Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware reso...Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline.展开更多
Considering the urban characteristics, a customized multi-scale numerical modeling system is established to simulate the urban meteorological environment. The system mainly involves three spatial scales: the urban sca...Considering the urban characteristics, a customized multi-scale numerical modeling system is established to simulate the urban meteorological environment. The system mainly involves three spatial scales: the urban scale, urban sub-domain scale, and single to few buildings scale. In it, different underlying surface types are employed, the building drag factor is used to replace its roughness in the influence on the urban wind field, the effects of building distribution, azimuth and screening of shortwave radiation are added, and the influence of anthropogenic heating is also taken into account. All the numerical tests indicate that the simulated results are reasonably in agreement with the observational data, so the system can be used to simulate the urban meteorological environment. Making use of it, the characteristics of the meteorological environment from the urban to urban sub-domain scales, even the among-buildings scale, can be recognized. As long as the urban planning scheme is given, the corresponding simulated results can be obtained so as to meet the need of optimizing urban planning.展开更多
An initial conditions (ICs) perturbation method was developed with the aim to improve an operational regional ensemble prediction system (REPS). Three issues were identified and investigated: (1) the impacts of...An initial conditions (ICs) perturbation method was developed with the aim to improve an operational regional ensemble prediction system (REPS). Three issues were identified and investigated: (1) the impacts of perturbation scale on the ensemble spread and forecast skill of the REPS; (2) the scale characteristic of the IC perturbations of the REPS; and (3) whether the REPS's skill could be improved by adding large-scale information to the IC perturbations. Numerical experiments were conducted to reveal the impact of perturbation scale on the ensemble spread and forecast skill. The scales of IC perturbations from the REPS and an operational global ensemble prediction system (GEPS) were analyzed. A "multi-scale blending" (MSB) IC perturbation scheme was developed, and the main findings can be summarized as follows: The growth rates of the ensemble spread of the REPS are sensitive to the scale of the IC perturbations; the ensemble forecast skills can benefit from large-scale perturbations; the global ensemble IC perturbations exhibit more power at larger scales, while the regional ensemble IC perturbations contain more power at smaller scales; the MSB method can generate IC perturbations by combining the small-scale component from the REPS and the large-scale component from the GEPS; the energy norm growth of the MSB-generated perturbations can be appropriate at all forecast lead times; and the MSB-based REPS shows higher skill than the original system, as determined by ensemble forecast verification.展开更多
When used for separating multi-component non-stationary signals, the adaptive time-varying filter(ATF) based on multi-scale chirplet sparse signal decomposition(MCSSD) generates phase shift and signal distortion. To o...When used for separating multi-component non-stationary signals, the adaptive time-varying filter(ATF) based on multi-scale chirplet sparse signal decomposition(MCSSD) generates phase shift and signal distortion. To overcome this drawback, the zero phase filter is introduced to the mentioned filter, and a fault diagnosis method for speed-changing gearbox is proposed. Firstly, the gear meshing frequency of each gearbox is estimated by chirplet path pursuit. Then, according to the estimated gear meshing frequencies, an adaptive zero phase time-varying filter(AZPTF) is designed to filter the original signal. Finally, the basis for fault diagnosis is acquired by the envelope order analysis to the filtered signal. The signal consisting of two time-varying amplitude modulation and frequency modulation(AM-FM) signals is respectively analyzed by ATF and AZPTF based on MCSSD. The simulation results show the variances between the original signals and the filtered signals yielded by AZPTF based on MCSSD are 13.67 and 41.14, which are far less than variances (323.45 and 482.86) between the original signals and the filtered signals obtained by ATF based on MCSSD. The experiment results on the vibration signals of gearboxes indicate that the vibration signals of the two speed-changing gearboxes installed on one foundation bed can be separated by AZPTF effectively. Based on the demodulation information of the vibration signal of each gearbox, the fault diagnosis can be implemented. Both simulation and experiment examples prove that the proposed filter can extract a mono-component time-varying AM-FM signal from the multi-component time-varying AM-FM signal without distortion.展开更多
Based on the recognition framework of the outermost closed contours of cyclones, an automated identification algorithm capable of identifying the multi-scale cyclones that occur during spring in the Changjiang River-H...Based on the recognition framework of the outermost closed contours of cyclones, an automated identification algorithm capable of identifying the multi-scale cyclones that occur during spring in the Changjiang River-Huaihe River valleys (CHV) were developed. We studied the characteristics of the multi-scale cyclone activity that affects CHV and its relationship with rainfall during spring since 1979. The results indicated that the automated identification algorithm for cyclones proposed in this paper could intuitively identify multi-scale cyclones that affect CHV. The algorithm allows for effectively describing the shape and coverage area of the closed contours around the periphery of cyclones. We found that, compared to the meso- and sub-synoptic scale cyclone activities, the synoptic-scale cyclone activity showed more intimate correlation with the overall activity intensity of multi-scale CHV cyclones during spring. However, the frequency of occurrence of sub-synoptic scale cyclones was the highest, and their effect on changes in CHV cyclone activity could not be ignored. Based on the area of impact and the depth of the cyclones, the sub-synoptic scale, synoptic scale and comprehensive cyclone intensity indices were further defined, which showed a positive correlation with rainfall in CHV during spring. Additionally, the comprehensive cyclone intensity index was a good indicator of strong rainfall events.展开更多
A new radar echo tracking algorithm known as multi-scale tracking radar echoes by cross-correlation (MTREC) was developed in this study to analyze movements of radar echoes at different spatial scales. Movement of r...A new radar echo tracking algorithm known as multi-scale tracking radar echoes by cross-correlation (MTREC) was developed in this study to analyze movements of radar echoes at different spatial scales. Movement of radar echoes, particularly associated with convective storms, exhibits different characteristics at various spatial scales as a result of complex interactions among meteorological systems leading to the formation of convective storms. For the null echo region, the usual correlation technique produces zero or a very small magnitude of motion vectors. To mitigate these constraints, MTREC uses the tracking radar echoes by correlation (TREC) technique with a large "box" to determine the systematic movement driven by steering wind, and MTREC applies the TREC technique with a small "box" to estimate small-scale internal motion vectors. Eventually, the MTREC vectors are obtained by synthesizing the systematic motion and the small-scale internal motion. Performance of the MTREC technique was compared with TREC technique using case studies: the Khanun typhoon on 11 September 2005 observed by Wenzhou radar and a squall-line system on 23 June 2011 detected by Beijing radar. The results demonstrate that more spatially smoothed and continuous vector fields can be generated by the MTREC technique, which leads to improvements in tracking the entire radar reflectivity pattern. The new multi-scMe tracking scheme was applied to study its impact on the performance of quantitative precipitation nowcasting. The location and intensity of heavy precipitation at a 1-h lead time was more consistent with quantitative precipitation estimates using radar and rain gauges.展开更多
To assist emergency management planning and prevention in case of hazardous chemical release into the atmosphere,especially in densely built-up regions with large populations,a multi-scale urban atmospheric dispersion...To assist emergency management planning and prevention in case of hazardous chemical release into the atmosphere,especially in densely built-up regions with large populations,a multi-scale urban atmospheric dispersion model was established.Three numerical dispersion experiments,at horizontal resolutions of 10 m,50 m and 3000 m,were performed to estimate the adverse effects of toxic chemical release in densely built-up areas.The multi-scale atmospheric dispersion model is composed of the Weather Forecasting and Research (WRF) model,the Open Source Field Operation and Manipulation software package,and a Lagrangian dispersion model.Quantification of the adverse health effects of these chemical release events are given by referring to the U.S.Environmental Protection Agency's Acute Exposure Guideline Levels.The wind fields of the urban-scale case,with 3 km horizontal resolution,were simulated by the Beijing Rapid Update Cycle system,which were utilized by the WRF model.The sub-domain-scale cases took advantage of the computational fluid dynamics method to explicitly consider the effects of buildings.It was found that the multi-scale atmospheric dispersion model is capable of simulating the flow pattern and concentration distribution on different scales,ranging from several meters to kilometers,and can therefore be used to improve the planning of prevention and response programs.展开更多
The Regional Atmospheric Modeling System (RAMS) and the computational fluid dynamics (CFD) codes known as FLUENT are combinatorially applied in a multi-scale numerical simulation of the urban surface layer (USL)...The Regional Atmospheric Modeling System (RAMS) and the computational fluid dynamics (CFD) codes known as FLUENT are combinatorially applied in a multi-scale numerical simulation of the urban surface layer (USL). RAMS and FLUENT are combined as a multi-scale numerical modeling system, in which the RAMS simulated data are delivered to the computational model for FLUENT simulation in an offline way. Numerical simulations are performed to present and preliminarily validate the capability of the multi-scale modeling system, and the results show that the modeling system can reasonably provide information on the meteorological elements in an urban area from the urban scale to the city-block scale, especially the details of the turbulent flows within the USL.展开更多
Seismic inversion performed in the time or frequency domain cannot always recover the long-wavelength background of subsurface parameters due to the lack of low-frequency seismic records. Since the low-frequency respo...Seismic inversion performed in the time or frequency domain cannot always recover the long-wavelength background of subsurface parameters due to the lack of low-frequency seismic records. Since the low-frequency response becomes much richer in the Laplace mixed domains, one novel Bayesian impedance inversion approach in the complex Laplace mixed domains is established in this study to solve the model dependency problem. The derivation of a Laplace mixed-domain formula of the Robinson convolution is the first step in our work. With this formula, the Laplace seismic spectrum, the wavelet spectrum and time-domain reflectivity are joined together. Next, to improve inversion stability, the object inversion function accompanied by the initial constraint of the linear increment model is launched under a Bayesian framework. The likelihood function and prior probability distribution can be combined together by Bayesian formula to calculate the posterior probability distribution of subsurface parameters. By achieving the optimal solution corresponding to maximum posterior probability distribution, the low-frequency background of subsurface parameters can be obtained successfully. Then, with the regularization constraint of estimated low frequency in the Laplace mixed domains, multi-scale Bayesian inversion inthe pure frequency domain is exploited to obtain the absolute model parameters. The effectiveness, anti-noise capability and lateral continuity of Laplace mixed-domain inversion are illustrated by synthetic tests. Furthermore,one field case in the east of China is discussed carefully with different input frequency components and different inversion algorithms. This provides adequate proof to illustrate the reliability improvement in low-frequency estimation and resolution enhancement of subsurface parameters, in comparison with conventional Bayesian inversion in the frequency domain.展开更多
When using a miniature single sensor boundary layer probe, the time sequences of the stream-wise velocity in the turbulent boundary layer (TBL) are measured by using a hot wire anemometer. Beneath the fully develope...When using a miniature single sensor boundary layer probe, the time sequences of the stream-wise velocity in the turbulent boundary layer (TBL) are measured by using a hot wire anemometer. Beneath the fully developed TBL, the wall pressure fluctuations are attained by a microphone mechanism with high spatial resolution. Analysis on the statistic and spectrum properties of velocity and wall pressure reveals the relationship between the wall pressure fluctuation and the energy-containing structure in the buffer layer of the TBL. Wavelet transform shows the multi-scale natures of coherent structures contained in both signals of velocity and pressure. The most intermittent wall pressure scale is associated with the coherent structure in the buffer layer. Meanwhile the most energetic scale of velocity fluctuation at y+ = 14 provides a specific frequency f9 ≈ 147 Hz for wall actuating control with Ret = 996.展开更多
In the diagnosis of rotor crack based on wavelet analysis, it is a painful task to find out an adaptive mother wavelet as many of them can be chosen and the analytic results of different mother wavelets are yet not th...In the diagnosis of rotor crack based on wavelet analysis, it is a painful task to find out an adaptive mother wavelet as many of them can be chosen and the analytic results of different mother wavelets are yet not the same. For this limitation of wavelet analysis, a novel diagnostic approach of rotor crack based on multi-scale singular-spectrum analysis (MS-SSA) is proposed. Firstly, a Jeffcott model of a cracked rotor is developed and the forth-order Runge-Kutta method is used to solve the motion equations of this rotor to obtain its time response (signals). Secondly, a comparatively simple approach of MS-SSA is presented and the empirical orthogonal functions of different orders in various scales are regarded as analyzing functions. At last, the signals of the cracked rotor and an uncracked rotor are analyzed using the proposed approach of MS-SSA, and the simulative results are compared. The results show that, the data-adaptive analyzing functions can capture many features of signals and the rotor crack can be identified and diagnosed effectively by comparing the analytic results of signals of the cracked rotor with those of the uncracked rotor using the analyzing functions of different orders.展开更多
Noise has traditionally been suppressed or eliminated in seismic data sets by the use of Fourier filters and, to a lesser degree, nonlinear statistical filters. Although these methods are quite useful under specific c...Noise has traditionally been suppressed or eliminated in seismic data sets by the use of Fourier filters and, to a lesser degree, nonlinear statistical filters. Although these methods are quite useful under specific conditions, they may produce undesirable effects for the low signal to noise ratio data. In this paper, a new method, multi-scale ridgelet transform, is used in the light of the theory of ridgelet transform. We employ wavelet transform to do sub-band decomposition for the signals and then use non-linear thresholding in ridgelet domain for every block. In other words, it is based on the idea of partition, at sufficiently fine scale, a curving singularity looks straight, and so ridgelet transform can work well in such cases. Applications on both synthetic data and actual seismic data from Sichuan basin, South China, show that the new method eliminates the noise portion of the signal more efficiently and retains a greater amount of geologic data than other methods, the quality and consecutiveness of seismic event are improved obviously as well as the quality of section is improved.展开更多
Using Morlet wavelet transform and harmonic analysis the multi-scale variability of subsurface temperature in the South China Sea is studied by analyzing one-year (from April 1998 to April 1999) ATLAS mooring data. By...Using Morlet wavelet transform and harmonic analysis the multi-scale variability of subsurface temperature in the South China Sea is studied by analyzing one-year (from April 1998 to April 1999) ATLAS mooring data. By wavelet transform, annual and semi-annual cycle as well as intrasea-sonal variations are found, with different dominance, in subsurface temperature. For annual harmonic cycle, both the downward net surface heat flux and thermocline vertical movement partially control the subsurface temperature variability. For semi-annual cycle and intraseasonal variability, the subsurface temperature variability is mainly linked to the vertical displacement of thermocline.展开更多
The turbulence data are decomposed to multi-scales and its respective fractal dimensions are computed. The conclusions are drawn from investigating the variation of fractal dimensions. With the level of decomposition ...The turbulence data are decomposed to multi-scales and its respective fractal dimensions are computed. The conclusions are drawn from investigating the variation of fractal dimensions. With the level of decomposition increasing, the low-frequency part extracted from the turbulence signals tends to be simple and smooth, the dimensions decrease; the high-frequency part shows complex, the dimensions are fixed, about 1.70 on the average, which indicates clear self-similarity characteristics.展开更多
The human cardiovascular system is a closed- loop and complex vascular network with multi-scaled het- erogeneous hemodynamic phenomena. Here, we give a selective review of recent progress in macro-hemodynamic modeling...The human cardiovascular system is a closed- loop and complex vascular network with multi-scaled het- erogeneous hemodynamic phenomena. Here, we give a selective review of recent progress in macro-hemodynamic modeling, with a focus on geometrical multi-scale model- ing of the vascular network, micro-hemodynamic modeling of microcirculation, as well as blood cellular, subcellular, endothelial biomechanics, and their interaction with arter- ial vessel mechanics. We describe in detail the methodology of hemodynamic modeling and its potential applications in cardiovascular research and clinical practice. In addition, we present major topics for future study: recent progress of patient-specific hemodynamic modeling in clinical applica- tions, micro-hemodynamic modeling in capillaries and blood cells, and the importance and potential of the multi-scale hemodynarnic modeling.展开更多
Successful modeling and/or design of engineering systems often requires one to address the impact of multiple "design variables" on the prescribed outcome.There are often multiple,competing objectives based on which...Successful modeling and/or design of engineering systems often requires one to address the impact of multiple "design variables" on the prescribed outcome.There are often multiple,competing objectives based on which we assess the outcome of optimization.Since accurate,high fidelity models are typically time consuming and computationally expensive,comprehensive evaluations can be conducted only if an efficient framework is available.Furthermore,informed decisions of the model/hardware's overall performance rely on an adequate understanding of the global,not local,sensitivity of the individual design variables on the objectives.The surrogate-based approach,which involves approximating the objectives as continuous functions of design variables from limited data,offers a rational framework to reduce the number of important input variables,i.e.,the dimension of a design or modeling space.In this paper,we review the fundamental issues that arise in surrogate-based analysis and optimization,highlighting concepts,methods,techniques,as well as modeling implications for mechanics problems.To aid the discussions of the issues involved,we summarize recent efforts in investigating cryogenic cavitating flows,active flow control based on dielectric barrier discharge concepts,and lithium(Li)-ion batteries.It is also stressed that many multi-scale mechanics problems can naturally benefit from the surrogate approach for "scale bridging."展开更多
文摘Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline.
基金sponsored by the Key Project(96-920-34-07)of the Ministry of Science and Technology,Chinathe Nationa1 Natura1 Science Foundation of China(40333027).
文摘Considering the urban characteristics, a customized multi-scale numerical modeling system is established to simulate the urban meteorological environment. The system mainly involves three spatial scales: the urban scale, urban sub-domain scale, and single to few buildings scale. In it, different underlying surface types are employed, the building drag factor is used to replace its roughness in the influence on the urban wind field, the effects of building distribution, azimuth and screening of shortwave radiation are added, and the influence of anthropogenic heating is also taken into account. All the numerical tests indicate that the simulated results are reasonably in agreement with the observational data, so the system can be used to simulate the urban meteorological environment. Making use of it, the characteristics of the meteorological environment from the urban to urban sub-domain scales, even the among-buildings scale, can be recognized. As long as the urban planning scheme is given, the corresponding simulated results can be obtained so as to meet the need of optimizing urban planning.
基金supported by the National Natural Science Foundation of China (Grant No. 91437113)the Special Fund for Meteorological Scientific Research in the Public Interest (Grant Nos. GYHY201506007 and GYHY201006015)+1 种基金the National 973 Program of China (Grant Nos. 2012CB417204 and 2012CB955200)the Scientific Research & Innovation Projects for Academic Degree Students of Ordinary Universities of Jiangsu (Grant No. KYLX 0827)
文摘An initial conditions (ICs) perturbation method was developed with the aim to improve an operational regional ensemble prediction system (REPS). Three issues were identified and investigated: (1) the impacts of perturbation scale on the ensemble spread and forecast skill of the REPS; (2) the scale characteristic of the IC perturbations of the REPS; and (3) whether the REPS's skill could be improved by adding large-scale information to the IC perturbations. Numerical experiments were conducted to reveal the impact of perturbation scale on the ensemble spread and forecast skill. The scales of IC perturbations from the REPS and an operational global ensemble prediction system (GEPS) were analyzed. A "multi-scale blending" (MSB) IC perturbation scheme was developed, and the main findings can be summarized as follows: The growth rates of the ensemble spread of the REPS are sensitive to the scale of the IC perturbations; the ensemble forecast skills can benefit from large-scale perturbations; the global ensemble IC perturbations exhibit more power at larger scales, while the regional ensemble IC perturbations contain more power at smaller scales; the MSB method can generate IC perturbations by combining the small-scale component from the REPS and the large-scale component from the GEPS; the energy norm growth of the MSB-generated perturbations can be appropriate at all forecast lead times; and the MSB-based REPS shows higher skill than the original system, as determined by ensemble forecast verification.
基金supported by National Natural Science Foundation of China (Grant No. 71271078)National Hi-tech Research and Development Program of China (863 Program, Grant No. 2009AA04Z414)Integration of Industry, Education and Research of Guangdong Province, and Ministry of Education of China (Grant No. 2009B090300312)
文摘When used for separating multi-component non-stationary signals, the adaptive time-varying filter(ATF) based on multi-scale chirplet sparse signal decomposition(MCSSD) generates phase shift and signal distortion. To overcome this drawback, the zero phase filter is introduced to the mentioned filter, and a fault diagnosis method for speed-changing gearbox is proposed. Firstly, the gear meshing frequency of each gearbox is estimated by chirplet path pursuit. Then, according to the estimated gear meshing frequencies, an adaptive zero phase time-varying filter(AZPTF) is designed to filter the original signal. Finally, the basis for fault diagnosis is acquired by the envelope order analysis to the filtered signal. The signal consisting of two time-varying amplitude modulation and frequency modulation(AM-FM) signals is respectively analyzed by ATF and AZPTF based on MCSSD. The simulation results show the variances between the original signals and the filtered signals yielded by AZPTF based on MCSSD are 13.67 and 41.14, which are far less than variances (323.45 and 482.86) between the original signals and the filtered signals obtained by ATF based on MCSSD. The experiment results on the vibration signals of gearboxes indicate that the vibration signals of the two speed-changing gearboxes installed on one foundation bed can be separated by AZPTF effectively. Based on the demodulation information of the vibration signal of each gearbox, the fault diagnosis can be implemented. Both simulation and experiment examples prove that the proposed filter can extract a mono-component time-varying AM-FM signal from the multi-component time-varying AM-FM signal without distortion.
基金jointly sponsored by the National Natural Science Foundation of China(Grant No.41575081)the National Basic Research Program of China(Grant No.2015CB953904)+3 种基金the Public Sector(Meteorology)Special Research Foundation(Grant Nos.GYHY201406024 and GYHY201306022)the Special Fund for Core Operational Development of Forecast and Prediction of the China Meteorological Administration(Grant No.CMAHX20160405)the Natural Science Foundation of Jiangsu Province(Grant No.BK20161603,BK2012465)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Based on the recognition framework of the outermost closed contours of cyclones, an automated identification algorithm capable of identifying the multi-scale cyclones that occur during spring in the Changjiang River-Huaihe River valleys (CHV) were developed. We studied the characteristics of the multi-scale cyclone activity that affects CHV and its relationship with rainfall during spring since 1979. The results indicated that the automated identification algorithm for cyclones proposed in this paper could intuitively identify multi-scale cyclones that affect CHV. The algorithm allows for effectively describing the shape and coverage area of the closed contours around the periphery of cyclones. We found that, compared to the meso- and sub-synoptic scale cyclone activities, the synoptic-scale cyclone activity showed more intimate correlation with the overall activity intensity of multi-scale CHV cyclones during spring. However, the frequency of occurrence of sub-synoptic scale cyclones was the highest, and their effect on changes in CHV cyclone activity could not be ignored. Based on the area of impact and the depth of the cyclones, the sub-synoptic scale, synoptic scale and comprehensive cyclone intensity indices were further defined, which showed a positive correlation with rainfall in CHV during spring. Additionally, the comprehensive cyclone intensity index was a good indicator of strong rainfall events.
基金This study was supported by the Special Fund for Basic Research and Operation of Chinese Academy of Meteorological Science:Development on quantitative precipitation forecasts for 0-6 h lead times by blending radar-based extrapolation and GRAPES-meso,Observation and retrieval methods of micro-physics,the National Natural Science Foundation of China
文摘A new radar echo tracking algorithm known as multi-scale tracking radar echoes by cross-correlation (MTREC) was developed in this study to analyze movements of radar echoes at different spatial scales. Movement of radar echoes, particularly associated with convective storms, exhibits different characteristics at various spatial scales as a result of complex interactions among meteorological systems leading to the formation of convective storms. For the null echo region, the usual correlation technique produces zero or a very small magnitude of motion vectors. To mitigate these constraints, MTREC uses the tracking radar echoes by correlation (TREC) technique with a large "box" to determine the systematic movement driven by steering wind, and MTREC applies the TREC technique with a small "box" to estimate small-scale internal motion vectors. Eventually, the MTREC vectors are obtained by synthesizing the systematic motion and the small-scale internal motion. Performance of the MTREC technique was compared with TREC technique using case studies: the Khanun typhoon on 11 September 2005 observed by Wenzhou radar and a squall-line system on 23 June 2011 detected by Beijing radar. The results demonstrate that more spatially smoothed and continuous vector fields can be generated by the MTREC technique, which leads to improvements in tracking the entire radar reflectivity pattern. The new multi-scMe tracking scheme was applied to study its impact on the performance of quantitative precipitation nowcasting. The location and intensity of heavy precipitation at a 1-h lead time was more consistent with quantitative precipitation estimates using radar and rain gauges.
基金supported by the Public Welfare Special Fund Program (Meteorology) of the Chinese Ministry of Finance (Grant No.GYHY201106033)
文摘To assist emergency management planning and prevention in case of hazardous chemical release into the atmosphere,especially in densely built-up regions with large populations,a multi-scale urban atmospheric dispersion model was established.Three numerical dispersion experiments,at horizontal resolutions of 10 m,50 m and 3000 m,were performed to estimate the adverse effects of toxic chemical release in densely built-up areas.The multi-scale atmospheric dispersion model is composed of the Weather Forecasting and Research (WRF) model,the Open Source Field Operation and Manipulation software package,and a Lagrangian dispersion model.Quantification of the adverse health effects of these chemical release events are given by referring to the U.S.Environmental Protection Agency's Acute Exposure Guideline Levels.The wind fields of the urban-scale case,with 3 km horizontal resolution,were simulated by the Beijing Rapid Update Cycle system,which were utilized by the WRF model.The sub-domain-scale cases took advantage of the computational fluid dynamics method to explicitly consider the effects of buildings.It was found that the multi-scale atmospheric dispersion model is capable of simulating the flow pattern and concentration distribution on different scales,ranging from several meters to kilometers,and can therefore be used to improve the planning of prevention and response programs.
基金This study was supported by the National Natural Science Foundation of China (Grant Nos. 40233030, 40405004, 40405014).
文摘The Regional Atmospheric Modeling System (RAMS) and the computational fluid dynamics (CFD) codes known as FLUENT are combinatorially applied in a multi-scale numerical simulation of the urban surface layer (USL). RAMS and FLUENT are combined as a multi-scale numerical modeling system, in which the RAMS simulated data are delivered to the computational model for FLUENT simulation in an offline way. Numerical simulations are performed to present and preliminarily validate the capability of the multi-scale modeling system, and the results show that the modeling system can reasonably provide information on the meteorological elements in an urban area from the urban scale to the city-block scale, especially the details of the turbulent flows within the USL.
基金the sponsorship of National Natural Science Foundation Project(U1562215,41604101)National Grand Project for Science and Technology(2016ZX05024-004,2017ZX05032-003)+2 种基金the Post-graduate Innovation Program of China University of Petroleum(YCX2017005)Science Foundation from SINOPEC Key Laboratory of Geophysics(wtyjy-wx2016-04-10)the Fundamental Research Funds for the Central Universities
文摘Seismic inversion performed in the time or frequency domain cannot always recover the long-wavelength background of subsurface parameters due to the lack of low-frequency seismic records. Since the low-frequency response becomes much richer in the Laplace mixed domains, one novel Bayesian impedance inversion approach in the complex Laplace mixed domains is established in this study to solve the model dependency problem. The derivation of a Laplace mixed-domain formula of the Robinson convolution is the first step in our work. With this formula, the Laplace seismic spectrum, the wavelet spectrum and time-domain reflectivity are joined together. Next, to improve inversion stability, the object inversion function accompanied by the initial constraint of the linear increment model is launched under a Bayesian framework. The likelihood function and prior probability distribution can be combined together by Bayesian formula to calculate the posterior probability distribution of subsurface parameters. By achieving the optimal solution corresponding to maximum posterior probability distribution, the low-frequency background of subsurface parameters can be obtained successfully. Then, with the regularization constraint of estimated low frequency in the Laplace mixed domains, multi-scale Bayesian inversion inthe pure frequency domain is exploited to obtain the absolute model parameters. The effectiveness, anti-noise capability and lateral continuity of Laplace mixed-domain inversion are illustrated by synthetic tests. Furthermore,one field case in the east of China is discussed carefully with different input frequency components and different inversion algorithms. This provides adequate proof to illustrate the reliability improvement in low-frequency estimation and resolution enhancement of subsurface parameters, in comparison with conventional Bayesian inversion in the frequency domain.
基金Project supported by the National Basic Research Program of China(Grant Nos.2012CB720101 and 2012CB720103)the National Natural Science Foundation of China(Grant Nos.11272233,11332006,and 11411130150)
文摘When using a miniature single sensor boundary layer probe, the time sequences of the stream-wise velocity in the turbulent boundary layer (TBL) are measured by using a hot wire anemometer. Beneath the fully developed TBL, the wall pressure fluctuations are attained by a microphone mechanism with high spatial resolution. Analysis on the statistic and spectrum properties of velocity and wall pressure reveals the relationship between the wall pressure fluctuation and the energy-containing structure in the buffer layer of the TBL. Wavelet transform shows the multi-scale natures of coherent structures contained in both signals of velocity and pressure. The most intermittent wall pressure scale is associated with the coherent structure in the buffer layer. Meanwhile the most energetic scale of velocity fluctuation at y+ = 14 provides a specific frequency f9 ≈ 147 Hz for wall actuating control with Ret = 996.
基金This project is supported by National Fundamental Research and Development Project Foundation of China(No.G1998020321).
文摘In the diagnosis of rotor crack based on wavelet analysis, it is a painful task to find out an adaptive mother wavelet as many of them can be chosen and the analytic results of different mother wavelets are yet not the same. For this limitation of wavelet analysis, a novel diagnostic approach of rotor crack based on multi-scale singular-spectrum analysis (MS-SSA) is proposed. Firstly, a Jeffcott model of a cracked rotor is developed and the forth-order Runge-Kutta method is used to solve the motion equations of this rotor to obtain its time response (signals). Secondly, a comparatively simple approach of MS-SSA is presented and the empirical orthogonal functions of different orders in various scales are regarded as analyzing functions. At last, the signals of the cracked rotor and an uncracked rotor are analyzed using the proposed approach of MS-SSA, and the simulative results are compared. The results show that, the data-adaptive analyzing functions can capture many features of signals and the rotor crack can be identified and diagnosed effectively by comparing the analytic results of signals of the cracked rotor with those of the uncracked rotor using the analyzing functions of different orders.
基金supported by China Petrochemical key project during the 11th Five-year Plan as well as the Doctorate Fund of Ministry of Education of China (No.20050491504)
文摘Noise has traditionally been suppressed or eliminated in seismic data sets by the use of Fourier filters and, to a lesser degree, nonlinear statistical filters. Although these methods are quite useful under specific conditions, they may produce undesirable effects for the low signal to noise ratio data. In this paper, a new method, multi-scale ridgelet transform, is used in the light of the theory of ridgelet transform. We employ wavelet transform to do sub-band decomposition for the signals and then use non-linear thresholding in ridgelet domain for every block. In other words, it is based on the idea of partition, at sufficiently fine scale, a curving singularity looks straight, and so ridgelet transform can work well in such cases. Applications on both synthetic data and actual seismic data from Sichuan basin, South China, show that the new method eliminates the noise portion of the signal more efficiently and retains a greater amount of geologic data than other methods, the quality and consecutiveness of seismic event are improved obviously as well as the quality of section is improved.
基金This work was supported by both the Research Fund for the Doctoral Program of Higher Education under contract No. 1999042308 the Ministry of Science Technology of China under contract No. 2001 DIA 50041.
文摘Using Morlet wavelet transform and harmonic analysis the multi-scale variability of subsurface temperature in the South China Sea is studied by analyzing one-year (from April 1998 to April 1999) ATLAS mooring data. By wavelet transform, annual and semi-annual cycle as well as intrasea-sonal variations are found, with different dominance, in subsurface temperature. For annual harmonic cycle, both the downward net surface heat flux and thermocline vertical movement partially control the subsurface temperature variability. For semi-annual cycle and intraseasonal variability, the subsurface temperature variability is mainly linked to the vertical displacement of thermocline.
基金This research is supported by the Key Project of National Natural Science Foundation of China (No.40035010
文摘The turbulence data are decomposed to multi-scales and its respective fractal dimensions are computed. The conclusions are drawn from investigating the variation of fractal dimensions. With the level of decomposition increasing, the low-frequency part extracted from the turbulence signals tends to be simple and smooth, the dimensions decrease; the high-frequency part shows complex, the dimensions are fixed, about 1.70 on the average, which indicates clear self-similarity characteristics.
基金supported by Grant-in-Aid for Scientifi Research(Grant(B)17300141)the Development and Use of the Next Generation Supercomputer Project of the MEXT,Japan+4 种基金Fuyou Liang was supported by the National Natural Science Foundation of China(Grant 81370438)the SJTU Medical Engineering Cross-cutting Research Foundation(Grant YG2012MS24)Ken-iti Tsubota was partly funded by a Grant-in-Aid for Challenging Exploratory Research(Grant 25630046),JSPSsupporting the computing facilities essential for the completion of this studyFinancial support provided by HKUST to JW is acknowledged
文摘The human cardiovascular system is a closed- loop and complex vascular network with multi-scaled het- erogeneous hemodynamic phenomena. Here, we give a selective review of recent progress in macro-hemodynamic modeling, with a focus on geometrical multi-scale model- ing of the vascular network, micro-hemodynamic modeling of microcirculation, as well as blood cellular, subcellular, endothelial biomechanics, and their interaction with arter- ial vessel mechanics. We describe in detail the methodology of hemodynamic modeling and its potential applications in cardiovascular research and clinical practice. In addition, we present major topics for future study: recent progress of patient-specific hemodynamic modeling in clinical applica- tions, micro-hemodynamic modeling in capillaries and blood cells, and the importance and potential of the multi-scale hemodynarnic modeling.
文摘Successful modeling and/or design of engineering systems often requires one to address the impact of multiple "design variables" on the prescribed outcome.There are often multiple,competing objectives based on which we assess the outcome of optimization.Since accurate,high fidelity models are typically time consuming and computationally expensive,comprehensive evaluations can be conducted only if an efficient framework is available.Furthermore,informed decisions of the model/hardware's overall performance rely on an adequate understanding of the global,not local,sensitivity of the individual design variables on the objectives.The surrogate-based approach,which involves approximating the objectives as continuous functions of design variables from limited data,offers a rational framework to reduce the number of important input variables,i.e.,the dimension of a design or modeling space.In this paper,we review the fundamental issues that arise in surrogate-based analysis and optimization,highlighting concepts,methods,techniques,as well as modeling implications for mechanics problems.To aid the discussions of the issues involved,we summarize recent efforts in investigating cryogenic cavitating flows,active flow control based on dielectric barrier discharge concepts,and lithium(Li)-ion batteries.It is also stressed that many multi-scale mechanics problems can naturally benefit from the surrogate approach for "scale bridging."