To prepare Carbon/Carbon (C/C) composites with advanced performance, the thermal gradient chemical vapor infiltration (TCVI) process has been optimized by simulation. A 2D axisymmetric unstable model was built, which ...To prepare Carbon/Carbon (C/C) composites with advanced performance, the thermal gradient chemical vapor infiltration (TCVI) process has been optimized by simulation. A 2D axisymmetric unstable model was built, which included convection, conduction, diffusion, densification reactions in the pores and the evolution of the porous medium. The multi-physical field coupling model was solved by finite element method (FEM) and iterative calculation. The time evolution of the fluid, temperature and preform density field were obtained by the calculation. It is indicated that convection strongly affects the temperature field. For the preform of carbon/carbon composites infiltrated for 100 h by TCVI, the radial average densities from simulation agrees well with those from experiment. The model is validated to be reliable and the simulation has capability of forecasting the process.展开更多
提出了一种基于有限元法和有限体积法的变压器三维电磁-流体-温度场耦合分析方法。通过建立变压器三维模型,采用有限元法分析变压器内磁通密度分布,并求得变压器及绕组损耗。将变压器铁芯及绕组损耗作为热源,采用有限体积法求解变压器流...提出了一种基于有限元法和有限体积法的变压器三维电磁-流体-温度场耦合分析方法。通过建立变压器三维模型,采用有限元法分析变压器内磁通密度分布,并求得变压器及绕组损耗。将变压器铁芯及绕组损耗作为热源,采用有限体积法求解变压器流体-温度场,分析变压器内部油流及温度分布,同时根据温度场结果对变压器损耗进行修正,通过迭代求解变压器流体-温度场获取变压器内部最终温度分布结果,提高求解精度。采用所提方法对35 k V油浸式变压器进行三维电磁-流体-温度场分析,将结果与经验公式的热点温度计算结果进行对比,验证了所提方法的有效性和正确性。展开更多
基金Supported by the National Natural Science Foundation of China (Grant No. 90716024)
文摘To prepare Carbon/Carbon (C/C) composites with advanced performance, the thermal gradient chemical vapor infiltration (TCVI) process has been optimized by simulation. A 2D axisymmetric unstable model was built, which included convection, conduction, diffusion, densification reactions in the pores and the evolution of the porous medium. The multi-physical field coupling model was solved by finite element method (FEM) and iterative calculation. The time evolution of the fluid, temperature and preform density field were obtained by the calculation. It is indicated that convection strongly affects the temperature field. For the preform of carbon/carbon composites infiltrated for 100 h by TCVI, the radial average densities from simulation agrees well with those from experiment. The model is validated to be reliable and the simulation has capability of forecasting the process.
文摘提出了一种基于有限元法和有限体积法的变压器三维电磁-流体-温度场耦合分析方法。通过建立变压器三维模型,采用有限元法分析变压器内磁通密度分布,并求得变压器及绕组损耗。将变压器铁芯及绕组损耗作为热源,采用有限体积法求解变压器流体-温度场,分析变压器内部油流及温度分布,同时根据温度场结果对变压器损耗进行修正,通过迭代求解变压器流体-温度场获取变压器内部最终温度分布结果,提高求解精度。采用所提方法对35 k V油浸式变压器进行三维电磁-流体-温度场分析,将结果与经验公式的热点温度计算结果进行对比,验证了所提方法的有效性和正确性。