物体尺寸小、分布不均匀、耦合程度高,针对目前遥感图像超分辨率模型特征提取信息单一且利用不足的现状,文中提出一种多路并行多尺度特征复用网络模型以改进图像重建的性能。该模型使用局部特征级联和全局特征融合的结构融合多个网络残差块提取的特征信息,其中每个残差块由两个多尺度卷积单元串行连接。多尺度卷积单元通过对特征信息进行交叉融合,构建多路并行的分支提取图像特征。同时引入短跳跃连接加强不同分支之间的特征复用,通过长跳跃连接加强网络不同深度的特征融合。当放大因子为4时,在两个测试集上该模型的峰值信噪比分别为29.6531 dB、29.0374 dB,相对于其他模型的测试结果具有明显提升,因此所提模型在遥感图像超分辨率重建上具有较好的效果。 展开更多
关键词 遥感图像 超分辨率 多路径 并行提取 多尺度 特征复用 跳跃连接 卷积神经网络
下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部