Multi-train modeling and simulation plays a vital role in railway electrification during operation and planning phase. Study of peak power demand and energy consumed by each traction substation needs to be deter- mine...Multi-train modeling and simulation plays a vital role in railway electrification during operation and planning phase. Study of peak power demand and energy consumed by each traction substation needs to be deter- mined to verify that electrical energy flowing in its railway power feeding system is appropriate or not. Gauss-Seidel, conventional Newton-Raphson, and current injection methods are well-known and widely accepted as a tool for electrical power network solver in DC railway power supply study. In this paper, a simplified Newton-Raphson method has been proposed. The proposed method employs a set of current-balance equations at each electrical node instead of the conventional power-balance equation used in the conventional Newton-Raphson method. This concept can remarkably reduce execution time and computing complexity for multi-train simulation. To evaluate its use, Sukhumvit line of Bangkok transit system (BTS) of Thai- land with 21.6-km line length and 22 passenger stopping stations is set as a test system. The multi-train simulation integrated with the proposed power network solver is developed to simulate 1-h operation service of selected 5-min headway. From the obtained results, the proposed method is more efficient with approximately 18 % faster than the conventional Newton-Raphson method and just over 6 % faster than the current injection method.展开更多
The train plan of urban rail transit under multi-routing mode can be divided into three parts: train formation, train operation periods and corresponding train counts of each routing in each period. Based on the anal...The train plan of urban rail transit under multi-routing mode can be divided into three parts: train formation, train operation periods and corresponding train counts of each routing in each period. Based on the analysis of passen- ger's general travel expenses and operator's benefits, the constraints and objective functions are defined and the multiobjective optimization model for the train plan of urban rail transit is presented. Factors considered in the multi- objective optimization model include transport capacity, the requirements of traffic organization, corporation benefits, passenger demands, and passenger choice behavior under multi-train-routing mode. According to the characteristics of this model and practical planning experience, a three-phase solution was designed to gradually optimize the train formarion, train counts as well as operation periods. The instance of Changsha Metro Line 2 validates the feasibility and efficiency of this approach.展开更多
文摘Multi-train modeling and simulation plays a vital role in railway electrification during operation and planning phase. Study of peak power demand and energy consumed by each traction substation needs to be deter- mined to verify that electrical energy flowing in its railway power feeding system is appropriate or not. Gauss-Seidel, conventional Newton-Raphson, and current injection methods are well-known and widely accepted as a tool for electrical power network solver in DC railway power supply study. In this paper, a simplified Newton-Raphson method has been proposed. The proposed method employs a set of current-balance equations at each electrical node instead of the conventional power-balance equation used in the conventional Newton-Raphson method. This concept can remarkably reduce execution time and computing complexity for multi-train simulation. To evaluate its use, Sukhumvit line of Bangkok transit system (BTS) of Thai- land with 21.6-km line length and 22 passenger stopping stations is set as a test system. The multi-train simulation integrated with the proposed power network solver is developed to simulate 1-h operation service of selected 5-min headway. From the obtained results, the proposed method is more efficient with approximately 18 % faster than the conventional Newton-Raphson method and just over 6 % faster than the current injection method.
基金supported by the National Natural Science Foundation of China (No. 70901076)Research Fund for the Doctoral Program of Higher Education of China (No. 20090162120021)Natural Science Foundation of Hunan Province (No. 10JJ4046)
文摘The train plan of urban rail transit under multi-routing mode can be divided into three parts: train formation, train operation periods and corresponding train counts of each routing in each period. Based on the analysis of passen- ger's general travel expenses and operator's benefits, the constraints and objective functions are defined and the multiobjective optimization model for the train plan of urban rail transit is presented. Factors considered in the multi- objective optimization model include transport capacity, the requirements of traffic organization, corporation benefits, passenger demands, and passenger choice behavior under multi-train-routing mode. According to the characteristics of this model and practical planning experience, a three-phase solution was designed to gradually optimize the train formarion, train counts as well as operation periods. The instance of Changsha Metro Line 2 validates the feasibility and efficiency of this approach.