When running an experiment, inhomogeneity of the experimental units may result in poor estimations of treatment effects. Thus, it is desirable to select a good blocked design before running the experiment. Mostly, a s...When running an experiment, inhomogeneity of the experimental units may result in poor estimations of treatment effects. Thus, it is desirable to select a good blocked design before running the experiment. Mostly, a single block variable was used in the literature to treat the inhomogeneity for simplicity. However, in practice, the inhomogeneity often comes from multi block variables. Recently, a new criterion called B2-GMC was proposed for two-level regular designs with multi block variables. This paper proposes a systematic theory on constructing some B^2-GMC designs for the first time. Experimenters can easily obtain the B^2-GMC designs according to the construction method. Pros of B^2-GMC designs are highlighted in Section 4, and the designs with small run sizes are tabulated in Appendix B for practical use.展开更多
The distinct element method(DEM)has been used successfully for the dynamic analysis of rigid block sys- tems.One of many difficulties associated with DEM is modeling of damping.In this paper,new procedures are propose...The distinct element method(DEM)has been used successfully for the dynamic analysis of rigid block sys- tems.One of many difficulties associated with DEM is modeling of damping.In this paper,new procedures are proposed for the damping modeling and its numerical implementation in distinct element analysis of rigid muhi-block systems.The stiff- ness proportional damping is constructed for the prescribed damping ratio,based on the non-zero fundamental frequency ef- fective during the time interval while the boundary conditions remain essentially constant.At this time interval,the funda- mental frequency can be estimated without complete eigenvalue analysis.The damping coefficients will vary while the damp- ing ratio remains the same throughout the entire analysis.A new numerical procedure is developed to prevent unnecessary energy loss that can occur during the separation phases.These procedures were implemented in the development of the dis- tinet element method for the dynamic analyses of piled multi-block systems.The analysis results |or the single-block and two-block systems were in a good agreement with the analytic predictions.Applications to the seismic analyses of piled four- block systems revealed that the new procedures can make a significant difference and may lead to much-improved results.展开更多
In order to analyze the hydrodynamic performance of the ducted propeller with high precision, this paper proposes a new method which combines Multi-Block Hybrid Mesh and Reynolds Stress Model (MBHM & RSM). The cal...In order to analyze the hydrodynamic performance of the ducted propeller with high precision, this paper proposes a new method which combines Multi-Block Hybrid Mesh and Reynolds Stress Model (MBHM & RSM). The calculation errors of MBHM & RSM and standard two-equation model (standard k-ε model) on the ducted propeller JD7704 +Ka4-55 are compared. The maximum error of the total thrust coefficient KT, the duct thrust coefficient KTN, the torque coefficient KQ and the open-water efficiency η0 of MBHM & RSM are 2.98%, 4.01%, 1.46%, and 0.89%, respectively, which are lower than those of standard k-ε model. Indeed, the pressure distribution on the propeller surfaces, the pressure and the velocity vector distribution of the flow field are also analyzed, which are consistent with the theory. It is demonstrated that MBHM & RSM on the thruster dynamics analysis are feasible. This paper provides reference in the thruster designing of underwater robot.展开更多
A multi-block model and a corresponding computer program have been developed which predict the kinematics of landslides.Furthermore,a unique event for studying different models simulating the triggering and movement o...A multi-block model and a corresponding computer program have been developed which predict the kinematics of landslides.Furthermore,a unique event for studying different models simulating the triggering and movement of landslides is the 2008Wenchuan earthquake in the mountainous region in Sichuan Province of China,which caused a large number of rapid landslides.The purpose of the paper is two-fold:(a)to propose and incorporate into the multi-block model constitutive relations predicting soil response along slip surfaces,and(b)to apply the multi-block model with the constitutive relations at landslides triggered by the Wenchuan earthquake.The proposed constitutive equations predict the shape of the shear stress-displacement response measured in ring shear tests.In the application,four landslides caused by the Wenchuan earthquake were considered.Only in one of these landslides the shear resistance-displacement response along the slip surface has been measured in laboratory tests.At this landslide,the triggering and movement of the landslide was predicted.In the other landslides,back analyses were performed and it was observed that the multi-block model predicted reasonably well the final configuration of all slides.In addition,as the measured and back-estimated total friction angle of all landslides was less than 180,and the materials along the slip surface were sandy,it is inferred that some,or all of the slip surface during these slides was sheared in an undrained manner and excess pore pressures generated during sliding played a key role in the triggering and movement of these landslides.Concluding,the paper(A)proposed and validated a multi-block constitutive model which can be applied to predict the triggering and movement of earthquake-induced slides and(B)by analyzing four landslides of the 2008 Wenchuan earthquake,it concludes that some,or all of the slip surface during these slides,was sheared in an undrained manner and excess pore pressures generated during sliding played a key role in the triggering and movement of these landslides.展开更多
A series of liquid crystalline multi-block copolymers poly[1.6-bis(4-oxybenzoyl-oxy)hexane terephthalate]-b-bisphenol A polycarbonate (PHTH-6-b-PC) with different segment lengths were synthesized in tetrachloroethane ...A series of liquid crystalline multi-block copolymers poly[1.6-bis(4-oxybenzoyl-oxy)hexane terephthalate]-b-bisphenol A polycarbonate (PHTH-6-b-PC) with different segment lengths were synthesized in tetrachloroethane by solution polycondensation in which hydroxyl terminated PC and acyl chloride terminated PHTH-6 were used. It is found that block copolymers with high molecular weight and well-defined structures were obtained. All the block copolymers exhibit a nematic liquid crystalline texture.展开更多
To investigate the hydrodynamic characteristic of pontoon bridge, the multi-block grid generation technique with numerical methods for viscous fluid dynamics is applied to numerical simulations on the hydrodynamic cha...To investigate the hydrodynamic characteristic of pontoon bridge, the multi-block grid generation technique with numerical methods for viscous fluid dynamics is applied to numerical simulations on the hydrodynamic characteristic of a ribbon ferrying raft model at a series of towing speeds. Comparison of the simulated results with the experimental data indicates that the simulated results are acceptable. It shows that the multi-block grid generation technique is effective in the computation on pontoon bridge hydrodynamics.展开更多
Liquid crystalline multi-block copolymers poly[1,6-bis(4-oxybenzoyl-oxy)hexane terephthalate]-b-bisphenol A polycarbonate (PHTH-6-b-PC) with different segments of polycarbonate (PC) and thermotropic polyester PHTH-6 w...Liquid crystalline multi-block copolymers poly[1,6-bis(4-oxybenzoyl-oxy)hexane terephthalate]-b-bisphenol A polycarbonate (PHTH-6-b-PC) with different segments of polycarbonate (PC) and thermotropic polyester PHTH-6 were synthesized in tetrachloroethane at 144 similar to 146 degrees C. The influence of segment length on the resulting phase structure and thermal behavior of block copolymers was also discussed. It is demonstrated by TEM and DMA that the resulting block copolymers show a considerable microphase separation. The degree of phase separation and the thermal behavior of the block copolymers are strongly dependent on the molecular weight of the segments incorporated.展开更多
It had very long been a dream in polymer science to synthesize long multi-block polymer chains with an orderedchain sequence and controllable block lengths. Using ionic or living free radical polymerization or furnish...It had very long been a dream in polymer science to synthesize long multi-block polymer chains with an orderedchain sequence and controllable block lengths. Using ionic or living free radical polymerization or furnishing each end ofpolymer blocks with a reactive functional group, one can only prepare heteropolymer chains with few long blocks, such asdiblock and triblock copolymers. The most plausible result so far was a pentablock copolymer. Recently, using a combinationof polymer physics and synthetic chemistry, we have invented self-assembly assisted polycondensation (SAAP). Thiscommunication reports the results of using this novel. method to connect 10-100 triblock polymer chains together to formlong multi-block heteropolymer chains with an ordered sequence and controllable block lengths.展开更多
A ternary hybrid membrane architecture consisting of sulfonated fluorinated multi-block copolymer (SFMC), sulfonated (poly ether ether ketone) (SPEEK) and I or 5 wt% graphene oxide (GO) was fabricated through ...A ternary hybrid membrane architecture consisting of sulfonated fluorinated multi-block copolymer (SFMC), sulfonated (poly ether ether ketone) (SPEEK) and I or 5 wt% graphene oxide (GO) was fabricated through a facile solution casting approach. The simple, but effective monomer sulfonation was performed for SFMC to create compact and rigid hydrophobic backbone structures, while conventional random sulfonation was carried-out for SPEEK. Hydrophilic-hydrophobic-hydrophilic structure of SFMC enhances the compatibility with SPEEK and GO and allows for an unprecedented approach to alter me- chanical strength and proton conductivity of ternary hybrid membrane, as verified from universal test machine (UTM) curves and alternating current (AC) impedance plots. The impact of GO integration on the morphology and roughness of hybrid membrane was scrutinized using field emission scanning electron microscope (FE-SEM) and atomic force microscope (AFM). Ternary hybrid showed uniform intercalation of GO nanosheets throughout the entire surface of membrane with an increased surface roughness of 8.91 nm. The constructed ternary hybrid membrane revealed excellent water absorption, ion exchange capacity and gas barrier properties, while retaining reasonable dimensional stability. The well-optimized ternary hybrid membrane containing 5 wt% GO revealed a maximum proton conductivity of 111.9 mS/cm, which is higher by a factor of two-fold with respect to that of bare SFMC membrane. The maximum PEMFC power density of 528.07mW/cm2 was yielded by ternary hybrid membrane at a load current density of 1321.1 mA/cm2 when operating the cell at 70 ℃ under 100% relative humidity (RH). In comparison, a maximum power density of only 182.06 mW/cm2 was exhibited by the bare SFMC membrane at a load current density of 455.56 mA/cm2 under same operating conditions.展开更多
The analog-to-information convertor (AIC) is a successful practice of compressive sensing (CS) theory in the analog signal acquisition. This paper presents a multi-narrowband signals sampling and reconstruction model ...The analog-to-information convertor (AIC) is a successful practice of compressive sensing (CS) theory in the analog signal acquisition. This paper presents a multi-narrowband signals sampling and reconstruction model based on AIC and block sparsity. To overcome the practical problems, the block sparsity is divided into uniform block and non-uniform block situations, and the block restricted isometry property and sub-sampling limit in different situations are analyzed respectively in detail. Theoretical analysis proves that using the block sparsity in AIC can reduce the restricted isometric constant, increase the reconstruction probability and reduce the sub -sampling rate. Simulation results show that the proposed model can complete sub -sampling and reconstruction for multi-narrowband signals. This paper extends the application range of AIC from the finite information rate signal to the multi-narrowband signals by using the potential relevance of support sets. The proposed receiving model has low complexity and is easy to implement, which can promote the application of CS theory in the radar receiver to reduce the burden of analog-to digital convertor (ADC) and solve bandwidth limitations of ADC.展开更多
Long-term planning is one of the most important stages that determines the distribution of cash flows over the mine life and the feasibility of the project. However, it is not feasible in block caving to generate a pr...Long-term planning is one of the most important stages that determines the distribution of cash flows over the mine life and the feasibility of the project. However, it is not feasible in block caving to generate a production schedule that will provide optimal operating strategies without considering geotechnical constraints. This paper develops a mixed-integer linear programming(MILP) model to optimize the extraction sequence of drawpoints over multiple time horizons of block-cave mines with respect to the draw control systems. A multi-similarity index clustering technique to solve the MILP model in a reasonable time is also presented. Application and comparison of production scheduling based on the draw control system and clustering technique are illustrated using 325 drawpoints over 15 periods. The results show a significant reduction in the size of the MILP model, and in the time required to solve it.展开更多
Based on studies of palaeogeography, palaeobiogeography, palaeomagnetism, geochemistry and volcanism, this paper proposes that the Zhen'an-Xichuan area was a small Early Palaeozoic block rifted away from South Qin...Based on studies of palaeogeography, palaeobiogeography, palaeomagnetism, geochemistry and volcanism, this paper proposes that the Zhen'an-Xichuan area was a small Early Palaeozoic block rifted away from South Qinling and suturing onto North Qinling earlier than the other parts of South Qinling. In the Early Palaeozoic Qinling was a small archipelagic ocean basin with 5 rows of islands including the Zhen'an-Xichuan block. The drifting of the Yangtze and North China plates and the islands between them in the same direction at different speeds caused their suturing process to be different from the classic plate collision, which is the major feature of the suturing of the multi-island Tethys ocean basin. This also explains the problem that the Caledonian collision did not result in orogeny in eastern Qinling.展开更多
<div style="text-align:justify;"> STMV beamforming algorithm needs inversion operation of matrix, and its engineering application is limited due to its huge computational cost. This paper proposed bloc...<div style="text-align:justify;"> STMV beamforming algorithm needs inversion operation of matrix, and its engineering application is limited due to its huge computational cost. This paper proposed block iterative STMV algorithm based on one-phase regressive filter, matrix inversion lemma and inversion of block matrix. The computational cost is reduced approximately as 1/4 M times as original algorithm when array number is M. The simulation results show that this algorithm maintains high azimuth resolution and good performance of detecting multi-targets. Within 1 - 2 dB directional index and higher azimuth discrimination of block iterative STMV algorithm are achieved than STMV algorithm for sea trial data processing. And its good robustness lays the foundation of its engineering application. </div>展开更多
This study proposes a novel multi-fractal spectrumbasedapproach to distinguish linear block codes from its selfsynchronousscrambled codes. Given that the linear block codeand self-synchronous scrambled linear block co...This study proposes a novel multi-fractal spectrumbasedapproach to distinguish linear block codes from its selfsynchronousscrambled codes. Given that the linear block codeand self-synchronous scrambled linear block code share the propertyof linear correlation, the existing linear correlation-basedidentification method is invalid for this case. This drawback can becircumvented by introducing a novel multi-fractal spectrum-basedmethod. Simulation results show that the new method has highrobustness and under the same conditions of bit error, the lowerthe code rate, the higher the recognition rate. Thus, the methodhas significant potential for future application in engineering.展开更多
基金supported by the National Natural Science Foundation of China under Grant Nos.11271205,11371223,11431006 and 11601244the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20130031110002+1 种基金the“131”Talents Program of Tianjinthe Program for Scientific Research Innovation Team in Applied Probability and Statistics of Qufu Normal University under Grant No.0230518
文摘When running an experiment, inhomogeneity of the experimental units may result in poor estimations of treatment effects. Thus, it is desirable to select a good blocked design before running the experiment. Mostly, a single block variable was used in the literature to treat the inhomogeneity for simplicity. However, in practice, the inhomogeneity often comes from multi block variables. Recently, a new criterion called B2-GMC was proposed for two-level regular designs with multi block variables. This paper proposes a systematic theory on constructing some B^2-GMC designs for the first time. Experimenters can easily obtain the B^2-GMC designs according to the construction method. Pros of B^2-GMC designs are highlighted in Section 4, and the designs with small run sizes are tabulated in Appendix B for practical use.
文摘The distinct element method(DEM)has been used successfully for the dynamic analysis of rigid block sys- tems.One of many difficulties associated with DEM is modeling of damping.In this paper,new procedures are proposed for the damping modeling and its numerical implementation in distinct element analysis of rigid muhi-block systems.The stiff- ness proportional damping is constructed for the prescribed damping ratio,based on the non-zero fundamental frequency ef- fective during the time interval while the boundary conditions remain essentially constant.At this time interval,the funda- mental frequency can be estimated without complete eigenvalue analysis.The damping coefficients will vary while the damp- ing ratio remains the same throughout the entire analysis.A new numerical procedure is developed to prevent unnecessary energy loss that can occur during the separation phases.These procedures were implemented in the development of the dis- tinet element method for the dynamic analyses of piled multi-block systems.The analysis results |or the single-block and two-block systems were in a good agreement with the analytic predictions.Applications to the seismic analyses of piled four- block systems revealed that the new procedures can make a significant difference and may lead to much-improved results.
文摘In order to analyze the hydrodynamic performance of the ducted propeller with high precision, this paper proposes a new method which combines Multi-Block Hybrid Mesh and Reynolds Stress Model (MBHM & RSM). The calculation errors of MBHM & RSM and standard two-equation model (standard k-ε model) on the ducted propeller JD7704 +Ka4-55 are compared. The maximum error of the total thrust coefficient KT, the duct thrust coefficient KTN, the torque coefficient KQ and the open-water efficiency η0 of MBHM & RSM are 2.98%, 4.01%, 1.46%, and 0.89%, respectively, which are lower than those of standard k-ε model. Indeed, the pressure distribution on the propeller surfaces, the pressure and the velocity vector distribution of the flow field are also analyzed, which are consistent with the theory. It is demonstrated that MBHM & RSM on the thruster dynamics analysis are feasible. This paper provides reference in the thruster designing of underwater robot.
基金The National Key R&D Program of China (2017YFC1502903) Sichuan International Cooperation and Exchange for Science and Technology (2016HH0079)+1 种基金 "Novel methodologies for the assessment of risk of ground displacement" under ESPA 2007-2013 of Greece under
文摘A multi-block model and a corresponding computer program have been developed which predict the kinematics of landslides.Furthermore,a unique event for studying different models simulating the triggering and movement of landslides is the 2008Wenchuan earthquake in the mountainous region in Sichuan Province of China,which caused a large number of rapid landslides.The purpose of the paper is two-fold:(a)to propose and incorporate into the multi-block model constitutive relations predicting soil response along slip surfaces,and(b)to apply the multi-block model with the constitutive relations at landslides triggered by the Wenchuan earthquake.The proposed constitutive equations predict the shape of the shear stress-displacement response measured in ring shear tests.In the application,four landslides caused by the Wenchuan earthquake were considered.Only in one of these landslides the shear resistance-displacement response along the slip surface has been measured in laboratory tests.At this landslide,the triggering and movement of the landslide was predicted.In the other landslides,back analyses were performed and it was observed that the multi-block model predicted reasonably well the final configuration of all slides.In addition,as the measured and back-estimated total friction angle of all landslides was less than 180,and the materials along the slip surface were sandy,it is inferred that some,or all of the slip surface during these slides was sheared in an undrained manner and excess pore pressures generated during sliding played a key role in the triggering and movement of these landslides.Concluding,the paper(A)proposed and validated a multi-block constitutive model which can be applied to predict the triggering and movement of earthquake-induced slides and(B)by analyzing four landslides of the 2008 Wenchuan earthquake,it concludes that some,or all of the slip surface during these slides,was sheared in an undrained manner and excess pore pressures generated during sliding played a key role in the triggering and movement of these landslides.
文摘A series of liquid crystalline multi-block copolymers poly[1.6-bis(4-oxybenzoyl-oxy)hexane terephthalate]-b-bisphenol A polycarbonate (PHTH-6-b-PC) with different segment lengths were synthesized in tetrachloroethane by solution polycondensation in which hydroxyl terminated PC and acyl chloride terminated PHTH-6 were used. It is found that block copolymers with high molecular weight and well-defined structures were obtained. All the block copolymers exhibit a nematic liquid crystalline texture.
文摘To investigate the hydrodynamic characteristic of pontoon bridge, the multi-block grid generation technique with numerical methods for viscous fluid dynamics is applied to numerical simulations on the hydrodynamic characteristic of a ribbon ferrying raft model at a series of towing speeds. Comparison of the simulated results with the experimental data indicates that the simulated results are acceptable. It shows that the multi-block grid generation technique is effective in the computation on pontoon bridge hydrodynamics.
文摘Liquid crystalline multi-block copolymers poly[1,6-bis(4-oxybenzoyl-oxy)hexane terephthalate]-b-bisphenol A polycarbonate (PHTH-6-b-PC) with different segments of polycarbonate (PC) and thermotropic polyester PHTH-6 were synthesized in tetrachloroethane at 144 similar to 146 degrees C. The influence of segment length on the resulting phase structure and thermal behavior of block copolymers was also discussed. It is demonstrated by TEM and DMA that the resulting block copolymers show a considerable microphase separation. The degree of phase separation and the thermal behavior of the block copolymers are strongly dependent on the molecular weight of the segments incorporated.
基金Financial support of the Research Grants Council of the Hong Kong Special Administration Region Earmarked Grant (CUHK4267/00P, CUHK 4209/99P, 2160122) and NNSFC 29974027 is gratefully acknowledged.
文摘It had very long been a dream in polymer science to synthesize long multi-block polymer chains with an orderedchain sequence and controllable block lengths. Using ionic or living free radical polymerization or furnishing each end ofpolymer blocks with a reactive functional group, one can only prepare heteropolymer chains with few long blocks, such asdiblock and triblock copolymers. The most plausible result so far was a pentablock copolymer. Recently, using a combinationof polymer physics and synthetic chemistry, we have invented self-assembly assisted polycondensation (SAAP). Thiscommunication reports the results of using this novel. method to connect 10-100 triblock polymer chains together to formlong multi-block heteropolymer chains with an ordered sequence and controllable block lengths.
基金supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)the Ministry of Trade,Industry&Energy(MOTIE)of the Republic of Korea(No.20164030201070)supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT and future Planning(NRF-2017R1A2B4005230)
文摘A ternary hybrid membrane architecture consisting of sulfonated fluorinated multi-block copolymer (SFMC), sulfonated (poly ether ether ketone) (SPEEK) and I or 5 wt% graphene oxide (GO) was fabricated through a facile solution casting approach. The simple, but effective monomer sulfonation was performed for SFMC to create compact and rigid hydrophobic backbone structures, while conventional random sulfonation was carried-out for SPEEK. Hydrophilic-hydrophobic-hydrophilic structure of SFMC enhances the compatibility with SPEEK and GO and allows for an unprecedented approach to alter me- chanical strength and proton conductivity of ternary hybrid membrane, as verified from universal test machine (UTM) curves and alternating current (AC) impedance plots. The impact of GO integration on the morphology and roughness of hybrid membrane was scrutinized using field emission scanning electron microscope (FE-SEM) and atomic force microscope (AFM). Ternary hybrid showed uniform intercalation of GO nanosheets throughout the entire surface of membrane with an increased surface roughness of 8.91 nm. The constructed ternary hybrid membrane revealed excellent water absorption, ion exchange capacity and gas barrier properties, while retaining reasonable dimensional stability. The well-optimized ternary hybrid membrane containing 5 wt% GO revealed a maximum proton conductivity of 111.9 mS/cm, which is higher by a factor of two-fold with respect to that of bare SFMC membrane. The maximum PEMFC power density of 528.07mW/cm2 was yielded by ternary hybrid membrane at a load current density of 1321.1 mA/cm2 when operating the cell at 70 ℃ under 100% relative humidity (RH). In comparison, a maximum power density of only 182.06 mW/cm2 was exhibited by the bare SFMC membrane at a load current density of 455.56 mA/cm2 under same operating conditions.
基金supported by the National Natural Science Foundation of China(61172159)
文摘The analog-to-information convertor (AIC) is a successful practice of compressive sensing (CS) theory in the analog signal acquisition. This paper presents a multi-narrowband signals sampling and reconstruction model based on AIC and block sparsity. To overcome the practical problems, the block sparsity is divided into uniform block and non-uniform block situations, and the block restricted isometry property and sub-sampling limit in different situations are analyzed respectively in detail. Theoretical analysis proves that using the block sparsity in AIC can reduce the restricted isometric constant, increase the reconstruction probability and reduce the sub -sampling rate. Simulation results show that the proposed model can complete sub -sampling and reconstruction for multi-narrowband signals. This paper extends the application range of AIC from the finite information rate signal to the multi-narrowband signals by using the potential relevance of support sets. The proposed receiving model has low complexity and is easy to implement, which can promote the application of CS theory in the radar receiver to reduce the burden of analog-to digital convertor (ADC) and solve bandwidth limitations of ADC.
文摘Long-term planning is one of the most important stages that determines the distribution of cash flows over the mine life and the feasibility of the project. However, it is not feasible in block caving to generate a production schedule that will provide optimal operating strategies without considering geotechnical constraints. This paper develops a mixed-integer linear programming(MILP) model to optimize the extraction sequence of drawpoints over multiple time horizons of block-cave mines with respect to the draw control systems. A multi-similarity index clustering technique to solve the MILP model in a reasonable time is also presented. Application and comparison of production scheduling based on the draw control system and clustering technique are illustrated using 325 drawpoints over 15 periods. The results show a significant reduction in the size of the MILP model, and in the time required to solve it.
基金China National Natural Science Foundation Grant No.49290100
文摘Based on studies of palaeogeography, palaeobiogeography, palaeomagnetism, geochemistry and volcanism, this paper proposes that the Zhen'an-Xichuan area was a small Early Palaeozoic block rifted away from South Qinling and suturing onto North Qinling earlier than the other parts of South Qinling. In the Early Palaeozoic Qinling was a small archipelagic ocean basin with 5 rows of islands including the Zhen'an-Xichuan block. The drifting of the Yangtze and North China plates and the islands between them in the same direction at different speeds caused their suturing process to be different from the classic plate collision, which is the major feature of the suturing of the multi-island Tethys ocean basin. This also explains the problem that the Caledonian collision did not result in orogeny in eastern Qinling.
文摘<div style="text-align:justify;"> STMV beamforming algorithm needs inversion operation of matrix, and its engineering application is limited due to its huge computational cost. This paper proposed block iterative STMV algorithm based on one-phase regressive filter, matrix inversion lemma and inversion of block matrix. The computational cost is reduced approximately as 1/4 M times as original algorithm when array number is M. The simulation results show that this algorithm maintains high azimuth resolution and good performance of detecting multi-targets. Within 1 - 2 dB directional index and higher azimuth discrimination of block iterative STMV algorithm are achieved than STMV algorithm for sea trial data processing. And its good robustness lays the foundation of its engineering application. </div>
文摘针对现有方法在腹部中小器官图像分割性能方面存在的不足,提出一种基于局部和全局并行编码的网络模型用于腹部多器官图像分割.首先,设计一种提取多尺度特征信息的局部编码分支;其次,全局特征编码分支采用分块Transformer,通过块内Transformer和块间Transformer的组合,既捕获了全局的长距离依赖信息又降低了计算量;再次,设计特征融合模块,以融合来自两条编码分支的上下文信息;最后,设计解码模块,实现全局信息与局部上下文信息的交互,更好地补偿解码阶段的信息损失.在Synapse多器官CT数据集上进行实验,与目前9种先进方法相比,在平均Dice相似系数(DSC)和Hausdorff距离(HD)指标上都达到了最佳性能,分别为83.10%和17.80 mm.
基金supported by the National Natural Science Foundation of China(61171170) the Natural Science Foundation of Anhui Province(1408085QF115)
文摘This study proposes a novel multi-fractal spectrumbasedapproach to distinguish linear block codes from its selfsynchronousscrambled codes. Given that the linear block codeand self-synchronous scrambled linear block code share the propertyof linear correlation, the existing linear correlation-basedidentification method is invalid for this case. This drawback can becircumvented by introducing a novel multi-fractal spectrum-basedmethod. Simulation results show that the new method has highrobustness and under the same conditions of bit error, the lowerthe code rate, the higher the recognition rate. Thus, the methodhas significant potential for future application in engineering.