The two universes multi-granularity fuzzy rough set model is an effective tool for handling uncertainty problems between two domains with the help of binary fuzzy relations. This article applies the idea of neighborho...The two universes multi-granularity fuzzy rough set model is an effective tool for handling uncertainty problems between two domains with the help of binary fuzzy relations. This article applies the idea of neighborhood rough sets to two universes multi-granularity fuzzy rough sets, and discusses the two-universes multi-granularity neighborhood fuzzy rough set model. Firstly, the upper and lower approximation operators are defined in the two universes multi-granularity neighborhood fuzzy rough set model. Secondly, the properties of the upper and lower approximation operators are discussed. Finally, the properties of the two universes multi-granularity neighborhood fuzzy rough set model are verified through case studies.展开更多
How to deal with the imprecise information retrieval has become more and more important in the present information society. An efficient and effective method of information retrieval based on multi tuple rough set is...How to deal with the imprecise information retrieval has become more and more important in the present information society. An efficient and effective method of information retrieval based on multi tuple rough set is discussed in this paper. The new approach is considered as a generalization of the original rough set model for flexible information retrieval. The imprecise query results can be obtained by multi tuple approximations.展开更多
Multi-attribute decision problems where the performances of the alternatives are random variables are considered. The suggested approach grades the probabilities of preference of one alternative over another with resp...Multi-attribute decision problems where the performances of the alternatives are random variables are considered. The suggested approach grades the probabilities of preference of one alternative over another with respect to the same attribute. Based on the graded probabilistic dominance relation, the pairwise comparison information table is defined. The global preferences of the decision maker can be seen as a rough binary relation. The present paper proposes to approximate this preference relation by means of the graded probabilistic dominance relation with respect to the subsets of attributes. At last, the method is illustrated by an example.展开更多
The preference analysis is a class of important issues in multi-criteria ordinal decision making.The rough set is an effective approach to handle preference analysis.In order to solve the multi-criteria preference ana...The preference analysis is a class of important issues in multi-criteria ordinal decision making.The rough set is an effective approach to handle preference analysis.In order to solve the multi-criteria preference analysis problems,this paper improves the preference relation rough set model and expands it to multi-granulation cases.Cost is also an important issue in the field of decision analysis.Taking the cost into consideration,we also expand the model to the cost sensitive multi-granulation preference relation rough set.Some theorems are represented,and the granule structure selection based on approximation quality is investigated.The experimental results show that the multi-granulation preference rough set approach with the consideration of cost has a better performance in granule structure selection than that without cost consideration.展开更多
In order to lessen adverse influences of excessive evaluative indicators of the initial set in multi-sensory evaluation,a2-tuple and rough set based reduction model is built to simplify the initial set of evaluative i...In order to lessen adverse influences of excessive evaluative indicators of the initial set in multi-sensory evaluation,a2-tuple and rough set based reduction model is built to simplify the initial set of evaluative indicators. In the model,a great variety of descriptive forms of the multi-sensory evaluation are also taken into consideration. As a result,the method proves effective in reducing redundant indexes and minimizing index overlaps without compromising the integrity of the evaluation system. By applying the model in a multi-sensory evaluation involving community public information service facilities,the research shows that the results are satisfactory when using genetic algorithm optimized BP neural network as a calculation tool. It shows that using the reduced and simplified set of indicators has a better predication performance than the initial set,and 2-tuple and rough set based model offers an efficient way to reduce indicator redundancy and improves prediction capability of the evaluation model.展开更多
In this paper, rough set theory is introduced into the interface multi-agent system (MAS) for industrial supervisory system. Taking advantages of rough set in data mining, a cooperation model for MAS is built. Rules...In this paper, rough set theory is introduced into the interface multi-agent system (MAS) for industrial supervisory system. Taking advantages of rough set in data mining, a cooperation model for MAS is built. Rules for avoiding cooperation conflict are deduced. An optimization algorithm is used to enhance security and real time attributes of the system. An application based on the proposed algorithm and rules are given.展开更多
In order to remove the stripe noises in cotton foreign fiber images by line scanning camera collected, in multi threshold segmentation of rough set, every region’s color is instead of the statistics color of the regi...In order to remove the stripe noises in cotton foreign fiber images by line scanning camera collected, in multi threshold segmentation of rough set, every region’s color is instead of the statistics color of the region. This method can retain the detail information of original image as far as possible, and do well in the stripe noise removal. The roughness of rough set was calculated respectively using directional diagram, Canny operator and Sobel operator. Comparing the three methods, the results indicate that the Canny operator keeps the more details of image, and directional diagram and Sobel operator have the better effects on denoising.展开更多
By introducing Rough Set Theory and the principle of Support vector machine,a gear fault diagnosis method based on them is proposed.Firstly,diagnostic decision-making is reduced based on rough set theory,and the noise...By introducing Rough Set Theory and the principle of Support vector machine,a gear fault diagnosis method based on them is proposed.Firstly,diagnostic decision-making is reduced based on rough set theory,and the noise and redundancy in the sample are removed,then,according to the chosen reduction,a support vector machine multi-classifier is designed for gear fault diagnosis.Therefore,SVM’training data can be reduced and running speed can quicken.Test shows its accuracy and effi- ciency of gear fault diagnosis.展开更多
多粒度模糊粗糙集(multi-granulation fuzzy rough set,MGFRS)是一种重要的粗糙集模型。乐观多粒度模糊粗糙集和悲观多粒度模糊粗糙集分别给出了被描述对象的两种极端描述。从数据聚合角度看,将不同粒度值合并为单一粒度值时,乐观MGFRS...多粒度模糊粗糙集(multi-granulation fuzzy rough set,MGFRS)是一种重要的粗糙集模型。乐观多粒度模糊粗糙集和悲观多粒度模糊粗糙集分别给出了被描述对象的两种极端描述。从数据聚合角度看,将不同粒度值合并为单一粒度值时,乐观MGFRS采用的是取小算子,悲观MGFRS采用的是取大算子。将取小与取大算子拓展为一般的平均型聚合算子,提出了一种新的多粒度模糊粗糙集模型:基于平均型聚合函数的多粒度模糊粗糙集(multi-granulation fuzzy rough set model on the base of average aggregate function,MFA)模型。研究了MFA模型的基本性质,给出了MFA模型与乐观和悲观多粒度模糊粗糙集的关系。同时,基于MFA模型,提出了基于平均型聚合算子的粗糙近似集模型。展开更多
In our study, the Dominance-based Rough Set Approach (DRSA) has been proposed to assist the Board of Directors of the Community Futures Development Corporations (CFDC), the sub-region of Abitibi-West (Quebec). The CFD...In our study, the Dominance-based Rough Set Approach (DRSA) has been proposed to assist the Board of Directors of the Community Futures Development Corporations (CFDC), the sub-region of Abitibi-West (Quebec). The CFDC needs a tool for decision support to select the projects that are proposed by the contractors and partners of its territory. In decision making, a balanced set of 22 indicators is considered. These indicators derive from five perspectives: economic, social, demographic, health and wellness. The DRSA proposal is suitable for the data processing with multiple indicators providing on many examples to infer decision rules related to the preference model. In this paper we show that decision rules developed with the use of rough set theory allow us to simplify the process of selecting a portfolio for sustainable development by reducing a number of redundant indicators and identifying the critical values of selected indicators.展开更多
文摘The two universes multi-granularity fuzzy rough set model is an effective tool for handling uncertainty problems between two domains with the help of binary fuzzy relations. This article applies the idea of neighborhood rough sets to two universes multi-granularity fuzzy rough sets, and discusses the two-universes multi-granularity neighborhood fuzzy rough set model. Firstly, the upper and lower approximation operators are defined in the two universes multi-granularity neighborhood fuzzy rough set model. Secondly, the properties of the upper and lower approximation operators are discussed. Finally, the properties of the two universes multi-granularity neighborhood fuzzy rough set model are verified through case studies.
文摘How to deal with the imprecise information retrieval has become more and more important in the present information society. An efficient and effective method of information retrieval based on multi tuple rough set is discussed in this paper. The new approach is considered as a generalization of the original rough set model for flexible information retrieval. The imprecise query results can be obtained by multi tuple approximations.
文摘Multi-attribute decision problems where the performances of the alternatives are random variables are considered. The suggested approach grades the probabilities of preference of one alternative over another with respect to the same attribute. Based on the graded probabilistic dominance relation, the pairwise comparison information table is defined. The global preferences of the decision maker can be seen as a rough binary relation. The present paper proposes to approximate this preference relation by means of the graded probabilistic dominance relation with respect to the subsets of attributes. At last, the method is illustrated by an example.
基金supported in part by Natural Science Foundation of Education Department of Sichuan Province under Grant No.12ZA178Key Technology Support Program of Sichuan Province under Grant No.2015GZ0102+1 种基金Science and Technology Project of Chongqing Municipal Education Commission under Grant No.KJ1400407Chongqing Science and Technology Commission Project under Grant No.cstc2014jcyj A10051
文摘The preference analysis is a class of important issues in multi-criteria ordinal decision making.The rough set is an effective approach to handle preference analysis.In order to solve the multi-criteria preference analysis problems,this paper improves the preference relation rough set model and expands it to multi-granulation cases.Cost is also an important issue in the field of decision analysis.Taking the cost into consideration,we also expand the model to the cost sensitive multi-granulation preference relation rough set.Some theorems are represented,and the granule structure selection based on approximation quality is investigated.The experimental results show that the multi-granulation preference rough set approach with the consideration of cost has a better performance in granule structure selection than that without cost consideration.
基金National Natural Science Foundation of China(No.50775108)Priority Academic Program Development of Jiangsu Higher Education Institutions,China(PAPD)
文摘In order to lessen adverse influences of excessive evaluative indicators of the initial set in multi-sensory evaluation,a2-tuple and rough set based reduction model is built to simplify the initial set of evaluative indicators. In the model,a great variety of descriptive forms of the multi-sensory evaluation are also taken into consideration. As a result,the method proves effective in reducing redundant indexes and minimizing index overlaps without compromising the integrity of the evaluation system. By applying the model in a multi-sensory evaluation involving community public information service facilities,the research shows that the results are satisfactory when using genetic algorithm optimized BP neural network as a calculation tool. It shows that using the reduced and simplified set of indicators has a better predication performance than the initial set,and 2-tuple and rough set based model offers an efficient way to reduce indicator redundancy and improves prediction capability of the evaluation model.
基金Project supported by Science Foundation of Shanghai MunicipalCommission of Science and Technology (Grant Nos .025111052 ,04JC14038)
文摘In this paper, rough set theory is introduced into the interface multi-agent system (MAS) for industrial supervisory system. Taking advantages of rough set in data mining, a cooperation model for MAS is built. Rules for avoiding cooperation conflict are deduced. An optimization algorithm is used to enhance security and real time attributes of the system. An application based on the proposed algorithm and rules are given.
文摘In order to remove the stripe noises in cotton foreign fiber images by line scanning camera collected, in multi threshold segmentation of rough set, every region’s color is instead of the statistics color of the region. This method can retain the detail information of original image as far as possible, and do well in the stripe noise removal. The roughness of rough set was calculated respectively using directional diagram, Canny operator and Sobel operator. Comparing the three methods, the results indicate that the Canny operator keeps the more details of image, and directional diagram and Sobel operator have the better effects on denoising.
文摘By introducing Rough Set Theory and the principle of Support vector machine,a gear fault diagnosis method based on them is proposed.Firstly,diagnostic decision-making is reduced based on rough set theory,and the noise and redundancy in the sample are removed,then,according to the chosen reduction,a support vector machine multi-classifier is designed for gear fault diagnosis.Therefore,SVM’training data can be reduced and running speed can quicken.Test shows its accuracy and effi- ciency of gear fault diagnosis.
文摘多粒度模糊粗糙集(multi-granulation fuzzy rough set,MGFRS)是一种重要的粗糙集模型。乐观多粒度模糊粗糙集和悲观多粒度模糊粗糙集分别给出了被描述对象的两种极端描述。从数据聚合角度看,将不同粒度值合并为单一粒度值时,乐观MGFRS采用的是取小算子,悲观MGFRS采用的是取大算子。将取小与取大算子拓展为一般的平均型聚合算子,提出了一种新的多粒度模糊粗糙集模型:基于平均型聚合函数的多粒度模糊粗糙集(multi-granulation fuzzy rough set model on the base of average aggregate function,MFA)模型。研究了MFA模型的基本性质,给出了MFA模型与乐观和悲观多粒度模糊粗糙集的关系。同时,基于MFA模型,提出了基于平均型聚合算子的粗糙近似集模型。
文摘In our study, the Dominance-based Rough Set Approach (DRSA) has been proposed to assist the Board of Directors of the Community Futures Development Corporations (CFDC), the sub-region of Abitibi-West (Quebec). The CFDC needs a tool for decision support to select the projects that are proposed by the contractors and partners of its territory. In decision making, a balanced set of 22 indicators is considered. These indicators derive from five perspectives: economic, social, demographic, health and wellness. The DRSA proposal is suitable for the data processing with multiple indicators providing on many examples to infer decision rules related to the preference model. In this paper we show that decision rules developed with the use of rough set theory allow us to simplify the process of selecting a portfolio for sustainable development by reducing a number of redundant indicators and identifying the critical values of selected indicators.