A method for the multi target locating and tracking with the multi sensor in a field artillery system is studied. A general modeling structure of the system is established. Based on concepts of cluster and closed ba...A method for the multi target locating and tracking with the multi sensor in a field artillery system is studied. A general modeling structure of the system is established. Based on concepts of cluster and closed ball, an algorithm is put forward for multi sensor multi target data fusion and an optimal solution for state estimation is presented. The simulation results prove the algorithm works well for the multi stationary target locating and the multi moving target tracking under the condition of the sparse target environment. Therefore, this method can be directly applied to the field artillery C 3I system.展开更多
An algorithm is presented for fusion of tracks created by radar and IR sensor which have different dimensional measurement data. It’s assumed that these sensors are asynchronous and the measurement data are transmitt...An algorithm is presented for fusion of tracks created by radar and IR sensor which have different dimensional measurement data. It’s assumed that these sensors are asynchronous and the measurement data are transmitted to a central station at different rates. By means of the technique of time matching, two sets of asynchronous data are fused and then the filter is updated according to the fused information. The results show that the accuracy of the filter effect has been improved.展开更多
taking the bucket of multi function earth drill as an example, combining with the conception of multi sensor integration and data fusion, adopting the terrene column chart and digging torque formula as control depende...taking the bucket of multi function earth drill as an example, combining with the conception of multi sensor integration and data fusion, adopting the terrene column chart and digging torque formula as control dependence, the detecting method of the earth drill’s working state is introduced. Multi sensor data fusion is done with the aid of BP neural network in Matlab. The data to be interfused are pre processed and the program of simulation and “point checking” is given.展开更多
Digital picture forgery detection has recently become a popular and sig-nificant topic in image processing.Due to advancements in image processing and the availability of sophisticated software,picture fabrication may...Digital picture forgery detection has recently become a popular and sig-nificant topic in image processing.Due to advancements in image processing and the availability of sophisticated software,picture fabrication may hide evidence and hinder the detection of such criminal cases.The practice of modifying origi-nal photographic images to generate a forged image is known as digital image forging.A section of an image is copied and pasted into another part of the same image to hide an item or duplicate particular image elements in copy-move forgery.In order to make the forgeries real and inconspicuous,geometric or post-processing techniques are frequently performed on tampered regions during the tampering process.In Copy-Move forgery detection,the high similarity between the tampered regions and the source regions has become crucial evidence.The most frequent way for detecting copy-move forgeries is to partition the images into overlapping square blocks and utilize Discrete cosine transform(DCT)com-ponents as block representations.Due to the high dimensionality of the feature space,Gaussian Radial basis function(RBF)kernel based Principal component analysis(PCA)is used to minimize the dimensionality of the feature vector repre-sentation,which improves feature matching efficiency.In this paper,we propose to use a novel enhanced Scale-invariant feature transform(SIFT)detector method called as RootSIFT,combined with the similarity measures to mark the tampered areas in the image.The proposed method outperforms existing state-of-the-art methods in terms of matching time complexity,detection reliability,and forgery location accuracy,according to the experimental results.The F1 score of the proposed method is 92.3%while the literature methods are around 90%on an average.展开更多
The displacement of transmission tower feet can seriously affect the safe operation of the tower,and the accuracy of structural health monitoring methods is limited at the present stage.The application of deep learnin...The displacement of transmission tower feet can seriously affect the safe operation of the tower,and the accuracy of structural health monitoring methods is limited at the present stage.The application of deep learning method provides new ideas for structural health monitoring of towers,but the current amount of tower vibration fault data is restricted to provide adequate training data for Deep Learning(DL).In this paper,we propose a DT-DL based tower foot displacement monitoring method,which firstly simulates the wind-induced vibration response data of the tower under each fault condition by finite element method.Then the vibration signal visualization and Data Transfer(DT)are used to add tower fault data samples to solve the problem of insufficient actual data quantity.Subsequently,the dynamic response test is carried out under different tower fault states,and the tower fault monitoring is carried out by the DL method.Finally,the proposed method is compared with the traditional online monitoring method,and it is found that this method can significantly improve the rate of convergence and recognition accuracy in the recognition process.The results show that the method can effectively identify the tower foot displacement state,which can greatly reduce the accidents that occurred due to the tower foot displacement.展开更多
A new synergy decision method for radar and infrared search and track (IRST) data fusion is proposed, to solve such problems as how to decrease opportunities for radar suffering from being locked on by adverse electr...A new synergy decision method for radar and infrared search and track (IRST) data fusion is proposed, to solve such problems as how to decrease opportunities for radar suffering from being locked on by adverse electronic support measures (ESM), how to retrieve range information of the target during radar off, and how to detect the maneuver of the target. Firstly, polynomials used to predict target motion states are constructed. Secondly, a set of discriminants for detecting target maneuver are established by comparing the predicted values with the observations from IRST. Thirdly, a set of decisions are presented. Lastly, simulation is performed on the given scenario to test the validity of the method.展开更多
According to fault type diversity and fault information uncertainty problem of the hydraulic driven rocket launcher servo system(HDRLSS) , the fault diagnosis method based on the evidence theory and neural network e...According to fault type diversity and fault information uncertainty problem of the hydraulic driven rocket launcher servo system(HDRLSS) , the fault diagnosis method based on the evidence theory and neural network ensemble is proposed. In order to overcome the shortcomings of the single neural network, two improved neural network models are set up at the com-mon nodes to simplify the network structure. The initial fault diagnosis is based on the iron spectrum data and the pressure, flow and temperature(PFT) characteristic parameters as the input vectors of the two improved neural network models, and the diagnosis result is taken as the basic probability distribution of the evidence theory. Then the objectivity of assignment is real-ized. The initial diagnosis results of two improved neural networks are fused by D-S evidence theory. The experimental results show that this method can avoid the misdiagnosis of neural network recognition and improve the accuracy of the fault diagnosis of HDRLSS.展开更多
Different measurands from the different types of sensors can obtain different information regarding the structural behavior in a real structural health monitoring system.To enrich information and estimate the structur...Different measurands from the different types of sensors can obtain different information regarding the structural behavior in a real structural health monitoring system.To enrich information and estimate the structural responses based on much more known information,the estimation on structural responses using multi scale measurements from multi-type sensors is proposed in this paper.Pattern identification is constructed with the pattern library given by strain measurements and deformation measurements.Considering the uncertainty of the measurements as well as to enhance the robustness of the proposed algorithm,more than one best pattern is selected to synthesize the finally estimated stress responses.To validate the capacity of the proposed acquisition method using multi scale measurements,finite element model analysis is conducted to estimate the structural stress response in Shenzhen Bay Stadium as an example.The performance of the pattern identifications,constructed by two kinds of pattern libraries captured by sole strain measurement,and multi scale measurements which are constructed by both kinds of strain measurements and deformation measurements,respectively,are compared in this paper to observe measurements constructed from strain measurements and deformation measurements outperformed others.Errors analysis for a series of parametric studies in which noise at different levels has also included in the measurements are further carried out,and robustness of the proposed information acquisition scheme under noisy measurement is demonstrated.展开更多
文摘A method for the multi target locating and tracking with the multi sensor in a field artillery system is studied. A general modeling structure of the system is established. Based on concepts of cluster and closed ball, an algorithm is put forward for multi sensor multi target data fusion and an optimal solution for state estimation is presented. The simulation results prove the algorithm works well for the multi stationary target locating and the multi moving target tracking under the condition of the sparse target environment. Therefore, this method can be directly applied to the field artillery C 3I system.
基金ScientificResearchFoundationfortheReturnedOverseaChineseScholars State EducationMinistry
文摘An algorithm is presented for fusion of tracks created by radar and IR sensor which have different dimensional measurement data. It’s assumed that these sensors are asynchronous and the measurement data are transmitted to a central station at different rates. By means of the technique of time matching, two sets of asynchronous data are fused and then the filter is updated according to the fused information. The results show that the accuracy of the filter effect has been improved.
文摘taking the bucket of multi function earth drill as an example, combining with the conception of multi sensor integration and data fusion, adopting the terrene column chart and digging torque formula as control dependence, the detecting method of the earth drill’s working state is introduced. Multi sensor data fusion is done with the aid of BP neural network in Matlab. The data to be interfused are pre processed and the program of simulation and “point checking” is given.
文摘Digital picture forgery detection has recently become a popular and sig-nificant topic in image processing.Due to advancements in image processing and the availability of sophisticated software,picture fabrication may hide evidence and hinder the detection of such criminal cases.The practice of modifying origi-nal photographic images to generate a forged image is known as digital image forging.A section of an image is copied and pasted into another part of the same image to hide an item or duplicate particular image elements in copy-move forgery.In order to make the forgeries real and inconspicuous,geometric or post-processing techniques are frequently performed on tampered regions during the tampering process.In Copy-Move forgery detection,the high similarity between the tampered regions and the source regions has become crucial evidence.The most frequent way for detecting copy-move forgeries is to partition the images into overlapping square blocks and utilize Discrete cosine transform(DCT)com-ponents as block representations.Due to the high dimensionality of the feature space,Gaussian Radial basis function(RBF)kernel based Principal component analysis(PCA)is used to minimize the dimensionality of the feature vector repre-sentation,which improves feature matching efficiency.In this paper,we propose to use a novel enhanced Scale-invariant feature transform(SIFT)detector method called as RootSIFT,combined with the similarity measures to mark the tampered areas in the image.The proposed method outperforms existing state-of-the-art methods in terms of matching time complexity,detection reliability,and forgery location accuracy,according to the experimental results.The F1 score of the proposed method is 92.3%while the literature methods are around 90%on an average.
基金supported by the Key Projects of Shaanxi Province Key R&D Program(2018ZDXM-GY-040)supported by Natural Science Foundation of Shaanxi Province,Basic Research Program Project(2019JQ-843)supported by Graduate Scientific Innovation Fund for Xi’an Polytechnic University(chx2023012).
文摘The displacement of transmission tower feet can seriously affect the safe operation of the tower,and the accuracy of structural health monitoring methods is limited at the present stage.The application of deep learning method provides new ideas for structural health monitoring of towers,but the current amount of tower vibration fault data is restricted to provide adequate training data for Deep Learning(DL).In this paper,we propose a DT-DL based tower foot displacement monitoring method,which firstly simulates the wind-induced vibration response data of the tower under each fault condition by finite element method.Then the vibration signal visualization and Data Transfer(DT)are used to add tower fault data samples to solve the problem of insufficient actual data quantity.Subsequently,the dynamic response test is carried out under different tower fault states,and the tower fault monitoring is carried out by the DL method.Finally,the proposed method is compared with the traditional online monitoring method,and it is found that this method can significantly improve the rate of convergence and recognition accuracy in the recognition process.The results show that the method can effectively identify the tower foot displacement state,which can greatly reduce the accidents that occurred due to the tower foot displacement.
文摘A new synergy decision method for radar and infrared search and track (IRST) data fusion is proposed, to solve such problems as how to decrease opportunities for radar suffering from being locked on by adverse electronic support measures (ESM), how to retrieve range information of the target during radar off, and how to detect the maneuver of the target. Firstly, polynomials used to predict target motion states are constructed. Secondly, a set of discriminants for detecting target maneuver are established by comparing the predicted values with the observations from IRST. Thirdly, a set of decisions are presented. Lastly, simulation is performed on the given scenario to test the validity of the method.
文摘According to fault type diversity and fault information uncertainty problem of the hydraulic driven rocket launcher servo system(HDRLSS) , the fault diagnosis method based on the evidence theory and neural network ensemble is proposed. In order to overcome the shortcomings of the single neural network, two improved neural network models are set up at the com-mon nodes to simplify the network structure. The initial fault diagnosis is based on the iron spectrum data and the pressure, flow and temperature(PFT) characteristic parameters as the input vectors of the two improved neural network models, and the diagnosis result is taken as the basic probability distribution of the evidence theory. Then the objectivity of assignment is real-ized. The initial diagnosis results of two improved neural networks are fused by D-S evidence theory. The experimental results show that this method can avoid the misdiagnosis of neural network recognition and improve the accuracy of the fault diagnosis of HDRLSS.
基金supported by the National Natural Science Foundation of China(Grant No.51308162)Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(Grant No.HIT.NSRIF.2015085)the Supporting Project for Junior Faculties of Harbin Institute of Technology Shenzhen Graduate School
文摘Different measurands from the different types of sensors can obtain different information regarding the structural behavior in a real structural health monitoring system.To enrich information and estimate the structural responses based on much more known information,the estimation on structural responses using multi scale measurements from multi-type sensors is proposed in this paper.Pattern identification is constructed with the pattern library given by strain measurements and deformation measurements.Considering the uncertainty of the measurements as well as to enhance the robustness of the proposed algorithm,more than one best pattern is selected to synthesize the finally estimated stress responses.To validate the capacity of the proposed acquisition method using multi scale measurements,finite element model analysis is conducted to estimate the structural stress response in Shenzhen Bay Stadium as an example.The performance of the pattern identifications,constructed by two kinds of pattern libraries captured by sole strain measurement,and multi scale measurements which are constructed by both kinds of strain measurements and deformation measurements,respectively,are compared in this paper to observe measurements constructed from strain measurements and deformation measurements outperformed others.Errors analysis for a series of parametric studies in which noise at different levels has also included in the measurements are further carried out,and robustness of the proposed information acquisition scheme under noisy measurement is demonstrated.