To study the measurement of distance under the condition of the frequency modulation (FM) multi component signal of a short range radar, the multi points scattering model of a target, the TLS ESPRIT (total least sq...To study the measurement of distance under the condition of the frequency modulation (FM) multi component signal of a short range radar, the multi points scattering model of a target, the TLS ESPRIT (total least square estimation of signal parameters via rotational invariance techniques) and the mathematical statistics methods were used. The method of computing single frequency signal's instantaneous frequency (IF) is unsuitable to the multi component signal. By using the method of the TLS ESPRIT combined with the mathematical statistics, the multi component signal's IF can be obtained. The computer simulation has shown that the method has the high accuracy for measuring the distance.展开更多
This analysis focuses on PIM interference under multi-band multi-signal input in mobile communication system.Unlike single band system that only odd order PIM(especially 3rd order) should be concerned,in multi-band mu...This analysis focuses on PIM interference under multi-band multi-signal input in mobile communication system.Unlike single band system that only odd order PIM(especially 3rd order) should be concerned,in multi-band multi-signal case,both odd and even order PIM could be interference source because of more complicated intermodulation,more IMPs generated and more receive bands.Especially,the 2nd order PIM may interfere more serious to receiving channel for its strong magnitude.In duplex indoor distribute system,the PIM interference is a potential problem to GSM900,DCS1800,CDMA,and even 3G system wireless services,because the PIM frequencies may fall in receive bands and interfere to the receiving channels.In radio system design and wireless channel assignment,precautions must be taken to minimize the PIM level and to avoid interfere to receiving channels.For practical use,the lower order possible PIM interference to 2G and 3G systems is calculated.展开更多
Nowadays, security defence of network uses the game theory, which mostly applies complete information game model or even the static game model. To get closer to the actual network and defend actively, we propose a net...Nowadays, security defence of network uses the game theory, which mostly applies complete information game model or even the static game model. To get closer to the actual network and defend actively, we propose a network attack-defence game model by using signalling game, which is modelled in the way of dynamic and incomplete information. We improve the traditional attack-defence strategies quantization method to meet the needs of the network signalling game model. Moreover, we give the calculation of the game equilibrium and analyse the optimal defence scheme. Finally, we analyse and verify effectiveness of the model and method through a simulation experiment.展开更多
As the differences of sensor's precision and some random factors are difficult to control,the actual measurement signals are far from the target signals that affect the reliability and precision of rotating machinery...As the differences of sensor's precision and some random factors are difficult to control,the actual measurement signals are far from the target signals that affect the reliability and precision of rotating machinery fault diagnosis.The traditional signal processing methods,such as classical inference and weighted averaging algorithm usually lack dynamic adaptability that is easy for trends to cause the faults to be misjudged or left out.To enhance the measuring veracity and precision of vibration signal in rotary machine multi-sensor vibration signal fault diagnosis,a novel data level fusion approach is presented on the basis of correlation function analysis to fast determine the weighted value of multi-sensor vibration signals.The approach doesn't require knowing the prior information about sensors,and the weighted value of sensors can be confirmed depending on the correlation measure of real-time data tested in the data level fusion process.It gives greater weighted value to the greater correlation measure of sensor signals,and vice versa.The approach can effectively suppress large errors and even can still fuse data in the case of sensor failures because it takes full advantage of sensor's own-information to determine the weighted value.Moreover,it has good performance of anti-jamming due to the correlation measures between noise and effective signals are usually small.Through the simulation of typical signal collected from multi-sensors,the comparative analysis of dynamic adaptability and fault tolerance between the proposed approach and traditional weighted averaging approach is taken.Finally,the rotor dynamics and integrated fault simulator is taken as an example to verify the feasibility and advantages of the proposed approach,it is shown that the multi-sensor data level fusion based on correlation function weighted approach is better than the traditional weighted average approach with respect to fusion precision and dynamic adaptability.Meantime,the approach is adaptable and easy to use,can be applied to other areas of vibration measurement.展开更多
For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to p...For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to process intercepted signals,which has a negative effect on signal classification. A classificationmethod based on spatial data mining is presented to address theabove challenge. Inspired by the idea of spatial data mining, theclassification method applies nuclear field to depicting the distributioninformation of pulse samples in feature space, and digs out thehidden cluster information by analyzing distribution characteristics.In addition, a membership-degree criterion to quantify the correlationamong all classes is established, which ensures classificationaccuracy of signal samples. Numerical experiments show that thepresented method can effectively prevent different working statesof multi-mode emitter from being classified as several emitters,and achieve higher classification accuracy.展开更多
The analog-to-information convertor (AIC) is a successful practice of compressive sensing (CS) theory in the analog signal acquisition. This paper presents a multi-narrowband signals sampling and reconstruction model ...The analog-to-information convertor (AIC) is a successful practice of compressive sensing (CS) theory in the analog signal acquisition. This paper presents a multi-narrowband signals sampling and reconstruction model based on AIC and block sparsity. To overcome the practical problems, the block sparsity is divided into uniform block and non-uniform block situations, and the block restricted isometry property and sub-sampling limit in different situations are analyzed respectively in detail. Theoretical analysis proves that using the block sparsity in AIC can reduce the restricted isometric constant, increase the reconstruction probability and reduce the sub -sampling rate. Simulation results show that the proposed model can complete sub -sampling and reconstruction for multi-narrowband signals. This paper extends the application range of AIC from the finite information rate signal to the multi-narrowband signals by using the potential relevance of support sets. The proposed receiving model has low complexity and is easy to implement, which can promote the application of CS theory in the radar receiver to reduce the burden of analog-to digital convertor (ADC) and solve bandwidth limitations of ADC.展开更多
Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The ...Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The intercepted signal is difficult to separate with conventional parameters because of severe overlapping in both time and frequency domains. On the contrary, time-frequency analysis maps the 1D signal into a 2D time-frequency plane, which provides a better insight into the signal than traditional methods. Particularly, the parameterized time-frequency analysis (PTFA) shows great potential in processing such non stationary signals. Five procedures for the PTFA are proposed to separate the overlapped multi-radar signal, including initiation, instantaneous frequency estimation with PTFA, signal demodulation, signal separation with adaptive filter and signal recovery. The proposed method is verified with both simulated and real signals, which shows good performance in the application on multi-radar signal separation.展开更多
In order to estimate vehicular queue length at signalized intersections accurately and overcome the shortcomings and restrictions of existing studies especially those based on shockwave theory,a new methodology is pre...In order to estimate vehicular queue length at signalized intersections accurately and overcome the shortcomings and restrictions of existing studies especially those based on shockwave theory,a new methodology is presented for estimating vehicular queue length using data from both point detectors and probe vehicles. The methodology applies the shockwave theory to model queue evolution over time and space. Using probe vehicle locations and times as well as point detector measured traffic states,analytical formulations for calculating the maximum and minimum( residual) queue length are developed. The proposed methodology is verified using ground truth data collected from numerical experiments conducted in Shanghai,China. It is found that the methodology has a mean absolute percentage error of 17. 09%,which is reasonably effective in estimating the queue length at traffic signalized intersections. Limitations of the proposed models and algorithms are also discussed in the paper.展开更多
When used for separating multi-component non-stationary signals, the adaptive time-varying filter(ATF) based on multi-scale chirplet sparse signal decomposition(MCSSD) generates phase shift and signal distortion. To o...When used for separating multi-component non-stationary signals, the adaptive time-varying filter(ATF) based on multi-scale chirplet sparse signal decomposition(MCSSD) generates phase shift and signal distortion. To overcome this drawback, the zero phase filter is introduced to the mentioned filter, and a fault diagnosis method for speed-changing gearbox is proposed. Firstly, the gear meshing frequency of each gearbox is estimated by chirplet path pursuit. Then, according to the estimated gear meshing frequencies, an adaptive zero phase time-varying filter(AZPTF) is designed to filter the original signal. Finally, the basis for fault diagnosis is acquired by the envelope order analysis to the filtered signal. The signal consisting of two time-varying amplitude modulation and frequency modulation(AM-FM) signals is respectively analyzed by ATF and AZPTF based on MCSSD. The simulation results show the variances between the original signals and the filtered signals yielded by AZPTF based on MCSSD are 13.67 and 41.14, which are far less than variances (323.45 and 482.86) between the original signals and the filtered signals obtained by ATF based on MCSSD. The experiment results on the vibration signals of gearboxes indicate that the vibration signals of the two speed-changing gearboxes installed on one foundation bed can be separated by AZPTF effectively. Based on the demodulation information of the vibration signal of each gearbox, the fault diagnosis can be implemented. Both simulation and experiment examples prove that the proposed filter can extract a mono-component time-varying AM-FM signal from the multi-component time-varying AM-FM signal without distortion.展开更多
Nano-volt magnetic resonance sounding(MRS) signals are sufficiently weak so that during the actual measurement, they are affected by environmental electromagnetic noise, leading to inaccuracy of the extracted characte...Nano-volt magnetic resonance sounding(MRS) signals are sufficiently weak so that during the actual measurement, they are affected by environmental electromagnetic noise, leading to inaccuracy of the extracted characteristic parameters and hindering effective inverse interpretation. Considering the complexity and non-homogeneous spatial distribution of environmental noise and based on the theory of adaptive noise cancellation, a model system for noise cancellation using multi-reference coils was constructed to receive MRS signals. The feasibility of this system with theoretical calculation and experiments was analyzed and a modified sigmoid variable step size least mean square(SVSLMS) algorithm for noise cancellation was presented. The simulation results show that, the multi-reference coil method performs better than the single one on both signal-to-noise ratio(SNR) improvement and signal waveform optimization after filtering, under the condition of different noise correlations in the reference coils and primary detecting coils and different SNRs. In particular, when the noise correlation is poor and the SNR<0, the SNR can be improved by more than 8 dB after filtering with multi-reference coils. And the average fitting errors for initial amplitude and relaxation time are within 5%. Compared with the normalized least mean square(NLMS) algorithm and multichannel Wiener filter and processing field test data, the effectiveness of the proposed method is verified.展开更多
The sub-land/sub-pit affects the characteristic of the tracking error signal which is generated by the conventional differential phase detection (DPD) method in the signal waveform modulation multi-level (SWML) re...The sub-land/sub-pit affects the characteristic of the tracking error signal which is generated by the conventional differential phase detection (DPD) method in the signal waveform modulation multi-level (SWML) read-only disc. To solve this problem, this paper proposes a new tracking error detection method using amplitude difference. Based on the diffraction theory, the amplitude difference is proportional to the tracking error and is feasible to be used for obtaining the off-track information. The experimental system of the amplitude difference detection method is developed. The experimental results show that the tracking error signal derived from the new method has better performance in uniformity and signal-to-noise ratio than that derived from the conventional DPD method in the SWML read-only disc.展开更多
A novel flocking control approach is proposed for multi-agent systems by integrating the variables of velocities, motion directions, and positions of agents. A received signal strength indicator (RSSI) is applied as...A novel flocking control approach is proposed for multi-agent systems by integrating the variables of velocities, motion directions, and positions of agents. A received signal strength indicator (RSSI) is applied as a variable to estimate the inter-distance between agents. A key parameter that contains the local information of agents is defined, and a multi-variable controller is proposed based on the parameter. For the position control of agents, the RSSI is introduced to substitute the distance as a control variable in the systems. The advantages of RSSI include that the relative distance between every two agents can be adjusted through the communication quality under different environments, and it can shun the shortage of the limit of sensors. Simulation studies demonstrate the effectiveness of the proposed control approach.展开更多
Athletes have various emotions before competition, and mood states have impact on the competi- tion results. Recognition of athletes’ mood states could help athletes to have better adjustment before competition, whic...Athletes have various emotions before competition, and mood states have impact on the competi- tion results. Recognition of athletes’ mood states could help athletes to have better adjustment before competition, which is significant to competition achievements. In this paper, physiological signals of female rowing athletes in pre- and post-competition were collected. Based on the multi-physiological signals related to pre- and post-competition, such as heart rate and respiration rate, features were extracted which had been subtracted the emotion baseline. Then the particle swarm optimization (PSO) was adopted to optimize the feature selection from the feature set, and combined with the least squares support vector machine (LS-SVM) classifier. Positive mood states and negative mood states were classified by the LS-SVM with PSO feature optimization. The results showed that the classification accuracy by the LS-SVM algorithm combined with PSO and baseline subtraction was better than the condition without baseline subtraction. The combination can contribute to good classification of mood states of rowing athletes, and would be informative to psychological adjustment of athletes.展开更多
A novel read channel for signal waveform modulation multi-level disc is presented in this paper. This read channel employs timing recovery system and partial response maximum likelihood detector. Compared to the previ...A novel read channel for signal waveform modulation multi-level disc is presented in this paper. This read channel employs timing recovery system and partial response maximum likelihood detector. Compared to the previous read channel composed of level detection and run-length detection, the present read channel shows superiority in capacity increase and robust performance. Especially, relying on the partial response maximum likelihood detection, lower bit error rate can be obtained.展开更多
In this paper, we describe an improved adaptive partial response maximum likelihood (PRML) method combining modulation code tbr signal waveform modulation multi-level disc. This improved adaptive PRML method employs...In this paper, we describe an improved adaptive partial response maximum likelihood (PRML) method combining modulation code tbr signal waveform modulation multi-level disc. This improved adaptive PRML method employs partial response equalizer and adaptive viterbi detector combining modulation code. Compared with the traditional adaptive PRML detector, the improved PRML detector additionally employs illogical sequence detector and corrector. Illogical sequence detector and corrector can aw)id the appearance of illogical sequences effectively, which do not follow the law of modulation code for signal waveform modulation multi-level disc, and obtain the correct sequences. We implement the improved PRML detector using a DSP and an FPGA chip. The experimental results show good performance. The higher efficient and lower complexity can be obtained by using the improved PRML method than by using the previous PRML method. Meanwhile, resource utilization of the improved PRML detector is not changed, but the bit error rate (BER) is reduced by more than 20%.展开更多
New positioning applications’ availability requirements demand receivers with higher sensitivities and ability to process multiple GNSS signals. Possible applications include acquiring one signal per GNSS constellati...New positioning applications’ availability requirements demand receivers with higher sensitivities and ability to process multiple GNSS signals. Possible applications include acquiring one signal per GNSS constellation in the same frequency band and combining them for increased sensitivity or predicting acquisition of other signals. Frequency domain processing can be used for this purpose, since it benefits from parallel processing capabilities of Fast Fourier Transform (FFT), which can be efficiently implemented in software receivers. On the other hand, long coherent integration times are mainly limited due to large FFT size in receivers using frequency domain techniques. A new method is proposed to address the problems in frequency domain receivers without compromising the resources and execution time. A pre-correlation accumulation (PCA) is proposed to partition the received samples into one-code-period blocks, and to sum them together. As a result, the noise is averaged out and the correlation results will gain more power, provided that the relative phase between the data segments is compensated for. In addition to simplicity, the proposed PCA method enables the use of one-size FFT for all integration times. A post-correlation peak combination is also proposed to remove the need for double buffering. The proposed methods are implemented in a configurable Simulink model, developed for acquiring recorded GNSS signals. For weak signal scenarios, a Spirent GPS simulator is used as a source. Acquisition results for GPS L1 C/A and GLONASS L1OF are shown and the performance of the proposed technique is discussed. The proposed techniques target GNSS receivers using frequency domain processing aiming at accommodating all the GNSS signals, while minimizing resource usage. They also apply to weak signal acquisition in frequency domain to answer the availability demand of today’s GNSS positioning applications.展开更多
Higher order statistical features have been recently proved to be very efficient in the classification of wideband communications and radar signals with great accuracy. On the other hand, the denoising properties of t...Higher order statistical features have been recently proved to be very efficient in the classification of wideband communications and radar signals with great accuracy. On the other hand, the denoising properties of the wavelet transform make WT an efficient signal processing tool in noisy environments. A novel technique for the classification of multi-user chirp modulation signals is presented in this paper. A combination of the higher order moments and cumulants of the wavelet coefficients as well as the peaks of the bispectrum and its bi-frequencies are proposed as effective features. Different types of artificial intelligence based classifiers and clustering techniques are used to identify the chirp signals of the different users. In particular, neural networks (NN), maximum likelihood (ML), k-nearest neighbor (KNN) and support vector machine (SVMs) classifiers as well as fuzzy c-means (FCM) and fuzzy k-means (FKM) clustering techniques are tested. The Simulation results show that the proposed technique is able to efficiently classify the different chirp signals in additive white Gaussian noise (AWGN) channels with high accuracy. It is shown that the NN classifier outperforms other classifiers. Also, the simulations prove that the classification based on features extracted from wavelet transform results in more accurate results than that using features directly extracted from the chirp signals, especially at low values of signal-to-noise ratios.展开更多
基金Doctoral Programme Foundation of Institution of Higher Education of China.
文摘To study the measurement of distance under the condition of the frequency modulation (FM) multi component signal of a short range radar, the multi points scattering model of a target, the TLS ESPRIT (total least square estimation of signal parameters via rotational invariance techniques) and the mathematical statistics methods were used. The method of computing single frequency signal's instantaneous frequency (IF) is unsuitable to the multi component signal. By using the method of the TLS ESPRIT combined with the mathematical statistics, the multi component signal's IF can be obtained. The computer simulation has shown that the method has the high accuracy for measuring the distance.
文摘This analysis focuses on PIM interference under multi-band multi-signal input in mobile communication system.Unlike single band system that only odd order PIM(especially 3rd order) should be concerned,in multi-band multi-signal case,both odd and even order PIM could be interference source because of more complicated intermodulation,more IMPs generated and more receive bands.Especially,the 2nd order PIM may interfere more serious to receiving channel for its strong magnitude.In duplex indoor distribute system,the PIM interference is a potential problem to GSM900,DCS1800,CDMA,and even 3G system wireless services,because the PIM frequencies may fall in receive bands and interfere to the receiving channels.In radio system design and wireless channel assignment,precautions must be taken to minimize the PIM level and to avoid interfere to receiving channels.For practical use,the lower order possible PIM interference to 2G and 3G systems is calculated.
基金supported by the National Natural Science Foundation of China under Grant No. 61303074 and No. 61309013the Henan Province Science and Technology Project Funds under Grant No. 12210231002
文摘Nowadays, security defence of network uses the game theory, which mostly applies complete information game model or even the static game model. To get closer to the actual network and defend actively, we propose a network attack-defence game model by using signalling game, which is modelled in the way of dynamic and incomplete information. We improve the traditional attack-defence strategies quantization method to meet the needs of the network signalling game model. Moreover, we give the calculation of the game equilibrium and analyse the optimal defence scheme. Finally, we analyse and verify effectiveness of the model and method through a simulation experiment.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2007AA04Z433)Hunan Provincial Natural Science Foundation of China (Grant No. 09JJ8005)Scientific Research Foundation of Graduate School of Beijing University of Chemical and Technology,China (Grant No. 10Me002)
文摘As the differences of sensor's precision and some random factors are difficult to control,the actual measurement signals are far from the target signals that affect the reliability and precision of rotating machinery fault diagnosis.The traditional signal processing methods,such as classical inference and weighted averaging algorithm usually lack dynamic adaptability that is easy for trends to cause the faults to be misjudged or left out.To enhance the measuring veracity and precision of vibration signal in rotary machine multi-sensor vibration signal fault diagnosis,a novel data level fusion approach is presented on the basis of correlation function analysis to fast determine the weighted value of multi-sensor vibration signals.The approach doesn't require knowing the prior information about sensors,and the weighted value of sensors can be confirmed depending on the correlation measure of real-time data tested in the data level fusion process.It gives greater weighted value to the greater correlation measure of sensor signals,and vice versa.The approach can effectively suppress large errors and even can still fuse data in the case of sensor failures because it takes full advantage of sensor's own-information to determine the weighted value.Moreover,it has good performance of anti-jamming due to the correlation measures between noise and effective signals are usually small.Through the simulation of typical signal collected from multi-sensors,the comparative analysis of dynamic adaptability and fault tolerance between the proposed approach and traditional weighted averaging approach is taken.Finally,the rotor dynamics and integrated fault simulator is taken as an example to verify the feasibility and advantages of the proposed approach,it is shown that the multi-sensor data level fusion based on correlation function weighted approach is better than the traditional weighted average approach with respect to fusion precision and dynamic adaptability.Meantime,the approach is adaptable and easy to use,can be applied to other areas of vibration measurement.
基金supported by the National Natural Science Foundation of China(61371172)the International S&T Cooperation Program of China(2015DFR10220)+1 种基金the Ocean Engineering Project of National Key Laboratory Foundation(1213)the Fundamental Research Funds for the Central Universities(HEUCF1608)
文摘For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to process intercepted signals,which has a negative effect on signal classification. A classificationmethod based on spatial data mining is presented to address theabove challenge. Inspired by the idea of spatial data mining, theclassification method applies nuclear field to depicting the distributioninformation of pulse samples in feature space, and digs out thehidden cluster information by analyzing distribution characteristics.In addition, a membership-degree criterion to quantify the correlationamong all classes is established, which ensures classificationaccuracy of signal samples. Numerical experiments show that thepresented method can effectively prevent different working statesof multi-mode emitter from being classified as several emitters,and achieve higher classification accuracy.
基金supported by the National Natural Science Foundation of China(61172159)
文摘The analog-to-information convertor (AIC) is a successful practice of compressive sensing (CS) theory in the analog signal acquisition. This paper presents a multi-narrowband signals sampling and reconstruction model based on AIC and block sparsity. To overcome the practical problems, the block sparsity is divided into uniform block and non-uniform block situations, and the block restricted isometry property and sub-sampling limit in different situations are analyzed respectively in detail. Theoretical analysis proves that using the block sparsity in AIC can reduce the restricted isometric constant, increase the reconstruction probability and reduce the sub -sampling rate. Simulation results show that the proposed model can complete sub -sampling and reconstruction for multi-narrowband signals. This paper extends the application range of AIC from the finite information rate signal to the multi-narrowband signals by using the potential relevance of support sets. The proposed receiving model has low complexity and is easy to implement, which can promote the application of CS theory in the radar receiver to reduce the burden of analog-to digital convertor (ADC) and solve bandwidth limitations of ADC.
文摘Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The intercepted signal is difficult to separate with conventional parameters because of severe overlapping in both time and frequency domains. On the contrary, time-frequency analysis maps the 1D signal into a 2D time-frequency plane, which provides a better insight into the signal than traditional methods. Particularly, the parameterized time-frequency analysis (PTFA) shows great potential in processing such non stationary signals. Five procedures for the PTFA are proposed to separate the overlapped multi-radar signal, including initiation, instantaneous frequency estimation with PTFA, signal demodulation, signal separation with adaptive filter and signal recovery. The proposed method is verified with both simulated and real signals, which shows good performance in the application on multi-radar signal separation.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51138003)
文摘In order to estimate vehicular queue length at signalized intersections accurately and overcome the shortcomings and restrictions of existing studies especially those based on shockwave theory,a new methodology is presented for estimating vehicular queue length using data from both point detectors and probe vehicles. The methodology applies the shockwave theory to model queue evolution over time and space. Using probe vehicle locations and times as well as point detector measured traffic states,analytical formulations for calculating the maximum and minimum( residual) queue length are developed. The proposed methodology is verified using ground truth data collected from numerical experiments conducted in Shanghai,China. It is found that the methodology has a mean absolute percentage error of 17. 09%,which is reasonably effective in estimating the queue length at traffic signalized intersections. Limitations of the proposed models and algorithms are also discussed in the paper.
基金supported by National Natural Science Foundation of China (Grant No. 71271078)National Hi-tech Research and Development Program of China (863 Program, Grant No. 2009AA04Z414)Integration of Industry, Education and Research of Guangdong Province, and Ministry of Education of China (Grant No. 2009B090300312)
文摘When used for separating multi-component non-stationary signals, the adaptive time-varying filter(ATF) based on multi-scale chirplet sparse signal decomposition(MCSSD) generates phase shift and signal distortion. To overcome this drawback, the zero phase filter is introduced to the mentioned filter, and a fault diagnosis method for speed-changing gearbox is proposed. Firstly, the gear meshing frequency of each gearbox is estimated by chirplet path pursuit. Then, according to the estimated gear meshing frequencies, an adaptive zero phase time-varying filter(AZPTF) is designed to filter the original signal. Finally, the basis for fault diagnosis is acquired by the envelope order analysis to the filtered signal. The signal consisting of two time-varying amplitude modulation and frequency modulation(AM-FM) signals is respectively analyzed by ATF and AZPTF based on MCSSD. The simulation results show the variances between the original signals and the filtered signals yielded by AZPTF based on MCSSD are 13.67 and 41.14, which are far less than variances (323.45 and 482.86) between the original signals and the filtered signals obtained by ATF based on MCSSD. The experiment results on the vibration signals of gearboxes indicate that the vibration signals of the two speed-changing gearboxes installed on one foundation bed can be separated by AZPTF effectively. Based on the demodulation information of the vibration signal of each gearbox, the fault diagnosis can be implemented. Both simulation and experiment examples prove that the proposed filter can extract a mono-component time-varying AM-FM signal from the multi-component time-varying AM-FM signal without distortion.
基金Projects(41204079,41504086)supported by the National Natural Science Foundation of ChinaProject(20160101281JC)supported by the Natural Science Foundation of Jilin Province,ChinaProjects(2016M590258,2015T80301)supported by the Postdoctoral Science Foundation of China
文摘Nano-volt magnetic resonance sounding(MRS) signals are sufficiently weak so that during the actual measurement, they are affected by environmental electromagnetic noise, leading to inaccuracy of the extracted characteristic parameters and hindering effective inverse interpretation. Considering the complexity and non-homogeneous spatial distribution of environmental noise and based on the theory of adaptive noise cancellation, a model system for noise cancellation using multi-reference coils was constructed to receive MRS signals. The feasibility of this system with theoretical calculation and experiments was analyzed and a modified sigmoid variable step size least mean square(SVSLMS) algorithm for noise cancellation was presented. The simulation results show that, the multi-reference coil method performs better than the single one on both signal-to-noise ratio(SNR) improvement and signal waveform optimization after filtering, under the condition of different noise correlations in the reference coils and primary detecting coils and different SNRs. In particular, when the noise correlation is poor and the SNR<0, the SNR can be improved by more than 8 dB after filtering with multi-reference coils. And the average fitting errors for initial amplitude and relaxation time are within 5%. Compared with the normalized least mean square(NLMS) algorithm and multichannel Wiener filter and processing field test data, the effectiveness of the proposed method is verified.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60977005)
文摘The sub-land/sub-pit affects the characteristic of the tracking error signal which is generated by the conventional differential phase detection (DPD) method in the signal waveform modulation multi-level (SWML) read-only disc. To solve this problem, this paper proposes a new tracking error detection method using amplitude difference. Based on the diffraction theory, the amplitude difference is proportional to the tracking error and is feasible to be used for obtaining the off-track information. The experimental system of the amplitude difference detection method is developed. The experimental results show that the tracking error signal derived from the new method has better performance in uniformity and signal-to-noise ratio than that derived from the conventional DPD method in the SWML read-only disc.
基金supported by the National Basic Research Program of China (973Program) under Grant No. 2010CB731800the National Natural Science Foundation of China under Grant No. 60934003 and 61074065the Key Project for Natural Science Research of Hebei Education Departmentunder Grant No. ZD200908
文摘A novel flocking control approach is proposed for multi-agent systems by integrating the variables of velocities, motion directions, and positions of agents. A received signal strength indicator (RSSI) is applied as a variable to estimate the inter-distance between agents. A key parameter that contains the local information of agents is defined, and a multi-variable controller is proposed based on the parameter. For the position control of agents, the RSSI is introduced to substitute the distance as a control variable in the systems. The advantages of RSSI include that the relative distance between every two agents can be adjusted through the communication quality under different environments, and it can shun the shortage of the limit of sensors. Simulation studies demonstrate the effectiveness of the proposed control approach.
文摘Athletes have various emotions before competition, and mood states have impact on the competi- tion results. Recognition of athletes’ mood states could help athletes to have better adjustment before competition, which is significant to competition achievements. In this paper, physiological signals of female rowing athletes in pre- and post-competition were collected. Based on the multi-physiological signals related to pre- and post-competition, such as heart rate and respiration rate, features were extracted which had been subtracted the emotion baseline. Then the particle swarm optimization (PSO) was adopted to optimize the feature selection from the feature set, and combined with the least squares support vector machine (LS-SVM) classifier. Positive mood states and negative mood states were classified by the LS-SVM with PSO feature optimization. The results showed that the classification accuracy by the LS-SVM algorithm combined with PSO and baseline subtraction was better than the condition without baseline subtraction. The combination can contribute to good classification of mood states of rowing athletes, and would be informative to psychological adjustment of athletes.
文摘A novel read channel for signal waveform modulation multi-level disc is presented in this paper. This read channel employs timing recovery system and partial response maximum likelihood detector. Compared to the previous read channel composed of level detection and run-length detection, the present read channel shows superiority in capacity increase and robust performance. Especially, relying on the partial response maximum likelihood detection, lower bit error rate can be obtained.
基金Project supported by the National Natural Science Foundation of China(Grant No.61127010)
文摘In this paper, we describe an improved adaptive partial response maximum likelihood (PRML) method combining modulation code tbr signal waveform modulation multi-level disc. This improved adaptive PRML method employs partial response equalizer and adaptive viterbi detector combining modulation code. Compared with the traditional adaptive PRML detector, the improved PRML detector additionally employs illogical sequence detector and corrector. Illogical sequence detector and corrector can aw)id the appearance of illogical sequences effectively, which do not follow the law of modulation code for signal waveform modulation multi-level disc, and obtain the correct sequences. We implement the improved PRML detector using a DSP and an FPGA chip. The experimental results show good performance. The higher efficient and lower complexity can be obtained by using the improved PRML method than by using the previous PRML method. Meanwhile, resource utilization of the improved PRML detector is not changed, but the bit error rate (BER) is reduced by more than 20%.
文摘New positioning applications’ availability requirements demand receivers with higher sensitivities and ability to process multiple GNSS signals. Possible applications include acquiring one signal per GNSS constellation in the same frequency band and combining them for increased sensitivity or predicting acquisition of other signals. Frequency domain processing can be used for this purpose, since it benefits from parallel processing capabilities of Fast Fourier Transform (FFT), which can be efficiently implemented in software receivers. On the other hand, long coherent integration times are mainly limited due to large FFT size in receivers using frequency domain techniques. A new method is proposed to address the problems in frequency domain receivers without compromising the resources and execution time. A pre-correlation accumulation (PCA) is proposed to partition the received samples into one-code-period blocks, and to sum them together. As a result, the noise is averaged out and the correlation results will gain more power, provided that the relative phase between the data segments is compensated for. In addition to simplicity, the proposed PCA method enables the use of one-size FFT for all integration times. A post-correlation peak combination is also proposed to remove the need for double buffering. The proposed methods are implemented in a configurable Simulink model, developed for acquiring recorded GNSS signals. For weak signal scenarios, a Spirent GPS simulator is used as a source. Acquisition results for GPS L1 C/A and GLONASS L1OF are shown and the performance of the proposed technique is discussed. The proposed techniques target GNSS receivers using frequency domain processing aiming at accommodating all the GNSS signals, while minimizing resource usage. They also apply to weak signal acquisition in frequency domain to answer the availability demand of today’s GNSS positioning applications.
文摘Higher order statistical features have been recently proved to be very efficient in the classification of wideband communications and radar signals with great accuracy. On the other hand, the denoising properties of the wavelet transform make WT an efficient signal processing tool in noisy environments. A novel technique for the classification of multi-user chirp modulation signals is presented in this paper. A combination of the higher order moments and cumulants of the wavelet coefficients as well as the peaks of the bispectrum and its bi-frequencies are proposed as effective features. Different types of artificial intelligence based classifiers and clustering techniques are used to identify the chirp signals of the different users. In particular, neural networks (NN), maximum likelihood (ML), k-nearest neighbor (KNN) and support vector machine (SVMs) classifiers as well as fuzzy c-means (FCM) and fuzzy k-means (FKM) clustering techniques are tested. The Simulation results show that the proposed technique is able to efficiently classify the different chirp signals in additive white Gaussian noise (AWGN) channels with high accuracy. It is shown that the NN classifier outperforms other classifiers. Also, the simulations prove that the classification based on features extracted from wavelet transform results in more accurate results than that using features directly extracted from the chirp signals, especially at low values of signal-to-noise ratios.