Mixture model based image segmentation method, which assumes that image pixels are independent and do not consider the position relationship between pixels, is not robust to noise and usually leads to misclassificatio...Mixture model based image segmentation method, which assumes that image pixels are independent and do not consider the position relationship between pixels, is not robust to noise and usually leads to misclassification. A new segmentation method, called multi-resolution Ganssian mixture model method, is proposed. First, an image pyramid is constructed and son-father link relationship is built between each level of pyramid. Then the mixture model segmentation method is applied to the top level. The segmentation result on the top level is passed top-down to the bottom level according to the son-father link relationship between levels. The proposed method considers not only local but also global information of image, it overcomes the effect of noise and can obtain better segmentation result. Experimental result demonstrates its effectiveness.展开更多
Timely crop acreage and distribution information are the basic data which drive many agriculture related applications.For identifying crop types based on remote sensing,methods using only a single image type have sign...Timely crop acreage and distribution information are the basic data which drive many agriculture related applications.For identifying crop types based on remote sensing,methods using only a single image type have significant limitations.Current research that integrates fine and coarser spatial resolution images,using techniques such as unmixing methods,regression models,and others,usually results in coarse resolution abundance without sufficient detail within pixels,and limited attention has been paid to the spatial relationship between the pixels from these two kinds of images.Here we propose a new solution to identify winter wheat by integrating spectral and temporal information derived from multi-resolution remote sensing data and determine the spatial distribution of sub-pixels within the coarse resolution pixels.Firstly,the membership of pixels which belong to winter wheat is calculated using a 25-m resolution resampled Landsat Thematic Mapper(TM)image based on the Bayesian equation.Then,the winter wheat abundance(acreage fraction in a pixel)is assessed by using a multiple regression model based on the unique temporal change features from moderate resolution imaging spectroradiometer(MODIS)time series data.Finally,winter wheat is identified by the proposed Abundance-Membership(AM)model based on the spatial relationship between the two types of pixels.Specifically,winter wheat is identified by comparing the spatially corresponding 10×10 membership pixels of each abundance pixel.In other words,this method takes advantage of the relative size of membership in a local space,rather than the absolute size in the entire study area.This method is tested in the major agricultural area of Yiluo Basin,China,and the results show that acreage accuracy(Aa)is 93.01%and sampling accuracy(As)is 91.40%.Confusion matrix shows that overall accuracy(OA)is 91.4%and the kappa coefficient(Kappa)is 0.755.These values are significantly improved compared to the traditional Maximum Likelihood classification(MLC)and Random Forest classification(RFC)which rely on spectral features.The results demonstrate that the identification accuracy can be improved by integrating spectral and temporal information.Since the identification of winter wheat is performed in the space corresponding to each MODIS pixel,the influence of differences of environmental conditions is greatly reduced.This advantage allows the proposed method to be effectively applied in other places.展开更多
Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artif...Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artifact suppression. We propose a multi-resolution dictionary learning(MRDL) model to solve this contradiction, and give a fast single image SR method based on the MRDL model. To obtain the MRDL model, we first extract multi-scale patches by using our proposed adaptive patch partition method(APPM). The APPM divides images into patches of different sizes according to their detail richness. Then, the multiresolution dictionary pairs, which contain structural primitives of various resolutions, can be trained from these multi-scale patches.Owing to the MRDL strategy, our SR algorithm not only recovers details well, with less jag and noise, but also significantly improves the computational efficiency. Experimental results validate that our algorithm performs better than other SR methods in evaluation metrics and visual perception.展开更多
We demonstrate the feasibility of simultancous multi-probe detection for an optcal-resolution photoacoustic microscopy(OR-PAM)system.OR-P AM has elicited the attention of biomedical imaging researchers because of its ...We demonstrate the feasibility of simultancous multi-probe detection for an optcal-resolution photoacoustic microscopy(OR-PAM)system.OR-P AM has elicited the attention of biomedical imaging researchers because of its optical absorption contrast and high spatial resolution with great imaging depth.OR-PAM allows label-free and noninvasive imaging by maximizing the optical absorption of endogenous biomolecules.However,given the inadequate absoption of some biomolcules,detection sensitivity at the same incident intensity requires improvement.In this study,a modulated continuous wave with power density less than 3mW/cm^(2)(1/4 of the ANSI safety limit)excited the weak photoacoustic(PA)signals of biological cells.A microcavity traneducer is developed based on the bulk modulus of gas five orders of magnitude lower than that of solid;air pressure variation is inversely proportional to cavity volume at the same temperature increase.Considering that a PA wave expands in various directions,detecting PA signals from different positions and adding them together can increase detection sensitivity and signal-to-noise ratio.Therefore,we employ four detectors to acquire tiny PA signals simul-taneously.Experimental results show that the developed OR-PAM system allows the label-free imaging of cells with weak optical absorption.展开更多
The acoustic vibration signal of tank is disassembled into the sum of intrinsic mode function (IMF) by multi-resolution empirical mode decomposition (EMD) method. The instantaneous frequency is obtained, and featu...The acoustic vibration signal of tank is disassembled into the sum of intrinsic mode function (IMF) by multi-resolution empirical mode decomposition (EMD) method. The instantaneous frequency is obtained, and feature transformation matrix is figured out by class scatter matrix. Multi- dimensional scale energy vector is mapped into low-dimensional eigenvector, and classification extraction is realized. This method sufficiently separates of different sound target features. The test result indicates that it is effective.展开更多
Sonar images have complex background, low contrast, and deteriorative edges; these characteristics make it difficult for researchers to dispose the sonar objects. The multi-resolution analysis represents the signals i...Sonar images have complex background, low contrast, and deteriorative edges; these characteristics make it difficult for researchers to dispose the sonar objects. The multi-resolution analysis represents the signals in different scales efficiently, which is widely used in image processing. Wavelets are successful in disposing point discontinuities in one dimension, but not in two dimensions. The finite Ridgelet transform (FRIT) deals efficiently with the singularity in high dimension. It presents three improved denoising approaches, which are based on FRIT and used in the sonar image disposal technique. By experiment and comparison with traditional methods, these approaches not only suppress the artifacts, but also obtain good effect in edge keeping and SNR of the sonar image denoising.展开更多
A conformal multi-resolution time-domain( CMRTD) method is presented for modeling curved objects. The effective dielectric constant and area weighting are used to derive the update equations of CMRTD. The backward sca...A conformal multi-resolution time-domain( CMRTD) method is presented for modeling curved objects. The effective dielectric constant and area weighting are used to derive the update equations of CMRTD. The backward scattering bistatic radar cross sections( RCS) of the dielectric cylinder and ellipsoid are used to validate the proposed method. The results show that the proposed conformal method is more accurate to deal with the complex curved objects in electromagnetic simulations.展开更多
Landslide susceptibility (LS) mapping is a requisite for safety against sediment related disasters, and considerable effort has been exerted in this discipline. However, the size heterogeneity and distribution of land...Landslide susceptibility (LS) mapping is a requisite for safety against sediment related disasters, and considerable effort has been exerted in this discipline. However, the size heterogeneity and distribution of landslides still impose challenges in selecting an appropriate scale for LS studies. This requires identification of an optimal scale for landslide causative parameters. In this study, we propose a method to identify the optimum scale for each parameter and use multiple optimal parameter-scale combinations for LS mapping. A random forest model was used, together with 16 geomorphological parameters extracted from 10, 30, 60, 90, 120, 150, and 300 m digital elevation models (DEMs) and an inventory of historical landslides. Experiments in two equal-sized (625 km2</sup>) areas in Niigata and Ehime, Japan, with different geological and environmental settings and landslide density, demonstrated the efficiency of the proposed method. It outperformed all other single scale LS analysis with a prediction accuracy of 79.7% for Niigata and 78.62% for Ehime. Values of areas under receiver operating characteristics (ROC) curves (AUC) of 0.877 and 0.870 validate the application of the multi-scale model.展开更多
In the first paper of this series, we propose a multi-resolution theory of Fourier spectral estimates of finite duration signals. It is shown that multi-resolution capability, achieved without further observation, is ...In the first paper of this series, we propose a multi-resolution theory of Fourier spectral estimates of finite duration signals. It is shown that multi-resolution capability, achieved without further observation, is obtained by constructing multi-resolution signals from the only observed finite duration signal. Achieved resolutions meet bounds of the uncertainty principle (Heisenberg inequality). In the forthcoming parts of this series, multi-resolution Fourier performances are observed, applied to short signals and extended to time-frequency analysis.展开更多
The truncated binary exponential back-off algorithm is one of the most effective methods applied in collision resolution process of random multi-access channel.In this study,two new strategies are presented to improve...The truncated binary exponential back-off algorithm is one of the most effective methods applied in collision resolution process of random multi-access channel.In this study,two new strategies are presented to improve the capability of the truncated binary exponential back-off algorithm.In the new strategies,the sizes of the initial window size or the operating window sizes are adjusted dynamically,which always bring a significant improvement for the self-adaptability of the original algorithm.A series of experiments are simulated and the results verify that the new strategies can make the implementation more stable and effective than the original algorithm.展开更多
Combined with the printing application,an image registration method based on the multi-resolution morphology contour detection was proposed.First,a direction based multi-resolution gray morphology in the scheme was pr...Combined with the printing application,an image registration method based on the multi-resolution morphology contour detection was proposed.First,a direction based multi-resolution gray morphology in the scheme was proposed to realize the contour extraction.Then,based on the contour features,the subspace image registration was proposed to deal with issues of the computing complexity appeared in the traditional image registration methods.The proposed image registration was efficiently applied in the defect inspection of printing images.展开更多
A conformal Runge-Kutta multi-resolution time-domain(C-RKMRTD)method is present and applied to model and analyze curved objects.Compared with the non-conformal method,the proposed method is more accurate.The scatterin...A conformal Runge-Kutta multi-resolution time-domain(C-RKMRTD)method is present and applied to model and analyze curved objects.Compared with the non-conformal method,the proposed method is more accurate.The scattering analyses of the cylinder and ellipsoid are presented to validate the proposed method.The numerical results demonstrate that the proposed scheme perform better than the MRTD method and other higher order methods with a higher accuracy.展开更多
In this paper, we report application procedures and observed results of multi-resolution Fourier analysis proposed in the first part of this series. Missing signal recovery derived from multi-resolution theory is deve...In this paper, we report application procedures and observed results of multi-resolution Fourier analysis proposed in the first part of this series. Missing signal recovery derived from multi-resolution theory is developed. It is shown that multi-resolution Fourier analysis enhances dramatically performances of Fourier spectra suffering limitations traced to implicit time windowing. Observed frequency resolutions, improvement of frequency estimations, contraction of spectral leakage and recovery of missing parts of finite duration signals are in accordance with theoretical predictions.展开更多
The multi-resolution adaptive grids method is proposed to solve the problems of inefficiency in the previous grid-based methods,and it can be used in clouds simulation as well as the interactive simulation between obj...The multi-resolution adaptive grids method is proposed to solve the problems of inefficiency in the previous grid-based methods,and it can be used in clouds simulation as well as the interactive simulation between objects and clouds.Oriented bounding box(OBB)hierarchical trees of objects are established,and the resolutions of global and local grids can be selected automatically.The motion equations of fluid dynamics are simplified.Upwind difference is applied to ensure the stability of the simulation process during the discrete process of partial differential equations.To solve the speed problem of existed phase functions,the improved phase function is applied to the illumination calculation of clouds.Experimental results show that the proposed methods can promote the simulation efficiency and meet the need for the simulation of large-scale clouds scene.Real-time rendering of clouds and the interaction between clouds and objects have been realized without preprocessing stage.展开更多
Spectrum sensing is one of the key technologies in Cognitive Radios(CRs).Previous works are accomplished under simple channel models,which may lead to unreliable results when it applied to the over-the-air systems.In ...Spectrum sensing is one of the key technologies in Cognitive Radios(CRs).Previous works are accomplished under simple channel models,which may lead to unreliable results when it applied to the over-the-air systems.In this paper,we investigate the performance of a Multi-Resolution Spectrum Sensing(MRSS) algorithm under measurement-based channel models in China.MRSS is a wavelet based algorithm which is suitable for non-stationary,wideband signal analysis.Using statistical mod-eling,measurement-based channel models are presented under typical urban and suburban scenarios in Shanghai,China.Then,the performance of the MRSS algorithm is evaluated under the measure-ment-based channel models.Simulation results show that,using MRSS,the performance is always better in the scenarios where Line-Of-Sight(LOS) path exist;also,in LOS scenarios,rich scattering effect helps to increase the performance.展开更多
The aggregation of data in recent years has been expanding at an exponential rate. There are various data generating sources that are responsible for such a tremendous data growth rate. Some of the data origins includ...The aggregation of data in recent years has been expanding at an exponential rate. There are various data generating sources that are responsible for such a tremendous data growth rate. Some of the data origins include data from the various social media, footages from video cameras, wireless and wired sensor network measurements, data from the stock markets and other financial transaction data, supermarket transaction data and so on. The aforementioned data may be high dimensional and big in Volume, Value, Velocity, Variety, and Veracity. Hence one of the crucial challenges is the storage, processing and extraction of relevant information from the data. In the special case of image data, the technique of image compressions may be employed in reducing the dimension and volume of the data to ensure it is convenient for processing and analysis. In this work, we examine a proof-of-concept multiresolution analytics that uses wavelet transforms, that is one popular mathematical and analytical framework employed in signal processing and representations, and we study its applications to the area of compressing image data in wireless sensor networks. The proposed approach consists of the applications of wavelet transforms, threshold detections, quantization data encoding and ultimately apply the inverse transforms. The work specifically focuses on multi-resolution analysis with wavelet transforms by comparing 3 wavelets at the 5 decomposition levels. Simulation results are provided to demonstrate the effectiveness of the methodology.展开更多
In order to break through the limitationof thelatitude/longitudegrid and hexagon grid, a new subdivision unit, Half-honeycomb Trapezoid, is proposed. Based on the summarization of the geometric properties and subdivis...In order to break through the limitationof thelatitude/longitudegrid and hexagon grid, a new subdivision unit, Half-honeycomb Trapezoid, is proposed. Based on the summarization of the geometric properties and subdivision performance of Half-honeycomb Trapezoid, a new discrete global topographic grid system is established, and its compatibility with hexagonal grid is analyzed. At last, the visualization of multi-resolution global grid is achieved.展开更多
An SPECT system dedicated to small animal imaging shall be of a millimeter spatial resolution or even better.This study was aimed at achieving 0.5-mm spatial resolution for a small animal SPECT system at low cost.It w...An SPECT system dedicated to small animal imaging shall be of a millimeter spatial resolution or even better.This study was aimed at achieving 0.5-mm spatial resolution for a small animal SPECT system at low cost.It was developed from a single-head clinical SPECT scanner,with a seven-pinhole collimator and a four-degree-offreedom motion control stage.Several key techniques were developed,including high-resolution image reconstruction algorithm,high accuracy geometrical calibration method,and optimized system matrix derivation scheme.The system matrix was derived from Monte-Carlo simulation and de-noised by fitting each point spread function to a two dimensional Gaussian function.Experiments of point source and ultra micro hot rod phantom were conducted.With a spatial resolution of 0.5-0.6 mm,this system provides a practical way for low-cost high-resolution animal imaging on a clinic SPECT system.展开更多
基金This project was supported by the National Natural Foundation of China (60404022) and the Foundation of Department ofEducation of Hebei Province (2002209).
文摘Mixture model based image segmentation method, which assumes that image pixels are independent and do not consider the position relationship between pixels, is not robust to noise and usually leads to misclassification. A new segmentation method, called multi-resolution Ganssian mixture model method, is proposed. First, an image pyramid is constructed and son-father link relationship is built between each level of pyramid. Then the mixture model segmentation method is applied to the top level. The segmentation result on the top level is passed top-down to the bottom level according to the son-father link relationship between levels. The proposed method considers not only local but also global information of image, it overcomes the effect of noise and can obtain better segmentation result. Experimental result demonstrates its effectiveness.
基金the financial support provided by the National Science & Technology Infrastructure Construction Project of China (2005DKA32300)the Key Science and Technology Project of Henan Province, China (152102110047)+2 种基金the Major Research Project of the Ministry of Education, China(16JJD770019)the Major Scientific and Technological Special Project of Henan Province, China (121100111300)the Cooperation Base Open Fund of the Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River regions and CPGIS (JOF 201602)
文摘Timely crop acreage and distribution information are the basic data which drive many agriculture related applications.For identifying crop types based on remote sensing,methods using only a single image type have significant limitations.Current research that integrates fine and coarser spatial resolution images,using techniques such as unmixing methods,regression models,and others,usually results in coarse resolution abundance without sufficient detail within pixels,and limited attention has been paid to the spatial relationship between the pixels from these two kinds of images.Here we propose a new solution to identify winter wheat by integrating spectral and temporal information derived from multi-resolution remote sensing data and determine the spatial distribution of sub-pixels within the coarse resolution pixels.Firstly,the membership of pixels which belong to winter wheat is calculated using a 25-m resolution resampled Landsat Thematic Mapper(TM)image based on the Bayesian equation.Then,the winter wheat abundance(acreage fraction in a pixel)is assessed by using a multiple regression model based on the unique temporal change features from moderate resolution imaging spectroradiometer(MODIS)time series data.Finally,winter wheat is identified by the proposed Abundance-Membership(AM)model based on the spatial relationship between the two types of pixels.Specifically,winter wheat is identified by comparing the spatially corresponding 10×10 membership pixels of each abundance pixel.In other words,this method takes advantage of the relative size of membership in a local space,rather than the absolute size in the entire study area.This method is tested in the major agricultural area of Yiluo Basin,China,and the results show that acreage accuracy(Aa)is 93.01%and sampling accuracy(As)is 91.40%.Confusion matrix shows that overall accuracy(OA)is 91.4%and the kappa coefficient(Kappa)is 0.755.These values are significantly improved compared to the traditional Maximum Likelihood classification(MLC)and Random Forest classification(RFC)which rely on spectral features.The results demonstrate that the identification accuracy can be improved by integrating spectral and temporal information.Since the identification of winter wheat is performed in the space corresponding to each MODIS pixel,the influence of differences of environmental conditions is greatly reduced.This advantage allows the proposed method to be effectively applied in other places.
文摘Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artifact suppression. We propose a multi-resolution dictionary learning(MRDL) model to solve this contradiction, and give a fast single image SR method based on the MRDL model. To obtain the MRDL model, we first extract multi-scale patches by using our proposed adaptive patch partition method(APPM). The APPM divides images into patches of different sizes according to their detail richness. Then, the multiresolution dictionary pairs, which contain structural primitives of various resolutions, can be trained from these multi-scale patches.Owing to the MRDL strategy, our SR algorithm not only recovers details well, with less jag and noise, but also significantly improves the computational efficiency. Experimental results validate that our algorithm performs better than other SR methods in evaluation metrics and visual perception.
基金supported by the National Natural Science Foundation of China(Grant No.61178086)Science and Technology Program of Guangzhou,China(Grant No.2012J4300138)Foundation for Distinguished Young Talents in South China Normal University,China.(Grant No.2012KJ010).
文摘We demonstrate the feasibility of simultancous multi-probe detection for an optcal-resolution photoacoustic microscopy(OR-PAM)system.OR-P AM has elicited the attention of biomedical imaging researchers because of its optical absorption contrast and high spatial resolution with great imaging depth.OR-PAM allows label-free and noninvasive imaging by maximizing the optical absorption of endogenous biomolecules.However,given the inadequate absoption of some biomolcules,detection sensitivity at the same incident intensity requires improvement.In this study,a modulated continuous wave with power density less than 3mW/cm^(2)(1/4 of the ANSI safety limit)excited the weak photoacoustic(PA)signals of biological cells.A microcavity traneducer is developed based on the bulk modulus of gas five orders of magnitude lower than that of solid;air pressure variation is inversely proportional to cavity volume at the same temperature increase.Considering that a PA wave expands in various directions,detecting PA signals from different positions and adding them together can increase detection sensitivity and signal-to-noise ratio.Therefore,we employ four detectors to acquire tiny PA signals simul-taneously.Experimental results show that the developed OR-PAM system allows the label-free imaging of cells with weak optical absorption.
文摘The acoustic vibration signal of tank is disassembled into the sum of intrinsic mode function (IMF) by multi-resolution empirical mode decomposition (EMD) method. The instantaneous frequency is obtained, and feature transformation matrix is figured out by class scatter matrix. Multi- dimensional scale energy vector is mapped into low-dimensional eigenvector, and classification extraction is realized. This method sufficiently separates of different sound target features. The test result indicates that it is effective.
基金This project was supported by the National Natural Science Foundation of China (60672034)the Research Fund for the Doctoral Program of Higher Education(20060217021)the Natural Science Foundation of Heilongjiang Province of China (ZJG0606-01)
文摘Sonar images have complex background, low contrast, and deteriorative edges; these characteristics make it difficult for researchers to dispose the sonar objects. The multi-resolution analysis represents the signals in different scales efficiently, which is widely used in image processing. Wavelets are successful in disposing point discontinuities in one dimension, but not in two dimensions. The finite Ridgelet transform (FRIT) deals efficiently with the singularity in high dimension. It presents three improved denoising approaches, which are based on FRIT and used in the sonar image disposal technique. By experiment and comparison with traditional methods, these approaches not only suppress the artifacts, but also obtain good effect in edge keeping and SNR of the sonar image denoising.
基金Supported by the National Natural Science Foundation of China(61172024)the Funding of Jiangsu Innovation Program for Graduate Education and the Fundamental Research Funds for the Central Universities(CXZZ12-0156)
文摘A conformal multi-resolution time-domain( CMRTD) method is presented for modeling curved objects. The effective dielectric constant and area weighting are used to derive the update equations of CMRTD. The backward scattering bistatic radar cross sections( RCS) of the dielectric cylinder and ellipsoid are used to validate the proposed method. The results show that the proposed conformal method is more accurate to deal with the complex curved objects in electromagnetic simulations.
文摘Landslide susceptibility (LS) mapping is a requisite for safety against sediment related disasters, and considerable effort has been exerted in this discipline. However, the size heterogeneity and distribution of landslides still impose challenges in selecting an appropriate scale for LS studies. This requires identification of an optimal scale for landslide causative parameters. In this study, we propose a method to identify the optimum scale for each parameter and use multiple optimal parameter-scale combinations for LS mapping. A random forest model was used, together with 16 geomorphological parameters extracted from 10, 30, 60, 90, 120, 150, and 300 m digital elevation models (DEMs) and an inventory of historical landslides. Experiments in two equal-sized (625 km2</sup>) areas in Niigata and Ehime, Japan, with different geological and environmental settings and landslide density, demonstrated the efficiency of the proposed method. It outperformed all other single scale LS analysis with a prediction accuracy of 79.7% for Niigata and 78.62% for Ehime. Values of areas under receiver operating characteristics (ROC) curves (AUC) of 0.877 and 0.870 validate the application of the multi-scale model.
文摘In the first paper of this series, we propose a multi-resolution theory of Fourier spectral estimates of finite duration signals. It is shown that multi-resolution capability, achieved without further observation, is obtained by constructing multi-resolution signals from the only observed finite duration signal. Achieved resolutions meet bounds of the uncertainty principle (Heisenberg inequality). In the forthcoming parts of this series, multi-resolution Fourier performances are observed, applied to short signals and extended to time-frequency analysis.
基金This work was supported by the National Natural Science Foundation of China(No.10371097).
文摘The truncated binary exponential back-off algorithm is one of the most effective methods applied in collision resolution process of random multi-access channel.In this study,two new strategies are presented to improve the capability of the truncated binary exponential back-off algorithm.In the new strategies,the sizes of the initial window size or the operating window sizes are adjusted dynamically,which always bring a significant improvement for the self-adaptability of the original algorithm.A series of experiments are simulated and the results verify that the new strategies can make the implementation more stable and effective than the original algorithm.
基金Funded by the National Natural Science Foundation of China(General Program,Key Program,Major Research Plan) (Grant No.60474021)China Postdoctoral Science Foundation (Grant No.20100471180)the Freedom Explore Program of Central South University (Grant No. 2012QNZT017)
文摘Combined with the printing application,an image registration method based on the multi-resolution morphology contour detection was proposed.First,a direction based multi-resolution gray morphology in the scheme was proposed to realize the contour extraction.Then,based on the contour features,the subspace image registration was proposed to deal with issues of the computing complexity appeared in the traditional image registration methods.The proposed image registration was efficiently applied in the defect inspection of printing images.
基金Supported by the National Nature Science Foundation of China(61172024)the Funding of Jiangsu Innovation Program for Graduate Education and the Fundamental Research Funds for the Central Universities(CXZZ120156)the Postdoctoral Science Foundation of China(2013M531350)
文摘A conformal Runge-Kutta multi-resolution time-domain(C-RKMRTD)method is present and applied to model and analyze curved objects.Compared with the non-conformal method,the proposed method is more accurate.The scattering analyses of the cylinder and ellipsoid are presented to validate the proposed method.The numerical results demonstrate that the proposed scheme perform better than the MRTD method and other higher order methods with a higher accuracy.
文摘In this paper, we report application procedures and observed results of multi-resolution Fourier analysis proposed in the first part of this series. Missing signal recovery derived from multi-resolution theory is developed. It is shown that multi-resolution Fourier analysis enhances dramatically performances of Fourier spectra suffering limitations traced to implicit time windowing. Observed frequency resolutions, improvement of frequency estimations, contraction of spectral leakage and recovery of missing parts of finite duration signals are in accordance with theoretical predictions.
基金supported by the National Natural Science Foundation of China(No.61102167)
文摘The multi-resolution adaptive grids method is proposed to solve the problems of inefficiency in the previous grid-based methods,and it can be used in clouds simulation as well as the interactive simulation between objects and clouds.Oriented bounding box(OBB)hierarchical trees of objects are established,and the resolutions of global and local grids can be selected automatically.The motion equations of fluid dynamics are simplified.Upwind difference is applied to ensure the stability of the simulation process during the discrete process of partial differential equations.To solve the speed problem of existed phase functions,the improved phase function is applied to the illumination calculation of clouds.Experimental results show that the proposed methods can promote the simulation efficiency and meet the need for the simulation of large-scale clouds scene.Real-time rendering of clouds and the interaction between clouds and objects have been realized without preprocessing stage.
基金Supported by the National Major R&D Program of China (No. 2009ZX03003-008)
文摘Spectrum sensing is one of the key technologies in Cognitive Radios(CRs).Previous works are accomplished under simple channel models,which may lead to unreliable results when it applied to the over-the-air systems.In this paper,we investigate the performance of a Multi-Resolution Spectrum Sensing(MRSS) algorithm under measurement-based channel models in China.MRSS is a wavelet based algorithm which is suitable for non-stationary,wideband signal analysis.Using statistical mod-eling,measurement-based channel models are presented under typical urban and suburban scenarios in Shanghai,China.Then,the performance of the MRSS algorithm is evaluated under the measure-ment-based channel models.Simulation results show that,using MRSS,the performance is always better in the scenarios where Line-Of-Sight(LOS) path exist;also,in LOS scenarios,rich scattering effect helps to increase the performance.
文摘The aggregation of data in recent years has been expanding at an exponential rate. There are various data generating sources that are responsible for such a tremendous data growth rate. Some of the data origins include data from the various social media, footages from video cameras, wireless and wired sensor network measurements, data from the stock markets and other financial transaction data, supermarket transaction data and so on. The aforementioned data may be high dimensional and big in Volume, Value, Velocity, Variety, and Veracity. Hence one of the crucial challenges is the storage, processing and extraction of relevant information from the data. In the special case of image data, the technique of image compressions may be employed in reducing the dimension and volume of the data to ensure it is convenient for processing and analysis. In this work, we examine a proof-of-concept multiresolution analytics that uses wavelet transforms, that is one popular mathematical and analytical framework employed in signal processing and representations, and we study its applications to the area of compressing image data in wireless sensor networks. The proposed approach consists of the applications of wavelet transforms, threshold detections, quantization data encoding and ultimately apply the inverse transforms. The work specifically focuses on multi-resolution analysis with wavelet transforms by comparing 3 wavelets at the 5 decomposition levels. Simulation results are provided to demonstrate the effectiveness of the methodology.
基金Supported by Key Scientific and Technological Project of Anhui Province(No.1401b042009)Provincal Natural Science Foundation of the Higher Education Institutions of Anhui(No.KJ2014ZD27)
文摘In order to break through the limitationof thelatitude/longitudegrid and hexagon grid, a new subdivision unit, Half-honeycomb Trapezoid, is proposed. Based on the summarization of the geometric properties and subdivision performance of Half-honeycomb Trapezoid, a new discrete global topographic grid system is established, and its compatibility with hexagonal grid is analyzed. At last, the visualization of multi-resolution global grid is achieved.
基金Supported by Specialized Research Fund for the Doctoral Program of Higher Education(SRFDP200800031071)National Natural Science Foundation of China (No.10975086)the National High Technology Research and Development Program of China(No.2006AA020802)
文摘An SPECT system dedicated to small animal imaging shall be of a millimeter spatial resolution or even better.This study was aimed at achieving 0.5-mm spatial resolution for a small animal SPECT system at low cost.It was developed from a single-head clinical SPECT scanner,with a seven-pinhole collimator and a four-degree-offreedom motion control stage.Several key techniques were developed,including high-resolution image reconstruction algorithm,high accuracy geometrical calibration method,and optimized system matrix derivation scheme.The system matrix was derived from Monte-Carlo simulation and de-noised by fitting each point spread function to a two dimensional Gaussian function.Experiments of point source and ultra micro hot rod phantom were conducted.With a spatial resolution of 0.5-0.6 mm,this system provides a practical way for low-cost high-resolution animal imaging on a clinic SPECT system.