By combining with the actual situation in the rural area,the practical technology of domestic wastewater treatment which had the wide popularization value was developed in the rural area of Taihu Basin.Moreover,the mu...By combining with the actual situation in the rural area,the practical technology of domestic wastewater treatment which had the wide popularization value was developed in the rural area of Taihu Basin.Moreover,the multi-soil-layering system was used to treat the concentrated rural domestic wastewater,and the demonstration project was established in Fenshui Village,Yixing,Jiangsu.The result showed that the infrastructure and operating cost of system was low,and the treatment effect was good.The average removal ratios of COD,NH+4-N,TN,TP and SS were respectively 70%,83%,59%,76% and 94%.The quality of yielding water could reach Grade A standard of Pollutant Emission Standards in Urban Wastewater Treatment Plant.展开更多
As part of the drive to improve coffee and cocoa production in Ivory Coast, studies are carried out to identify soils that are favourable for these crops. It is therefore necessary to orientate soil investigations bas...As part of the drive to improve coffee and cocoa production in Ivory Coast, studies are carried out to identify soils that are favourable for these crops. It is therefore necessary to orientate soil investigations based on reliable criteria that best discriminate soil cover. With this in mind, this study is being carried out to help improve survey methods by mapping soil landscapes. It uses GIS and weighted multicriteria analysis. To do this, satellite images were processed and the geological map of the square degrees of M’Bahiakro and Daloa was reclassified. The results show that relief is the main factor in soil landscape differentiation, with respective weights of 0.58 and 0.67 for the forest and pre-forest zones. In contrast, the weight of geological formation in soil landscape differentiation remains low (0.05 for the forest zone and 0.07 for the pre-forest zone). The criteria used on the base of aggregation sum methods have made it possible to formulate soil landscape mapping prediction functions according to agro-ecological environments in the humid intertropical zone. This is essential for the orientation of soil survey work. Nevertheless, other comparative methods, such as the coding mapping method, could provide elements for discussion to validate the models.展开更多
Gravel lateritic soils are intensively used in road geotechnical engineering. This material is largely representative of engineering soil all around the tropical African Countries [1,2]. Gravel lateritic soils from pa...Gravel lateritic soils are intensively used in road geotechnical engineering. This material is largely representative of engineering soil all around the tropical African Countries [1,2]. Gravel lateritic soils from parts of Burkina Faso and Senegal (West Africa) are used to determine the evolution of the geotechnical parameters from one to ten cycles of modified Proctor compaction. This test procedure is non-common for geotechnical purposes and it was found suitable and finally adopted to describe how these problematic soils behave when submitted to a multi-cyclic set of Modified Proctor compactions (OPM) [3,4]. On another hand, we propose a correlation between the traffic and the cycles of compaction considered as the repeated load. From that, this work shows the generation of active fine particles, the decrease of the CBR index and also the mechanical characteristics (mainly the Young Modulus, E) that contribute at least to the main deformation of the road structure.展开更多
Based on the nonlinear Mohr-Coulomb failure criterion and an associated flow rule,a kinematic admissible velocity field of failure mechanism of the 2-layer soil above a shallow horizontal strip anchor plate is constru...Based on the nonlinear Mohr-Coulomb failure criterion and an associated flow rule,a kinematic admissible velocity field of failure mechanism of the 2-layer soil above a shallow horizontal strip anchor plate is constructed.The ultimate pull-out force and its corresponding failure mechanism through the upper bound limit analysis according to a variation principle are deduced.When the 2-layer overlying soil is degraded into single-layer soil,the model of ultimate pullout force could also be degraded into the model of single-layer soil.And the comparison between results of single-layer soil variation method and those calculated by rigid limit analysis method proves the correctness of our method.Based on that,the influence of changes of geotechnical parameters on ultimate pullout forces and failure mechanism of a shallow horizontal strip anchor with the 2-layer soil above are analyzed.The results show that the ultimate pull-out force and failure mechanism of a shallow horizontal strip anchor with the 2-layer soil above are affected by the nonlinear geotechnical parameters greatly.Thus,it is very important to obtain the accurate geotechnical parameters of 2-layer soil for the evaluation of the ultimate pullout capacity of the anchor plate.展开更多
The method of principal component analysis was applied to systematical research on the soil multi-media environment, including soil, surface water, ground water, waterbody sediment and agricultural crops, as well as p...The method of principal component analysis was applied to systematical research on the soil multi-media environment, including soil, surface water, ground water, waterbody sediment and agricultural crops, as well as pollution-inducing wastewater, mullock (or waste ore) and slag in the periphery of a large-sized Pb-Zn mining and smelting plant in a karst area of Guangxi Zhuang Autonomous Region. The results revealed that soils in the area studied have been heavily polluted by Cd, Zn, Pb and Hg, and the levels of these metals in the samples of agricultural crop greatly exceed the standards. The above-mentioned pollutants exist in all soil-multi-media environments. The mullock, slag, wastewater, surface water, ground water, soil, and agricultural crops constitute a composite ecological chain. Therefore, the improper disposal of mullock and slag, and the use of polluted wastewater for agricultural irrigation are the main causes of soil pollution. Heavy metals in the soil have three transition progresses: point (improved soil with slag, ground water inflow plot), linear (river transition) and non-point transition (regional pollution by slag) patterns, and the tailing yard is the most important locus for heavy metals to release into the environment.展开更多
A multivariate statistical analysis was performed on multi-element soil geochemical data from the Koda Hill-Bulenga gold prospects in the Wa-Lawra gold belt, northwest Ghana. The objectives of the study were to define...A multivariate statistical analysis was performed on multi-element soil geochemical data from the Koda Hill-Bulenga gold prospects in the Wa-Lawra gold belt, northwest Ghana. The objectives of the study were to define gold relationships with other trace elements to determine possible pathfinder elements for gold from the soil geochemical data. The study focused on seven elements, namely, Au, Fe, Pb, Mn, Ag, As and Cu. Factor analysis and hierarchical cluster analysis were performed on the analyzed samples. Factor analysis explained 79.093% of the total variance of the data through three factors. This had the gold factor being factor 3, having associations of copper, iron, lead and manganese and accounting for 20.903% of the total variance. From hierarchical clustering, gold was also observed to be clustering with lead, copper, arsenic and silver. There was further indication that, gold concentrations were lower than that of its associations. It can be inferred from the results that, the occurrence of gold and its associated elements can be linked to both primary dispersion from underlying rocks and secondary processes such as lateritization. This data shows that Fe and Mn strongly associated with gold, and alongside Pb, Ag, As and Cu, these elements can be used as pathfinders for gold in the area, with ferruginous zones as targets.展开更多
The relationships between soil total nitrogen(STN)and influencing factors are scale-dependent.The objective of this study was to identify the multi-scale spatial relationships of STN with selected environmental factor...The relationships between soil total nitrogen(STN)and influencing factors are scale-dependent.The objective of this study was to identify the multi-scale spatial relationships of STN with selected environmental factors(elevation,slope and topographic wetness index),intrinsic soil factors(soil bulk density,sand content,silt content,and clay content)and combined environmental factors(including the first two principal components(PC1 and PC2)of the Vis-NIR soil spectra)along three sampling transects located at the upstream,midstream and downstream of Taiyuan Basin on the Chinese Loess Plateau.We separated the multivariate data series of STN and influencing factors at each transect into six intrinsic mode functions(IMFs)and one residue by multivariate empirical mode decomposition(MEMD).Meanwhile,we obtained the predicted equations of STN based on MEMD by stepwise multiple linear regression(SMLR).The results indicated that the dominant scales of explained variance in STN were at scale 995 m for transect 1,at scales 956 and 8852 m for transect 2,and at scales 972,5716 and 12,317 m for transect 3.Multi-scale correlation coefficients between STN and influencing factors were less significant in transect 3 than in transects 1 and 2.The goodness of fit root mean square error(RMSE),normalized root mean square error(NRMSE),and coefficient of determination(R2)indicated that the prediction of STN at the sampling scale by summing all of the predicted IMFs and residue was more accurate than that by SMLR directly.Therefore,the multi-scale method of MEMD has a good potential in characterizing the multi-scale spatial relationships between STN and influencing factors at the basin landscape scale.展开更多
This study presents promising variants of genetic programming (GP), namely linear genetic programming (LGP) and multi expression programming (MEP) to evaluate the liquefaction resistance of san- dy soils. Genera...This study presents promising variants of genetic programming (GP), namely linear genetic programming (LGP) and multi expression programming (MEP) to evaluate the liquefaction resistance of san- dy soils. Generalized LGP and MEP-based relationships were developed between the strain energy density required to trigger liquefaction (capacity energy) and the factors affecting the liquefaction characteristics of sands. The correlations were established based on well established and widely dispersed experimental results obtained from the literature. To verify the applicability of the derived models, they were employed to estimate the capacity energy values of parts of the test results that were not included in the analysis. The external validation of the models was verified using statistical criteria recommended by researchers. Sensitivity and parametric analyses were performed for further verification of the correlations. The results indicate that the proposed correlations are effectively capable of capturing the liquefaction resistance of a number of sandy soils. The developed correlations provide a significantly better prediction performance than the models found in the literature. Furthermore, the best LGP and MEP models perform superior than the optimal traditional GP model. The verification phases confirm the efficiency of the derived correlations for their general application to the assessment of the strain energy at the onset of liquefaction.展开更多
Soil moisture content (SMC) is a key hydrological parameter in agriculture,meteorology and climate change,and understanding of spatio-temporal distributions of SMC in farmlands is important to address the precise ir...Soil moisture content (SMC) is a key hydrological parameter in agriculture,meteorology and climate change,and understanding of spatio-temporal distributions of SMC in farmlands is important to address the precise irrigation scheduling.However,the hybrid interaction of static and dynamic environmental parameters makes it particularly difficult to accurately and reliably model the distribution of SMC.At present,deep learning wins numerous contests in machine learning and hence deep belief network (DBN) ,a breakthrough in deep learning is trained to extract the transition functions for the simulation of the cell state changes.In this study,we used a novel macroscopic cellular automata (MCA) model by combining DBN to predict the SMC over an irrigated corn field (an area of 22 km^2) in the Zhangye oasis,Northwest China.Static and dynamic environmental variables were prepared with regard to the complex hydrological processes.The widely used neural network,multi-layer perceptron (MLP) ,was utilized for comparison to DBN.The hybrid models (MLP-MCA and DBN-MCA) were calibrated and validated on SMC data within four months,i.e.June to September 2012,which were automatically observed by a wireless sensor network (WSN) .Compared with MLP-MCA,the DBN-MCA model led to a decrease in root mean squared error (RMSE) by 18%.Thus,the differences of prediction errors increased due to the propagating errors of variables,difficulties of knowing soil properties and recording irrigation amount in practice.The sequential Gaussian simulation (s Gs) was performed to assess the uncertainty of soil moisture estimations.Calculated with a threshold of SMC for each grid cell,the local uncertainty of simulated results in the post processing suggested that the probability of SMC less than 25% will be difference in different areas at different time periods.The current results showed that the DBN-MCA model performs better than the MLP-MCA model,and the DBN-MCA model provides a powerful tool for predicting SMC in highly non-linear forms.Moreover,because modeling soil moisture by using environmental variables is gaining increasing popularity,DBN techniques could contribute a lot to enhancing the calibration of MCA-based SMC estimations and hence provide an alternative approach for SMC monitoring in irrigation systems on the basis of canals.展开更多
This paper investigates the hydrological interactions in the atmosphere-evegetation-soil system by using the bucket model and several new simplified intermediately complex models. The results of mathematical analysis ...This paper investigates the hydrological interactions in the atmosphere-evegetation-soil system by using the bucket model and several new simplified intermediately complex models. The results of mathematical analysis and numerical simulations show that these models, despite their simplicity, can very clearly reveal the essential features of the rather complex hydrological system of atmosphere-ecosystem-soil. For given atmospheric variables, these models clearly demonstrate multiple timescales, the "red shift" of response spectra, multi-equilibria and limit cycles, bifurcation, abrupt change, self-organization, recovery, "desertification", and chaos. Most of these agree with observations. Especially, the weakening of "shading effect" of living canopy and the wilted biomass might be a major mechanism leading to the desertification in a relatively short period due to overgrazing, and the desertification in a relatively long period or in climate of change might be due to both Charney's mechanism and the shading effect. These ideas could be validated with further numerical simulations. In the paper, some methods for improving the estimation of timescales in the soil water evolution responding to the forcing are also proposed.展开更多
Conventional methods for hollow cylinder apparatus (HCA) specimen preparation are not applicable for T J-1 lunar soil simulant due to its wide particle size distribution. A novel method to prepare uniform T J-1 spec...Conventional methods for hollow cylinder apparatus (HCA) specimen preparation are not applicable for T J-1 lunar soil simulant due to its wide particle size distribution. A novel method to prepare uniform T J-1 specimen for HCA tests is put forward. The method is a combination of the multi-layering dry-rodding method and a new under-compaction criterion in the multi-layer with under-compaction method (UCM). In the novel method, the specimen is prepared with 5 layers by dry-rodding and the UCM is used to determine the height after each layer is compacted. The density uniformity of specimen is evaluated by the freezing method to find out the best under-compaction criterion. Two HCA specimens with the same target density are prepared by the novel method and examined in the tests of pure rotation of the principal stresses. Their conformable mechanical behaviors ascertain the effectiveness of the method to produce uniform and reproducible HCA specimens. Four groups of HCA tests are carried out to investigate the anisotropic and non-coaxial behaviors of TJ-I lunar soil simulant. The results indicate that the principal stress direction, the deviator stress ratio, the stress level and the coefficient of the intermediate principal stress significantly influence the strength and deformation properties of T J-1 lunar soil simulant.展开更多
Anew artificial boundary model based on multi-directional transmitting and viscous-spring artificial boundary theories is proposed to absorb stress waves in a saturated soil foundation in dynamic analysis. Since shear...Anew artificial boundary model based on multi-directional transmitting and viscous-spring artificial boundary theories is proposed to absorb stress waves in a saturated soil foundation in dynamic analysis. Since shear waves (S-waves) are the same in a saturated soil foundation and a single-phase medium foundation, a tangential visco-elastic boundary condition for a single-phase medium foundation can also be used for saturated soil foundations. Thus, the purpose of the artificial boundary proposed in this paper is primarily to absorb two types of P-waves in a saturated soil foundation. The main idea is that the stress of the P-waves in the saturated soil foundation is decomposed into two types. The first type of stress, δra' is absorbed by the first artificial boundary. The second type of stress, δrb, is balanced by the stress generated by the second artificial boundary. Ultimately, both types of P-waves (fast-P-waves and slow-P-waves) are absorbed by the artificial boundary model proposed in this paper. In particular, note that the fast-P-waves and slow-P-waves are absorbed at the position of the first boundary. Thus, the artificial boundary model proposed herein can simultaneously absorb P-fast waves, P-slow waves and shear waves. Finally, a numerical example is given to examine the proposed artificial boundary model, and the results show that it is very accurate.展开更多
Soil degradation in the form of soil erosion is a serious and continuous environmental problem in Jabi Tehinan Woreda. Uncontrolled land use, deforestation, over cultivation, overgrazing and exploitation of biomass fo...Soil degradation in the form of soil erosion is a serious and continuous environmental problem in Jabi Tehinan Woreda. Uncontrolled land use, deforestation, over cultivation, overgrazing and exploitation of biomass for firewood, construction and other household uses due to increasing population ultimately lead to severe soil erosion. The impact of natural hazards like erosion can be minimized and ultimately controlled by disaster preparedness maps. Therefore, the overall objective of this paper is to quantify and map an estimated soil loss by examining different topographic and anthropogenic factors for the planning and implementations of sustainable soil conservation and management system in the study area. This study had integrated Geographic Information System (GIS), Remote Sensing (RS) and Multi-Criteria Evaluation (MCE) techniques to quantify and map erosion vulnerable areas using RUSLE model. Slope gradient, slope length, soil type, soil conservations techniques, cover management and rainfall variables were used as input model parameters/variables. The data had been collected and analyzed from different land sat imageries, SRTM data, topomaps and point interpolations of primary data. Finally, the aggregated effects of all parameters had been analyzed and soil loss from the area was calculated using RUSEL models. After analyzing all model parameters, areas in steeper slope with Lithosols, Eutric Nitosols, Orthic Luvisols, croplands, bare lands and river banks have been identified as the most erosion vulnerable areas. Quantitatively, an estimated annual soil loss in Jabi Tehinan Woreda ranges from nearly 0 in south and central parts of the area to 504.6 t/ha/yr in steeply sloping mountainous areas of the north and north-eastern parts of the catchments.展开更多
This paper discusses various policy alternatives for the implementation of a biofuel crop on an island scale. It adopts an integrated approach by carrying out Multi-Criteria Assessment, as well as using a Geographical...This paper discusses various policy alternatives for the implementation of a biofuel crop on an island scale. It adopts an integrated approach by carrying out Multi-Criteria Assessment, as well as using a Geographical Information System. The assessment is based on an interdisciplinary research project carried out by the University of La Laguna to evaluate the agricultural and chemical feasibility, and the socio-economic implications of the cultivation of Jatropha as a source of biofuel on one of the Canary Islands, Fuerteventura. A number of alternatives were analysed for growing Jatropha, and the results suggest that the best alternative involves using Typic Torrifluents soil and irrigation with reclaimed Recycled Urban Wastewater at 75% evapotranspiration cover.展开更多
India is an ancient land having high seasonal rain fall (4 months rain & 8 months dry), has paddy cultivation. Becauses silt-sand separation;buoyant sand gets carried;silt agglutinates. Rill fluid dissolves agglut...India is an ancient land having high seasonal rain fall (4 months rain & 8 months dry), has paddy cultivation. Becauses silt-sand separation;buoyant sand gets carried;silt agglutinates. Rill fluid dissolves agglutinated soil;vectors as silt → degradation. Indian farmer has unique agricultural field conservation;soil cum fertility maintenance/regeneration heritage. Also use the stubble and cow dung (cellulose) as binder cum multi purpose in-field uses. economic;ecologically safe;and not discussed earlier. Good tool for altruistic administrations.展开更多
A set of serf-developed apparatus for foundation physical model were utilized to conduct model tests of the multi-element composite foundation with a steel pipe pile and several gravel piles. Some load-bearing charact...A set of serf-developed apparatus for foundation physical model were utilized to conduct model tests of the multi-element composite foundation with a steel pipe pile and several gravel piles. Some load-bearing characteristics of the multi-element Composite foundation, including the curves of foundation settlement, stresses of piles, pile-soil stress ratio, and load-sharing ratio of piles and soil, were obtained to study its working performances in silty sand soil. The experimental results revealed that the multi-element composite foundation with steel pipe pile and gravel pile contributed more than the gravel pile composite foundation in improving the bearing capacity of the silty fine sand.展开更多
基金Supported by The Important Special Item of National Water Body Pollution Control and Treatment Science Technology(2009ZX07528005)~~
文摘By combining with the actual situation in the rural area,the practical technology of domestic wastewater treatment which had the wide popularization value was developed in the rural area of Taihu Basin.Moreover,the multi-soil-layering system was used to treat the concentrated rural domestic wastewater,and the demonstration project was established in Fenshui Village,Yixing,Jiangsu.The result showed that the infrastructure and operating cost of system was low,and the treatment effect was good.The average removal ratios of COD,NH+4-N,TN,TP and SS were respectively 70%,83%,59%,76% and 94%.The quality of yielding water could reach Grade A standard of Pollutant Emission Standards in Urban Wastewater Treatment Plant.
文摘As part of the drive to improve coffee and cocoa production in Ivory Coast, studies are carried out to identify soils that are favourable for these crops. It is therefore necessary to orientate soil investigations based on reliable criteria that best discriminate soil cover. With this in mind, this study is being carried out to help improve survey methods by mapping soil landscapes. It uses GIS and weighted multicriteria analysis. To do this, satellite images were processed and the geological map of the square degrees of M’Bahiakro and Daloa was reclassified. The results show that relief is the main factor in soil landscape differentiation, with respective weights of 0.58 and 0.67 for the forest and pre-forest zones. In contrast, the weight of geological formation in soil landscape differentiation remains low (0.05 for the forest zone and 0.07 for the pre-forest zone). The criteria used on the base of aggregation sum methods have made it possible to formulate soil landscape mapping prediction functions according to agro-ecological environments in the humid intertropical zone. This is essential for the orientation of soil survey work. Nevertheless, other comparative methods, such as the coding mapping method, could provide elements for discussion to validate the models.
文摘Gravel lateritic soils are intensively used in road geotechnical engineering. This material is largely representative of engineering soil all around the tropical African Countries [1,2]. Gravel lateritic soils from parts of Burkina Faso and Senegal (West Africa) are used to determine the evolution of the geotechnical parameters from one to ten cycles of modified Proctor compaction. This test procedure is non-common for geotechnical purposes and it was found suitable and finally adopted to describe how these problematic soils behave when submitted to a multi-cyclic set of Modified Proctor compactions (OPM) [3,4]. On another hand, we propose a correlation between the traffic and the cycles of compaction considered as the repeated load. From that, this work shows the generation of active fine particles, the decrease of the CBR index and also the mechanical characteristics (mainly the Young Modulus, E) that contribute at least to the main deformation of the road structure.
基金Project (51478477) supported by the National Natural Science Foundation of ChinaProject (2016CX012) supported by the Innovation-Driven Project of Central South University,ChinaProject (2014122006) supported by the Guizhou Provincial Department of Transportation Foundation,China
文摘Based on the nonlinear Mohr-Coulomb failure criterion and an associated flow rule,a kinematic admissible velocity field of failure mechanism of the 2-layer soil above a shallow horizontal strip anchor plate is constructed.The ultimate pull-out force and its corresponding failure mechanism through the upper bound limit analysis according to a variation principle are deduced.When the 2-layer overlying soil is degraded into single-layer soil,the model of ultimate pullout force could also be degraded into the model of single-layer soil.And the comparison between results of single-layer soil variation method and those calculated by rigid limit analysis method proves the correctness of our method.Based on that,the influence of changes of geotechnical parameters on ultimate pullout forces and failure mechanism of a shallow horizontal strip anchor with the 2-layer soil above are analyzed.The results show that the ultimate pull-out force and failure mechanism of a shallow horizontal strip anchor with the 2-layer soil above are affected by the nonlinear geotechnical parameters greatly.Thus,it is very important to obtain the accurate geotechnical parameters of 2-layer soil for the evaluation of the ultimate pullout capacity of the anchor plate.
基金support by Guangxi Scientific and Technological Brainstorm Project (Guikegong 0779011)
文摘The method of principal component analysis was applied to systematical research on the soil multi-media environment, including soil, surface water, ground water, waterbody sediment and agricultural crops, as well as pollution-inducing wastewater, mullock (or waste ore) and slag in the periphery of a large-sized Pb-Zn mining and smelting plant in a karst area of Guangxi Zhuang Autonomous Region. The results revealed that soils in the area studied have been heavily polluted by Cd, Zn, Pb and Hg, and the levels of these metals in the samples of agricultural crop greatly exceed the standards. The above-mentioned pollutants exist in all soil-multi-media environments. The mullock, slag, wastewater, surface water, ground water, soil, and agricultural crops constitute a composite ecological chain. Therefore, the improper disposal of mullock and slag, and the use of polluted wastewater for agricultural irrigation are the main causes of soil pollution. Heavy metals in the soil have three transition progresses: point (improved soil with slag, ground water inflow plot), linear (river transition) and non-point transition (regional pollution by slag) patterns, and the tailing yard is the most important locus for heavy metals to release into the environment.
文摘A multivariate statistical analysis was performed on multi-element soil geochemical data from the Koda Hill-Bulenga gold prospects in the Wa-Lawra gold belt, northwest Ghana. The objectives of the study were to define gold relationships with other trace elements to determine possible pathfinder elements for gold from the soil geochemical data. The study focused on seven elements, namely, Au, Fe, Pb, Mn, Ag, As and Cu. Factor analysis and hierarchical cluster analysis were performed on the analyzed samples. Factor analysis explained 79.093% of the total variance of the data through three factors. This had the gold factor being factor 3, having associations of copper, iron, lead and manganese and accounting for 20.903% of the total variance. From hierarchical clustering, gold was also observed to be clustering with lead, copper, arsenic and silver. There was further indication that, gold concentrations were lower than that of its associations. It can be inferred from the results that, the occurrence of gold and its associated elements can be linked to both primary dispersion from underlying rocks and secondary processes such as lateritization. This data shows that Fe and Mn strongly associated with gold, and alongside Pb, Ag, As and Cu, these elements can be used as pathfinders for gold in the area, with ferruginous zones as targets.
基金financially supported by the Research Project of Shanxi Scholarship Council of China (2017– 075)the Natural Science foundation for Young Scientists of Shanxi Province (201801D221103)the Innovation Grant of Shanxi Agricultural University (2017ZZ07)
文摘The relationships between soil total nitrogen(STN)and influencing factors are scale-dependent.The objective of this study was to identify the multi-scale spatial relationships of STN with selected environmental factors(elevation,slope and topographic wetness index),intrinsic soil factors(soil bulk density,sand content,silt content,and clay content)and combined environmental factors(including the first two principal components(PC1 and PC2)of the Vis-NIR soil spectra)along three sampling transects located at the upstream,midstream and downstream of Taiyuan Basin on the Chinese Loess Plateau.We separated the multivariate data series of STN and influencing factors at each transect into six intrinsic mode functions(IMFs)and one residue by multivariate empirical mode decomposition(MEMD).Meanwhile,we obtained the predicted equations of STN based on MEMD by stepwise multiple linear regression(SMLR).The results indicated that the dominant scales of explained variance in STN were at scale 995 m for transect 1,at scales 956 and 8852 m for transect 2,and at scales 972,5716 and 12,317 m for transect 3.Multi-scale correlation coefficients between STN and influencing factors were less significant in transect 3 than in transects 1 and 2.The goodness of fit root mean square error(RMSE),normalized root mean square error(NRMSE),and coefficient of determination(R2)indicated that the prediction of STN at the sampling scale by summing all of the predicted IMFs and residue was more accurate than that by SMLR directly.Therefore,the multi-scale method of MEMD has a good potential in characterizing the multi-scale spatial relationships between STN and influencing factors at the basin landscape scale.
文摘This study presents promising variants of genetic programming (GP), namely linear genetic programming (LGP) and multi expression programming (MEP) to evaluate the liquefaction resistance of san- dy soils. Generalized LGP and MEP-based relationships were developed between the strain energy density required to trigger liquefaction (capacity energy) and the factors affecting the liquefaction characteristics of sands. The correlations were established based on well established and widely dispersed experimental results obtained from the literature. To verify the applicability of the derived models, they were employed to estimate the capacity energy values of parts of the test results that were not included in the analysis. The external validation of the models was verified using statistical criteria recommended by researchers. Sensitivity and parametric analyses were performed for further verification of the correlations. The results indicate that the proposed correlations are effectively capable of capturing the liquefaction resistance of a number of sandy soils. The developed correlations provide a significantly better prediction performance than the models found in the literature. Furthermore, the best LGP and MEP models perform superior than the optimal traditional GP model. The verification phases confirm the efficiency of the derived correlations for their general application to the assessment of the strain energy at the onset of liquefaction.
基金supported by the National Natural Science Foundation of China (41130530,91325301,41401237,41571212,41371224)the Jiangsu Province Science Foundation for Youths (BK20141053)the Field Frontier Program of the Institute of Soil Science,Chinese Academy of Sciences (ISSASIP1624)
文摘Soil moisture content (SMC) is a key hydrological parameter in agriculture,meteorology and climate change,and understanding of spatio-temporal distributions of SMC in farmlands is important to address the precise irrigation scheduling.However,the hybrid interaction of static and dynamic environmental parameters makes it particularly difficult to accurately and reliably model the distribution of SMC.At present,deep learning wins numerous contests in machine learning and hence deep belief network (DBN) ,a breakthrough in deep learning is trained to extract the transition functions for the simulation of the cell state changes.In this study,we used a novel macroscopic cellular automata (MCA) model by combining DBN to predict the SMC over an irrigated corn field (an area of 22 km^2) in the Zhangye oasis,Northwest China.Static and dynamic environmental variables were prepared with regard to the complex hydrological processes.The widely used neural network,multi-layer perceptron (MLP) ,was utilized for comparison to DBN.The hybrid models (MLP-MCA and DBN-MCA) were calibrated and validated on SMC data within four months,i.e.June to September 2012,which were automatically observed by a wireless sensor network (WSN) .Compared with MLP-MCA,the DBN-MCA model led to a decrease in root mean squared error (RMSE) by 18%.Thus,the differences of prediction errors increased due to the propagating errors of variables,difficulties of knowing soil properties and recording irrigation amount in practice.The sequential Gaussian simulation (s Gs) was performed to assess the uncertainty of soil moisture estimations.Calculated with a threshold of SMC for each grid cell,the local uncertainty of simulated results in the post processing suggested that the probability of SMC less than 25% will be difference in different areas at different time periods.The current results showed that the DBN-MCA model performs better than the MLP-MCA model,and the DBN-MCA model provides a powerful tool for predicting SMC in highly non-linear forms.Moreover,because modeling soil moisture by using environmental variables is gaining increasing popularity,DBN techniques could contribute a lot to enhancing the calibration of MCA-based SMC estimations and hence provide an alternative approach for SMC monitoring in irrigation systems on the basis of canals.
基金This work was supported by the China National Science foundation (Grant No, 40233027) N0AA 0ffice of Global Programs, NASA (NAGA-13322)+1 种基金the U. S. National Science foundation (ATM 0301188) the Chinese Academy of Sciences' 0verseas Assessor's Grant and Well-Known 0verseas Chinese Scholar Grant.
文摘This paper investigates the hydrological interactions in the atmosphere-evegetation-soil system by using the bucket model and several new simplified intermediately complex models. The results of mathematical analysis and numerical simulations show that these models, despite their simplicity, can very clearly reveal the essential features of the rather complex hydrological system of atmosphere-ecosystem-soil. For given atmospheric variables, these models clearly demonstrate multiple timescales, the "red shift" of response spectra, multi-equilibria and limit cycles, bifurcation, abrupt change, self-organization, recovery, "desertification", and chaos. Most of these agree with observations. Especially, the weakening of "shading effect" of living canopy and the wilted biomass might be a major mechanism leading to the desertification in a relatively short period due to overgrazing, and the desertification in a relatively long period or in climate of change might be due to both Charney's mechanism and the shading effect. These ideas could be validated with further numerical simulations. In the paper, some methods for improving the estimation of timescales in the soil water evolution responding to the forcing are also proposed.
基金Supported by the China National Funds for Distinguished Young Scientists(51025932)the National Natural Science Foundation of China(51179128)Program of Shanghai Academic Chief Scientist(11XD1405200)
文摘Conventional methods for hollow cylinder apparatus (HCA) specimen preparation are not applicable for T J-1 lunar soil simulant due to its wide particle size distribution. A novel method to prepare uniform T J-1 specimen for HCA tests is put forward. The method is a combination of the multi-layering dry-rodding method and a new under-compaction criterion in the multi-layer with under-compaction method (UCM). In the novel method, the specimen is prepared with 5 layers by dry-rodding and the UCM is used to determine the height after each layer is compacted. The density uniformity of specimen is evaluated by the freezing method to find out the best under-compaction criterion. Two HCA specimens with the same target density are prepared by the novel method and examined in the tests of pure rotation of the principal stresses. Their conformable mechanical behaviors ascertain the effectiveness of the method to produce uniform and reproducible HCA specimens. Four groups of HCA tests are carried out to investigate the anisotropic and non-coaxial behaviors of TJ-I lunar soil simulant. The results indicate that the principal stress direction, the deviator stress ratio, the stress level and the coefficient of the intermediate principal stress significantly influence the strength and deformation properties of T J-1 lunar soil simulant.
基金National Natural Science Foundation of China Under Grant Nos.51109029,51178081,51138001,51009020China Postdoctoral Science Foundation Under Grant No. 20110491535
文摘Anew artificial boundary model based on multi-directional transmitting and viscous-spring artificial boundary theories is proposed to absorb stress waves in a saturated soil foundation in dynamic analysis. Since shear waves (S-waves) are the same in a saturated soil foundation and a single-phase medium foundation, a tangential visco-elastic boundary condition for a single-phase medium foundation can also be used for saturated soil foundations. Thus, the purpose of the artificial boundary proposed in this paper is primarily to absorb two types of P-waves in a saturated soil foundation. The main idea is that the stress of the P-waves in the saturated soil foundation is decomposed into two types. The first type of stress, δra' is absorbed by the first artificial boundary. The second type of stress, δrb, is balanced by the stress generated by the second artificial boundary. Ultimately, both types of P-waves (fast-P-waves and slow-P-waves) are absorbed by the artificial boundary model proposed in this paper. In particular, note that the fast-P-waves and slow-P-waves are absorbed at the position of the first boundary. Thus, the artificial boundary model proposed herein can simultaneously absorb P-fast waves, P-slow waves and shear waves. Finally, a numerical example is given to examine the proposed artificial boundary model, and the results show that it is very accurate.
文摘Soil degradation in the form of soil erosion is a serious and continuous environmental problem in Jabi Tehinan Woreda. Uncontrolled land use, deforestation, over cultivation, overgrazing and exploitation of biomass for firewood, construction and other household uses due to increasing population ultimately lead to severe soil erosion. The impact of natural hazards like erosion can be minimized and ultimately controlled by disaster preparedness maps. Therefore, the overall objective of this paper is to quantify and map an estimated soil loss by examining different topographic and anthropogenic factors for the planning and implementations of sustainable soil conservation and management system in the study area. This study had integrated Geographic Information System (GIS), Remote Sensing (RS) and Multi-Criteria Evaluation (MCE) techniques to quantify and map erosion vulnerable areas using RUSLE model. Slope gradient, slope length, soil type, soil conservations techniques, cover management and rainfall variables were used as input model parameters/variables. The data had been collected and analyzed from different land sat imageries, SRTM data, topomaps and point interpolations of primary data. Finally, the aggregated effects of all parameters had been analyzed and soil loss from the area was calculated using RUSEL models. After analyzing all model parameters, areas in steeper slope with Lithosols, Eutric Nitosols, Orthic Luvisols, croplands, bare lands and river banks have been identified as the most erosion vulnerable areas. Quantitatively, an estimated annual soil loss in Jabi Tehinan Woreda ranges from nearly 0 in south and central parts of the area to 504.6 t/ha/yr in steeply sloping mountainous areas of the north and north-eastern parts of the catchments.
文摘This paper discusses various policy alternatives for the implementation of a biofuel crop on an island scale. It adopts an integrated approach by carrying out Multi-Criteria Assessment, as well as using a Geographical Information System. The assessment is based on an interdisciplinary research project carried out by the University of La Laguna to evaluate the agricultural and chemical feasibility, and the socio-economic implications of the cultivation of Jatropha as a source of biofuel on one of the Canary Islands, Fuerteventura. A number of alternatives were analysed for growing Jatropha, and the results suggest that the best alternative involves using Typic Torrifluents soil and irrigation with reclaimed Recycled Urban Wastewater at 75% evapotranspiration cover.
文摘India is an ancient land having high seasonal rain fall (4 months rain & 8 months dry), has paddy cultivation. Becauses silt-sand separation;buoyant sand gets carried;silt agglutinates. Rill fluid dissolves agglutinated soil;vectors as silt → degradation. Indian farmer has unique agricultural field conservation;soil cum fertility maintenance/regeneration heritage. Also use the stubble and cow dung (cellulose) as binder cum multi purpose in-field uses. economic;ecologically safe;and not discussed earlier. Good tool for altruistic administrations.
基金The National Natural Science Foundation of China (No.50478090)
文摘A set of serf-developed apparatus for foundation physical model were utilized to conduct model tests of the multi-element composite foundation with a steel pipe pile and several gravel piles. Some load-bearing characteristics of the multi-element Composite foundation, including the curves of foundation settlement, stresses of piles, pile-soil stress ratio, and load-sharing ratio of piles and soil, were obtained to study its working performances in silty sand soil. The experimental results revealed that the multi-element composite foundation with steel pipe pile and gravel pile contributed more than the gravel pile composite foundation in improving the bearing capacity of the silty fine sand.