In this paper the algebraic multi-grid principle is applied to the multilevel moment method, which makes the new multilevel method easier to implement and more adaptive to structure. Moreover, the error spectrum is an...In this paper the algebraic multi-grid principle is applied to the multilevel moment method, which makes the new multilevel method easier to implement and more adaptive to structure. Moreover, the error spectrum is analyzed, and the reason why conjugate gradient iteration is not a good relaxation scheme for multi-grid algorithm is explored. The numerical results show that our algebraic block Gauss Seidel multi-grid algorithm is very effective.展开更多
The multi-grid method has been known as an efficient iterative method for the linear systems and nonlinear systems that arise from finite difference approximations for partial differential equations. In this paper, th...The multi-grid method has been known as an efficient iterative method for the linear systems and nonlinear systems that arise from finite difference approximations for partial differential equations. In this paper, the multigrid method is extended to the application of solving integral equations which appear in electromagnetic scattering problems. The diakoptic theory is used for this purpose. Compared with other methods, the numerical results show that the multigrid method is powerful to solve electromagnetic scattering problems and can be used to compute electromagnetic scattering problems with electrically large bodies and complex structures.展开更多
A hybrid Cartesian grid/gridless method is developed for calculating viscous flows over multi-element airfoils.The method adopts an unstructured Cartesian grid to cover most areas of the computational domain and leave...A hybrid Cartesian grid/gridless method is developed for calculating viscous flows over multi-element airfoils.The method adopts an unstructured Cartesian grid to cover most areas of the computational domain and leaves only small region adjacent to the aerodynamic bodies to be filled with the cloud of points used in the gridless methods,which results in a better combination of the computational efficiency of the Cartesian grid and the flexibility of the gridless method in handling complex geometries.The clouds of points in the local gridless region are implemented in an anisotropic way according to the features of the thin boundary layer of the viscous flows over the airfoils,and the clouds of points at the vicinity of the interface between the grid and the gridless regions are also controlled by using an adaptive refinement technique during the generation of the unstructured Cartesian grid.An implementation of the resulting hybrid method is presented for solving two-dimensional compressible Navier-Stokes(NS)equations.The simulations of the viscous flows over a RAE2822airfoil or a two-element airfoil are successfully carried out,and the obtained results agree well with the available experimental data.展开更多
This paper proposes a hybrid vertex-centered fi- nite volume/finite element method for solution of the two di- mensional (2D) incompressible Navier-Stokes equations on unstructured grids. An incremental pressure fra...This paper proposes a hybrid vertex-centered fi- nite volume/finite element method for solution of the two di- mensional (2D) incompressible Navier-Stokes equations on unstructured grids. An incremental pressure fractional step method is adopted to handle the velocity-pressure coupling. The velocity and the pressure are collocated at the node of the vertex-centered control volume which is formed by join- ing the centroid of cells sharing the common vertex. For the temporal integration of the momentum equations, an im- plicit second-order scheme is utilized to enhance the com- putational stability and eliminate the time step limit due to the diffusion term. The momentum equations are discretized by the vertex-centered finite volume method (FVM) and the pressure Poisson equation is solved by the Galerkin finite el- ement method (FEM). The momentum interpolation is used to damp out the spurious pressure wiggles. The test case with analytical solutions demonstrates second-order accuracy of the current hybrid scheme in time and space for both veloc- ity and pressure. The classic test cases, the lid-driven cavity flow, the skew cavity flow and the backward-facing step flow, show that numerical results are in good agreement with the published benchmark solutions.展开更多
Level set methods are widely used for predicting evolutions of complex free surface topologies,such as the crystal and crack growth,bubbles and droplets deformation,spilling and breaking waves,and two-phase flow pheno...Level set methods are widely used for predicting evolutions of complex free surface topologies,such as the crystal and crack growth,bubbles and droplets deformation,spilling and breaking waves,and two-phase flow phenomena.This paper presents a characteristic level set equation which is derived from the two-dimensional level set equation by using the characteristic-based scheme.An explicit finite volume element method is developed to discretize the equation on triangular grids.Several examples are presented to demonstrate the performance of the proposed method for calculating interface evolutions in time.The proposed level set method is also coupled with the Navier-Stokes equations for two-phase immiscible incompressible flow analysis with surface tension.The Rayleigh-Taylor instability problem is used to test and evaluate the effectiveness of the proposed scheme.展开更多
采用由两方程k-ω模式推导得到的k-g模式数值模拟完整飞机构形的跨声速大迎角流场。由于k-g模式具有勿需使用到物面的法向距离、简单的源项和直接的边界条件等特点,可以方便地推广到包含复杂外形的多块网格系统。与雷诺平均N av ier-S t...采用由两方程k-ω模式推导得到的k-g模式数值模拟完整飞机构形的跨声速大迎角流场。由于k-g模式具有勿需使用到物面的法向距离、简单的源项和直接的边界条件等特点,可以方便地推广到包含复杂外形的多块网格系统。与雷诺平均N av ier-S tokes方程组的求解方法类似,k-g模式方程也采用显式R unge-K u tta方法进行时间推进,用中心加人工粘性格式进行空间离散。采用相同的方法数值模拟NA SA TN D-712翼身组合体标模迎角为12.5°和26.2°的流场来检验程序的可靠性,与可获得的实验数据进行对比分析并获得满意结果。与此同时,还使用了B a ldw in-Lom ax代数模式以作比较。展开更多
How the outer substance could penetrate through the skin lies in the stratum corneum, because it is the main barrier in the multi-layers of the skin. Supposing the keratin cell with a special geometry as tetrakaidecah...How the outer substance could penetrate through the skin lies in the stratum corneum, because it is the main barrier in the multi-layers of the skin. Supposing the keratin cell with a special geometry as tetrakaidecahedron, the penetration property of stratum corneum was the key problem which was numerically simulated with finite element method. At first the discretization of the stratum corneum region was given in two steps: first, the discretization of the keratin cell; second, the discretization of fattiness that surrounds the keratin. Then there was the work of numerical simulation. In this procedure, the finite element method and the multi-grid method were used. The former was to obtain the discretization of basic elements; the latter was to decrease the high frequency error. At last the visualization of the numerical simulation was shown.展开更多
This paper describes a numerical simulation in the Amazon water system, aiming to develop a quasi-three-dimensional numerical tool for refined modeling of turbulent flow and passive transport of mass in natural waters...This paper describes a numerical simulation in the Amazon water system, aiming to develop a quasi-three-dimensional numerical tool for refined modeling of turbulent flow and passive transport of mass in natural waters. Three depth-averaged two-equation turbulence closure models, k-ε,k-w, and k-w, were used to close the non-simplified quasi-three-dimensional hydrodynamic fundamental governing equations. The discretized equations were solved with the advanced multi-grid iterative method using non-orthogonal body-fitted coarse and fine grids with collocated variable arrangement. Except for steady flow computation, the processes of contaminant inpouring and plume development at the beginning of discharge, caused by a side-discharge of a tributary, have also been numerically investigated. The three depth-averaged two-equation closure models are all suitable for modeling strong mixing turbulence. The newly established turbulence models such as the k-w model, with a higher order of magnitude of the turbulence parameter, provide a possibility for improving computational precision.展开更多
基金Supported by the Natlonal Natural Science Foundation of China
文摘In this paper the algebraic multi-grid principle is applied to the multilevel moment method, which makes the new multilevel method easier to implement and more adaptive to structure. Moreover, the error spectrum is analyzed, and the reason why conjugate gradient iteration is not a good relaxation scheme for multi-grid algorithm is explored. The numerical results show that our algebraic block Gauss Seidel multi-grid algorithm is very effective.
文摘The multi-grid method has been known as an efficient iterative method for the linear systems and nonlinear systems that arise from finite difference approximations for partial differential equations. In this paper, the multigrid method is extended to the application of solving integral equations which appear in electromagnetic scattering problems. The diakoptic theory is used for this purpose. Compared with other methods, the numerical results show that the multigrid method is powerful to solve electromagnetic scattering problems and can be used to compute electromagnetic scattering problems with electrically large bodies and complex structures.
基金Supported by the National Natural Science Foundation of China(11172134)the Funding of Jiangsu Innovation Program for Graduate Education(CXZZ110192)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘A hybrid Cartesian grid/gridless method is developed for calculating viscous flows over multi-element airfoils.The method adopts an unstructured Cartesian grid to cover most areas of the computational domain and leaves only small region adjacent to the aerodynamic bodies to be filled with the cloud of points used in the gridless methods,which results in a better combination of the computational efficiency of the Cartesian grid and the flexibility of the gridless method in handling complex geometries.The clouds of points in the local gridless region are implemented in an anisotropic way according to the features of the thin boundary layer of the viscous flows over the airfoils,and the clouds of points at the vicinity of the interface between the grid and the gridless regions are also controlled by using an adaptive refinement technique during the generation of the unstructured Cartesian grid.An implementation of the resulting hybrid method is presented for solving two-dimensional compressible Navier-Stokes(NS)equations.The simulations of the viscous flows over a RAE2822airfoil or a two-element airfoil are successfully carried out,and the obtained results agree well with the available experimental data.
基金supported by the Natural Science Foundation of China (11061021)the Program of Higher-level talents of Inner Mongolia University (SPH-IMU,Z200901004)the Scientific Research Projection of Higher Schools of Inner Mongolia(NJ10016,NJ10006)
文摘This paper proposes a hybrid vertex-centered fi- nite volume/finite element method for solution of the two di- mensional (2D) incompressible Navier-Stokes equations on unstructured grids. An incremental pressure fractional step method is adopted to handle the velocity-pressure coupling. The velocity and the pressure are collocated at the node of the vertex-centered control volume which is formed by join- ing the centroid of cells sharing the common vertex. For the temporal integration of the momentum equations, an im- plicit second-order scheme is utilized to enhance the com- putational stability and eliminate the time step limit due to the diffusion term. The momentum equations are discretized by the vertex-centered finite volume method (FVM) and the pressure Poisson equation is solved by the Galerkin finite el- ement method (FEM). The momentum interpolation is used to damp out the spurious pressure wiggles. The test case with analytical solutions demonstrates second-order accuracy of the current hybrid scheme in time and space for both veloc- ity and pressure. The classic test cases, the lid-driven cavity flow, the skew cavity flow and the backward-facing step flow, show that numerical results are in good agreement with the published benchmark solutions.
基金King Mongkut’s University of Technology North Bangkok (KMUTNB)the Office of the Higher Education Commission (OHEC)the National Metal and Materials Technology Center (MTEC) for supporting this research work
文摘Level set methods are widely used for predicting evolutions of complex free surface topologies,such as the crystal and crack growth,bubbles and droplets deformation,spilling and breaking waves,and two-phase flow phenomena.This paper presents a characteristic level set equation which is derived from the two-dimensional level set equation by using the characteristic-based scheme.An explicit finite volume element method is developed to discretize the equation on triangular grids.Several examples are presented to demonstrate the performance of the proposed method for calculating interface evolutions in time.The proposed level set method is also coupled with the Navier-Stokes equations for two-phase immiscible incompressible flow analysis with surface tension.The Rayleigh-Taylor instability problem is used to test and evaluate the effectiveness of the proposed scheme.
文摘采用由两方程k-ω模式推导得到的k-g模式数值模拟完整飞机构形的跨声速大迎角流场。由于k-g模式具有勿需使用到物面的法向距离、简单的源项和直接的边界条件等特点,可以方便地推广到包含复杂外形的多块网格系统。与雷诺平均N av ier-S tokes方程组的求解方法类似,k-g模式方程也采用显式R unge-K u tta方法进行时间推进,用中心加人工粘性格式进行空间离散。采用相同的方法数值模拟NA SA TN D-712翼身组合体标模迎角为12.5°和26.2°的流场来检验程序的可靠性,与可获得的实验数据进行对比分析并获得满意结果。与此同时,还使用了B a ldw in-Lom ax代数模式以作比较。
文摘How the outer substance could penetrate through the skin lies in the stratum corneum, because it is the main barrier in the multi-layers of the skin. Supposing the keratin cell with a special geometry as tetrakaidecahedron, the penetration property of stratum corneum was the key problem which was numerically simulated with finite element method. At first the discretization of the stratum corneum region was given in two steps: first, the discretization of the keratin cell; second, the discretization of fattiness that surrounds the keratin. Then there was the work of numerical simulation. In this procedure, the finite element method and the multi-grid method were used. The former was to obtain the discretization of basic elements; the latter was to decrease the high frequency error. At last the visualization of the numerical simulation was shown.
基金supported by FAPESP (Foundation for Supporting Research in So Paulo State), Brazil, of the PIPE Project (Grant No. 2006/56475-3)
文摘This paper describes a numerical simulation in the Amazon water system, aiming to develop a quasi-three-dimensional numerical tool for refined modeling of turbulent flow and passive transport of mass in natural waters. Three depth-averaged two-equation turbulence closure models, k-ε,k-w, and k-w, were used to close the non-simplified quasi-three-dimensional hydrodynamic fundamental governing equations. The discretized equations were solved with the advanced multi-grid iterative method using non-orthogonal body-fitted coarse and fine grids with collocated variable arrangement. Except for steady flow computation, the processes of contaminant inpouring and plume development at the beginning of discharge, caused by a side-discharge of a tributary, have also been numerically investigated. The three depth-averaged two-equation closure models are all suitable for modeling strong mixing turbulence. The newly established turbulence models such as the k-w model, with a higher order of magnitude of the turbulence parameter, provide a possibility for improving computational precision.