Nanoscale sliding contacts of smooth surfaces or between a single asperity and a smooth surface have been widely investigated by molecular dynamics simulations, while there are few studies on the sliding contacts betw...Nanoscale sliding contacts of smooth surfaces or between a single asperity and a smooth surface have been widely investigated by molecular dynamics simulations, while there are few studies on the sliding contacts between two rough surfaces. Actually, the friction of two rough surfaces considering interactions between more asperities should be more realistic. By using multiscale method, friction characteristics of two dimensional nanoscale sliding contacts between rigid multi-asperity tips and elastic textured surfaces are investigated. Four nanoscale textured surfaces with different texture shapes are designed, and six multi-asperity tips composed of cylindrical asperities with different radii are used to slide on the textured surfaces. Friction forces are compared for different tips, and effects of the asperity radii on the friction characteristics are investigated. Average friction forces for all the cases are listed and compared, and effects of texture shapes of the textured surfaces are discussed. The results show that textured surface II has a better structure to reduce friction forces. The multi-asperity tips composed of asperities with R=20r0 (r0=0.227 7 nm) or R=30r0 get higher friction forces compared with other cases, and more atoms of the textured surfaces are taken away by these two tips, which are harmful to reduce friction or wear. For the case of R=10ro, friction forces are also high due to large contact areas, but the sliding processes are stable and few atoms are taken away by the tip. The proposed research considers interactions between more asperities to make the model approach to the real sliding contact problems. The results will help to vary or even control friction characteristics by textured surfaces, or provide references to the design of textured surfaces.展开更多
To obtain large-volume non-thermal arc plasma(NTAP), a multiple NTAP generator with three pairs of electrodes has been developed. The arc plasma characteristics, including dynamic process, spatial distribution, and ro...To obtain large-volume non-thermal arc plasma(NTAP), a multiple NTAP generator with three pairs of electrodes has been developed. The arc plasma characteristics, including dynamic process, spatial distribution, and rotation velocity in the discharge zone, were investigated by high speed photograph and image processing methods. The results showed that the dynamic behaviors and spatial distribution of the arc plasma were strongly related to the electrode configuration.A swirl flow of multi-arc plasma was formed by adjusting the electrode configuration, and a steady luminance area was clearly observed in the center of the discharge zone. Moreover, the size of the luminance area increased by decreasing the gas flow rate. The electrical connection in series could be formed between/among these arc columns with their respective driving power supplies in the multi-arc dynamic evolution process. An approximately periodical process of acceleration and deceleration of the arc rotation velocity was observed in the multi-arc generator with swirl flow configuration. In general, the mean velocity of arc rotation was higher in the multi-arc generator with swirl flow configuration when a pair of electrodes driven by a power supply were opposite to each other rather than adjacent.展开更多
A. Ennaoui proposed that FeS2 owns an appropriate band gap (0.95 eV) and large absorption coefficient, it can be used for solar materials. People had studied the light absorption characteristics of the FeS2 prepared b...A. Ennaoui proposed that FeS2 owns an appropriate band gap (0.95 eV) and large absorption coefficient, it can be used for solar materials. People had studied the light absorption characteristics of the FeS2 prepared by different methods, and believed that crystal grain size, defect density and crystalline quality are important factors that affect the light absorption properties. In order to take a depth study of the absorption properties, the research group has taken a study on light absorption characteristics of natural pyrite, the existence of Co, Ni impurities results in lower band gap and conversion efficiency.展开更多
Based on multi-body system theory and the mainshafl system of precision NC lathe as object investigated, it is treated as a coupled rigid-flexible multi-body system which is made up of some rigid and elastic bodies in...Based on multi-body system theory and the mainshafl system of precision NC lathe as object investigated, it is treated as a coupled rigid-flexible multi-body system which is made up of some rigid and elastic bodies in an especial linking mode. And a dynamic model is established, The problems of computing vibration characteristics are resolved by using multi-body system transfer matrix method, Resutts show that the mainshaft system of NC lathe is in the stable and reliable working area all the time. The method is simple and easy, the idea is clear. In addition, the method can be easily used and popularized in the other multi-body system.展开更多
As a preliminary step in the nonlinear design of shape memory alloy(SMA) composite structures,the force-displacement characteristics of the SMA layer are studied.The bilinear hysteretic model is adopted to describe ...As a preliminary step in the nonlinear design of shape memory alloy(SMA) composite structures,the force-displacement characteristics of the SMA layer are studied.The bilinear hysteretic model is adopted to describe the constitutive relationship of SMA material.Under the assumption that there is no point of SMA layer finishing martensitic phase transformation during the loading and unloading process,the generalized restoring force generated by SMA layer is deduced for the case that the simply supported beam vibrates in its first mode.The generalized force is expressed as piecewise-nonlinear hysteretic function of the beam transverse displacement.Furthermore the energy dissipated by SMA layer during one period is obtained by integration,then its dependencies are discussed on the vibration amplitude and the SMA's strain(Ms-Strain) value at the beginning of martensitic phase transformation.It is shown that SMA's energy dissipating capacity is proportional to the stiffness difference of bilinear model and nonlinearly dependent on Ms-Strain.The increasing rate of the dissipating capacity gradually reduces with the amplitude increasing.The condition corresponding to the maximum dissipating capacity is deduced for given value of the vibration amplitude.The obtained results are helpful for designing beams laminated with shape memory alloys.展开更多
In this paper, the magnetic-elastic-plastic deformation behavior is studied for a ferromagnetic plate with simple supports. The perturbation formula of magnetic force is first derived based on the perturbation techniq...In this paper, the magnetic-elastic-plastic deformation behavior is studied for a ferromagnetic plate with simple supports. The perturbation formula of magnetic force is first derived based on the perturbation technique, and is then applied to the analysis of deformation characteristics with emphasis laid on the analyses of modes, symmetry of deformation and influences of incident angle of applied magnetic field on the plate deformation. The theoretical analyses offer explanations why the configuration offer- romagnetic rectangular plate with simple supports under an oblique magnetic field is in-wavy type along the x-direction, and why the largest deformation of the ferromagnetic plate occurs at the incident angle of 45°for the magnetic field. A numerical code based on the finite element method is developed to simulate quantitatively behaviors of the nonlinearly coupled multi-field problem. Some characteristic curves are plotted to illustrate the magneto--elastic-plastic deflections, and to reveal how the deflections can be influenced by the incident angle of applied magnetic field. The deformation characteristics obtained from the numerical simulations are found in good agreement with the theoretical analyses.展开更多
In order to investigate the change of ecological characteristics due to the decrease of COD/SO_4^(2-) ratio during sulfate reduction, continuous-flew tests were conducted in an acidogenic sulfate-reducing reactor with...In order to investigate the change of ecological characteristics due to the decrease of COD/SO_4^(2-) ratio during sulfate reduction, continuous-flew tests were conducted in an acidogenic sulfate-reducing reactor with molasses wastewater as sole organic carbon source and sodium snlfate as electron acceptor, and the change of pH value, oxidation reduction potential (ORP), volatile fat acids (VFAs), alkalinity (ALK) and the predominant populations with COD/SO_4^(2-) ratio decreasing from 4.2 to 2.0 were investigated. The experimental results demonstrated that, with decreasing COD/SO_4^(2-) ratio, ORP and ALK increased, pH value decreased, and the proportion of acetic acid in terminal products decreased significantly, and a stable -type microbial community with high COD/SO_4^(2-) ratio was converted into a sub -stable -type one with low COD/SO_4^(2-) ratio.展开更多
Based on the study of natural gas resource, low buried hill trap formation mechanism, high quality reservoir control factors and natural gas preservation conditions, the formation conditions and reservoir accumulation...Based on the study of natural gas resource, low buried hill trap formation mechanism, high quality reservoir control factors and natural gas preservation conditions, the formation conditions and reservoir accumulation characteristics of Bozhong 19-6 large condensate gas field were summarized. Large gas generation potential of multiple sets of thick humic-sapropelic source rocks in high maturity stage in Bozhong depression was the basis of large gas field formation. The multi-stage tectonic evolution since Indosinian period formed large-scale buried hill traps. The Tanlu fault activity formed multi-type reservoirs, and buried hill metamorphic rock of Archean and sand-conglomerate of Kongdian Formation were high-quality reservoirs. Thick overpressure lacustrine mudstone and weak neotectonic movement provided good preservation conditions. Bozhong 19-6 gas reservoir was a condensate gas reservoir with very high condensate oil content, and the gas origin was humic-sapropelic and kerogen-cracking gas, and the gas field had large gas thickness, high gas column characteristics and the accumulation process was first oil and then gas. The buried hill reservoir was a massive reservoir and the Kongdian reservoir was a stratified reservoir. The gas field had multi-channel hydrocarbon intense charge from overpressure source rocks, atmospheric-weak overpressure reservoir favorable for accumulation, thick overpressure mudstone caprock favorable for preservation, and natural gas ultra-late rapid accumulation model.展开更多
BACKGROUND: The various combination of multiphase enhancement multislice spiral CT (MSCT) makes the diagno- sis of a small hepatocellular carcinoma (sHCC) on the back- ground of liver cirrhosis possible. This stu...BACKGROUND: The various combination of multiphase enhancement multislice spiral CT (MSCT) makes the diagno- sis of a small hepatocellular carcinoma (sHCC) on the back- ground of liver cirrhosis possible. This study was to explore whether the combination of MSCT enhancement scan and alpha-fetoprotein (AFP) level ficiency for sHCC. could increase the diagnostic ef- METHODS: This study included 35 sHCC patients and 52 cir- rhotic patients without image evidence of HCC as a control group. The diagnoses were made by three radiologists em- ploying a 5-point rating scale, with postoperative pathologic results as the gold standard. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diag- nostic value of the three MSCT combination modes (arterial phase+portal-venous phase, arterial phase+delayed phase, arterial phase+portal-venous phase+delayed phase) and AFP levels for sHCC on the background of liver cirrhosis. RESULTS: The area under ROC curve (AUC), sensitivity, and specificity of the combination of arterial phase+portal- venous phase+delayed phase were 0.93, 93%, and 82%, respectively. The average AUC of the arterial phase+portal- venous phase+delayed phase combination was significantly greater than that of the arterial phase+portal-venous phase (AUC=0.84, P=0.01) and arterial phase+delayed phase (AUC=0.85, P=0.03). Arterial phase+portal-venous phase had a smaller AUC (0.84) than arterial phase+delayed phase (0.85), but the difference was insignificant (P=0.15). After combining MSCT enhancement scan with AFP, the AUC, sensitivity, and specificity were 0.95, 94%, and 83%, respectively, indicating a greatly increased diagnostic efficiency for sHCC. CONCLUSIONS: The combination of AFP and 3 phases MSCT enhancement scan could increase the diagnostic efficiency for sHCC on the background of liver cirrhosis. The application of ROC curve analysis has provided a new method and reference in HCC diagnosis.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.51205313,50975232)111 Project(Grant No.B13044)Northwestern Polytechnical University Foundation for Fundamental Research,China(Grant No.JC20110249)
文摘Nanoscale sliding contacts of smooth surfaces or between a single asperity and a smooth surface have been widely investigated by molecular dynamics simulations, while there are few studies on the sliding contacts between two rough surfaces. Actually, the friction of two rough surfaces considering interactions between more asperities should be more realistic. By using multiscale method, friction characteristics of two dimensional nanoscale sliding contacts between rigid multi-asperity tips and elastic textured surfaces are investigated. Four nanoscale textured surfaces with different texture shapes are designed, and six multi-asperity tips composed of cylindrical asperities with different radii are used to slide on the textured surfaces. Friction forces are compared for different tips, and effects of the asperity radii on the friction characteristics are investigated. Average friction forces for all the cases are listed and compared, and effects of texture shapes of the textured surfaces are discussed. The results show that textured surface II has a better structure to reduce friction forces. The multi-asperity tips composed of asperities with R=20r0 (r0=0.227 7 nm) or R=30r0 get higher friction forces compared with other cases, and more atoms of the textured surfaces are taken away by these two tips, which are harmful to reduce friction or wear. For the case of R=10ro, friction forces are also high due to large contact areas, but the sliding processes are stable and few atoms are taken away by the tip. The proposed research considers interactions between more asperities to make the model approach to the real sliding contact problems. The results will help to vary or even control friction characteristics by textured surfaces, or provide references to the design of textured surfaces.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11875295 and 11535003)Provincial Science and Technology Major Project of Anhui Province,China(Grant No.17030801035)Key Program of 13th Five-year Plan,CASHIPS,China(Grant No.KP-2017-25)
文摘To obtain large-volume non-thermal arc plasma(NTAP), a multiple NTAP generator with three pairs of electrodes has been developed. The arc plasma characteristics, including dynamic process, spatial distribution, and rotation velocity in the discharge zone, were investigated by high speed photograph and image processing methods. The results showed that the dynamic behaviors and spatial distribution of the arc plasma were strongly related to the electrode configuration.A swirl flow of multi-arc plasma was formed by adjusting the electrode configuration, and a steady luminance area was clearly observed in the center of the discharge zone. Moreover, the size of the luminance area increased by decreasing the gas flow rate. The electrical connection in series could be formed between/among these arc columns with their respective driving power supplies in the multi-arc dynamic evolution process. An approximately periodical process of acceleration and deceleration of the arc rotation velocity was observed in the multi-arc generator with swirl flow configuration. In general, the mean velocity of arc rotation was higher in the multi-arc generator with swirl flow configuration when a pair of electrodes driven by a power supply were opposite to each other rather than adjacent.
基金Supported by National Natural Science Foundation (Grant No.:40872045 41172047)The Opening Project of Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education (12zxgk01)
文摘A. Ennaoui proposed that FeS2 owns an appropriate band gap (0.95 eV) and large absorption coefficient, it can be used for solar materials. People had studied the light absorption characteristics of the FeS2 prepared by different methods, and believed that crystal grain size, defect density and crystalline quality are important factors that affect the light absorption properties. In order to take a depth study of the absorption properties, the research group has taken a study on light absorption characteristics of natural pyrite, the existence of Co, Ni impurities results in lower band gap and conversion efficiency.
基金This project is supported by National Natural Science Foundation of China (No.50375026)Provincial Fifteen Great Public Bidding Items of Jiangsu (No.BE2001068).
文摘Based on multi-body system theory and the mainshafl system of precision NC lathe as object investigated, it is treated as a coupled rigid-flexible multi-body system which is made up of some rigid and elastic bodies in an especial linking mode. And a dynamic model is established, The problems of computing vibration characteristics are resolved by using multi-body system transfer matrix method, Resutts show that the mainshaft system of NC lathe is in the stable and reliable working area all the time. The method is simple and easy, the idea is clear. In addition, the method can be easily used and popularized in the other multi-body system.
基金supported by the National Natural Science Foundation of China (10872142 and 10632040)New Century Excellent Talents in University of China (NCET-05-0247)the Key Program of the Natural Science Foundation of Tianjin (09JCZDJ26800)
文摘As a preliminary step in the nonlinear design of shape memory alloy(SMA) composite structures,the force-displacement characteristics of the SMA layer are studied.The bilinear hysteretic model is adopted to describe the constitutive relationship of SMA material.Under the assumption that there is no point of SMA layer finishing martensitic phase transformation during the loading and unloading process,the generalized restoring force generated by SMA layer is deduced for the case that the simply supported beam vibrates in its first mode.The generalized force is expressed as piecewise-nonlinear hysteretic function of the beam transverse displacement.Furthermore the energy dissipated by SMA layer during one period is obtained by integration,then its dependencies are discussed on the vibration amplitude and the SMA's strain(Ms-Strain) value at the beginning of martensitic phase transformation.It is shown that SMA's energy dissipating capacity is proportional to the stiffness difference of bilinear model and nonlinearly dependent on Ms-Strain.The increasing rate of the dissipating capacity gradually reduces with the amplitude increasing.The condition corresponding to the maximum dissipating capacity is deduced for given value of the vibration amplitude.The obtained results are helpful for designing beams laminated with shape memory alloys.
基金the National Natural Science Foundation of China (10672070, 10302009)the National Basic Research Program of China (2007CB607560)+1 种基金the Program for New Century Talented (NCET-06-0896) the Natural Science Fund of Gansu Province
文摘In this paper, the magnetic-elastic-plastic deformation behavior is studied for a ferromagnetic plate with simple supports. The perturbation formula of magnetic force is first derived based on the perturbation technique, and is then applied to the analysis of deformation characteristics with emphasis laid on the analyses of modes, symmetry of deformation and influences of incident angle of applied magnetic field on the plate deformation. The theoretical analyses offer explanations why the configuration offer- romagnetic rectangular plate with simple supports under an oblique magnetic field is in-wavy type along the x-direction, and why the largest deformation of the ferromagnetic plate occurs at the incident angle of 45°for the magnetic field. A numerical code based on the finite element method is developed to simulate quantitatively behaviors of the nonlinearly coupled multi-field problem. Some characteristic curves are plotted to illustrate the magneto--elastic-plastic deflections, and to reveal how the deflections can be influenced by the incident angle of applied magnetic field. The deformation characteristics obtained from the numerical simulations are found in good agreement with the theoretical analyses.
基金Sponsored by the National Natural Science Foundation of China(Grant No. 50208006)the Scientific Research Foundation of Harbin Institute of Technology(Grant No. HIT. 2001.51)
文摘In order to investigate the change of ecological characteristics due to the decrease of COD/SO_4^(2-) ratio during sulfate reduction, continuous-flew tests were conducted in an acidogenic sulfate-reducing reactor with molasses wastewater as sole organic carbon source and sodium snlfate as electron acceptor, and the change of pH value, oxidation reduction potential (ORP), volatile fat acids (VFAs), alkalinity (ALK) and the predominant populations with COD/SO_4^(2-) ratio decreasing from 4.2 to 2.0 were investigated. The experimental results demonstrated that, with decreasing COD/SO_4^(2-) ratio, ORP and ALK increased, pH value decreased, and the proportion of acetic acid in terminal products decreased significantly, and a stable -type microbial community with high COD/SO_4^(2-) ratio was converted into a sub -stable -type one with low COD/SO_4^(2-) ratio.
基金Supported by the China National Science and Technology Major Project(2016ZX05024-003-001)
文摘Based on the study of natural gas resource, low buried hill trap formation mechanism, high quality reservoir control factors and natural gas preservation conditions, the formation conditions and reservoir accumulation characteristics of Bozhong 19-6 large condensate gas field were summarized. Large gas generation potential of multiple sets of thick humic-sapropelic source rocks in high maturity stage in Bozhong depression was the basis of large gas field formation. The multi-stage tectonic evolution since Indosinian period formed large-scale buried hill traps. The Tanlu fault activity formed multi-type reservoirs, and buried hill metamorphic rock of Archean and sand-conglomerate of Kongdian Formation were high-quality reservoirs. Thick overpressure lacustrine mudstone and weak neotectonic movement provided good preservation conditions. Bozhong 19-6 gas reservoir was a condensate gas reservoir with very high condensate oil content, and the gas origin was humic-sapropelic and kerogen-cracking gas, and the gas field had large gas thickness, high gas column characteristics and the accumulation process was first oil and then gas. The buried hill reservoir was a massive reservoir and the Kongdian reservoir was a stratified reservoir. The gas field had multi-channel hydrocarbon intense charge from overpressure source rocks, atmospheric-weak overpressure reservoir favorable for accumulation, thick overpressure mudstone caprock favorable for preservation, and natural gas ultra-late rapid accumulation model.
基金supported by grants from the National Natural Science Foundation of China(81301275,81471736 and 81671760)the National Science and Technology Pillar Program during the Twelfth Five-Year Plan Period(2015BAI01B09)Heilongjiang Province Foundation for Returness(LC2013C38)
文摘BACKGROUND: The various combination of multiphase enhancement multislice spiral CT (MSCT) makes the diagno- sis of a small hepatocellular carcinoma (sHCC) on the back- ground of liver cirrhosis possible. This study was to explore whether the combination of MSCT enhancement scan and alpha-fetoprotein (AFP) level ficiency for sHCC. could increase the diagnostic ef- METHODS: This study included 35 sHCC patients and 52 cir- rhotic patients without image evidence of HCC as a control group. The diagnoses were made by three radiologists em- ploying a 5-point rating scale, with postoperative pathologic results as the gold standard. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diag- nostic value of the three MSCT combination modes (arterial phase+portal-venous phase, arterial phase+delayed phase, arterial phase+portal-venous phase+delayed phase) and AFP levels for sHCC on the background of liver cirrhosis. RESULTS: The area under ROC curve (AUC), sensitivity, and specificity of the combination of arterial phase+portal- venous phase+delayed phase were 0.93, 93%, and 82%, respectively. The average AUC of the arterial phase+portal- venous phase+delayed phase combination was significantly greater than that of the arterial phase+portal-venous phase (AUC=0.84, P=0.01) and arterial phase+delayed phase (AUC=0.85, P=0.03). Arterial phase+portal-venous phase had a smaller AUC (0.84) than arterial phase+delayed phase (0.85), but the difference was insignificant (P=0.15). After combining MSCT enhancement scan with AFP, the AUC, sensitivity, and specificity were 0.95, 94%, and 83%, respectively, indicating a greatly increased diagnostic efficiency for sHCC. CONCLUSIONS: The combination of AFP and 3 phases MSCT enhancement scan could increase the diagnostic efficiency for sHCC on the background of liver cirrhosis. The application of ROC curve analysis has provided a new method and reference in HCC diagnosis.