期刊文献+
共找到227,973篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-timescale Collaborative Optimization of Distribution, Distributed Generation and Load in Microgrid
1
作者 Wen Hu Yun-lian Sun +2 位作者 Yang Wang Yang-jun Zhou Meng-ying Wang 《Open Journal of Applied Sciences》 2013年第2期12-17,共6页
The distribution loads, output of distributed generations (DGs) and dynamic power price present obvious time-sequence property, the typical property is studied in this paper. The model of microgrid (including adjustab... The distribution loads, output of distributed generations (DGs) and dynamic power price present obvious time-sequence property, the typical property is studied in this paper. The model of microgrid (including adjustable load, DGs, storage and dynamic power price) is studied. A multi-timescale collaborative optimization model is built towards microgrid;main measures in different timescale optimization are realized. An improved adaptive genetic algorithm is used to solve the optimization problem, which improved the efficiency and reliability. The proposed optimization model is simulated in IEEE 33 node system;the results show it’s effective. 展开更多
关键词 MICROGRID multi-timescale COLLABORATIVE Optimization Time-sequence PROPERTY Improved Adaptive
下载PDF
Impacts of Multi-Scale Solar Activity on Climate.Part Ⅱ:Dominant Timescales in Decadal-Centennial Climate Variability 被引量:2
2
作者 Hengyi WENG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2012年第4期887-908,共22页
Part II of this study detects the dominant decadal-centennial timescales in four SST indices up to the 2010/2011 winter and tries to relate them to the observed 11-yr and 88-yr solar activity with the sunspot number u... Part II of this study detects the dominant decadal-centennial timescales in four SST indices up to the 2010/2011 winter and tries to relate them to the observed 11-yr and 88-yr solar activity with the sunspot number up to Solar Cycle 24. To explore plausible solar origins of the observed decadal-centennial timescales in the SSTs and climate variability in general, we design a simple one-dimensional dynamical system forced by an annual cycle modulated by a small-amplitude single- or multi-scale "solar activity." Results suggest that nonlinear harmonic and subharmonic resonance of the system to the forcing and period-doubling bifurcations are responsible for the dominant timescales in the system, including the 60-yr timescale that dominates the Atlantic Multidecadal Oscillation. The dominant timescales in the forced system depend on the system's parameter setting. Scale enhancement among the dominant response timescales may result in dramatic amplifications over a few decades and extreme values of the time series on various timescales. Three possible energy sources for such amplifications and extremes are proposed. Dynamical model results suggest that solar activity may play an important yet not well recognized role in the observed decadal-centennial climate variability. The atmospheric dynamical amplifying mechanism shown in Part I and the nonlinear resonant and bifurcation mechanisms shown in Part II help us to understand the solar source of the multi-scale climate change in the 20th century and the fact that different solar influenced dominant timescales for recurrent climate extremes for a given region or a parameter setting. Part II also indicates that solar influences on climate cannot be linearly compared with non-cyclic or sporadic thermal forcings because they cannot exert their influences on climate in the same way as the sun does. 展开更多
关键词 sun-climate relationship decadal-centennial climate timescales nonlinear forcing-response res- onant mechanism bifurcation mechanism scale enhancement for extremes
下载PDF
Multi-timescale Modeling and Dynamic Stability Analysis for Sustainable Microgrids:State-of-the-art and Perspectives
3
作者 Mingyue Zhang Yang Han +5 位作者 Yuxiang Liu Amr S.Zalhaf Ensheng Zhao Karar Mahmoud Mohamed M.F.Darwish Frede Blaabjerg 《Protection and Control of Modern Power Systems》 SCIE EI 2024年第3期1-35,共35页
The increasing trend for integrating renewable energy sources into the grid to achieve a cleaner energy system is one of the main reasons for the development of sustainable microgrid(MG)technologies.As typical power-e... The increasing trend for integrating renewable energy sources into the grid to achieve a cleaner energy system is one of the main reasons for the development of sustainable microgrid(MG)technologies.As typical power-electronized power systems,MGs make extensive use of power electronics converters,which are highly controllable and flexible but lead to a profound impact on the dynamic performance of the whole system.Compared with traditional large-capacity power systems,MGs are less resistant to perturbations,and various dynamic variables are coupled with each other on multiple timescales,resulting in a more complex system instability mechanism.To meet the technical and economic challenges,such as active and reactive power-sharing,voltage,and frequency deviations,and imbalances between power supply and demand,the concept of hierarchical control has been introduced into MGs,allowing systems to control and manage the high capacity of renewable energy sources and loads.However,as the capacity and scale of the MG system increase,along with a multi-timescale control loop design,the multi-timescale interactions in the system may become more significant,posing a serious threat to its safe and stable operation.To investigate the multi-timescale behaviors and instability mechanisms under dynamic inter-actions for AC MGs,existing coordinated control strategies are discussed,and the dynamic stability of the system is defined and classified in this paper.Then,the modeling and assessment methods for the stability analysis of multi-timescale systems are also summarized.Finally,an outlook and discussion of future research directions for AC MGs are also presented. 展开更多
关键词 Sustainable microgrid hierarchical control modeling model simplification multi-timescale dynamic stability analysis timescale decomposition.
原文传递
基于Multi-Agent的无人机集群体系自主作战系统设计 被引量:1
4
作者 张堃 华帅 +1 位作者 袁斌林 杜睿怡 《系统工程与电子技术》 EI CSCD 北大核心 2024年第4期1273-1286,共14页
针对无人集群自主作战体系设计中的关键问题,提出基于Multi-Agent的无人集群自主作战系统设计方法。建立无人集群各节点的Agent模型及其推演规则;对于仿真系统模块化和通用化的需求,设计系统互操作式接口和无人集群自主作战的交互关系;... 针对无人集群自主作战体系设计中的关键问题,提出基于Multi-Agent的无人集群自主作战系统设计方法。建立无人集群各节点的Agent模型及其推演规则;对于仿真系统模块化和通用化的需求,设计系统互操作式接口和无人集群自主作战的交互关系;开展无人集群系统仿真推演验证。仿真结果表明,所提设计方案不仅能够有效开展并完成自主作战网络生成-集群演化-效能评估的全过程动态演示验证,而且能够通过重复随机试验进一步评估无人集群的协同作战效能,最后总结了集群协同作战的策略和经验。 展开更多
关键词 multi-AGENT 无人集群 体系设计 协同作战
下载PDF
基于Multi-Agent的水电站变压器故障诊断系统
5
作者 乔丹 马鹏 王琦 《自动化技术与应用》 2024年第7期58-61,65,共5页
为了精准、快速完成水电站变压器的故障诊断,设计基于Multi-Agent的水电站变压器故障诊断系统。变压器状态监控agent将检测到的变压器故障信息发送给系统管理agent,系统管理agent通过通信agent将变压器故障信息发送给变压器故障诊断age... 为了精准、快速完成水电站变压器的故障诊断,设计基于Multi-Agent的水电站变压器故障诊断系统。变压器状态监控agent将检测到的变压器故障信息发送给系统管理agent,系统管理agent通过通信agent将变压器故障信息发送给变压器故障诊断agent,变压器故障诊断agent利用小波变换方法提取变压器故障特征,并将其作为IFOA-SVM模型输入,完成变压器故障分类后,获取变压器故障诊断结果,该结果通过通信agent显示给用户。实验表明,该系统可有效诊断变压器故障诊断,诊断成功率受系统故障信息丢失率的影响较小,诊断耗时、耗能小,并具有较高故障诊断成功率。 展开更多
关键词 multi-AGENT 水电站 变压器 故障诊断 小波变换
下载PDF
Multi-Granularity Neighborhood Fuzzy Rough Set Model on Two Universes
6
作者 Ju Wang Xinghu Ai Li Fu 《Journal of Intelligent Learning Systems and Applications》 2024年第2期91-106,共16页
The two universes multi-granularity fuzzy rough set model is an effective tool for handling uncertainty problems between two domains with the help of binary fuzzy relations. This article applies the idea of neighborho... The two universes multi-granularity fuzzy rough set model is an effective tool for handling uncertainty problems between two domains with the help of binary fuzzy relations. This article applies the idea of neighborhood rough sets to two universes multi-granularity fuzzy rough sets, and discusses the two-universes multi-granularity neighborhood fuzzy rough set model. Firstly, the upper and lower approximation operators are defined in the two universes multi-granularity neighborhood fuzzy rough set model. Secondly, the properties of the upper and lower approximation operators are discussed. Finally, the properties of the two universes multi-granularity neighborhood fuzzy rough set model are verified through case studies. 展开更多
关键词 Fuzzy Set Two Universes multi-Granularity Rough Set multi-Granularity Neighborhood Fuzzy Rough Set
下载PDF
Multi Location Field Evaluation of BC1F2 Sorghum Populations for Striga Resistance in Niger
7
作者 Ousseini Ardaly Abdou Aissata Mamadou Ibrahim +2 位作者 Yaw Eleblu John Saviour Ofori Kwadwo Ousmane Zakari Moussa 《American Journal of Plant Sciences》 CAS 2024年第10期1010-1021,共12页
In Niger, a landlocked country, sorghum is the second staple food cultivated over the country by smallholder farmer. The crop is important for human and animal consumption. Despite its importance, the crop is affected... In Niger, a landlocked country, sorghum is the second staple food cultivated over the country by smallholder farmer. The crop is important for human and animal consumption. Despite its importance, the crop is affected by biotic and abiotic constraints. Among those constraints, striga has a high impact on yield. In fact, to survive, farmers are growing their local preferred sorghum varieties wish is highly sensible to the weed. Striga management is a challenge that requires a permanent solution. In addition, the development of high-yielding Striga resistant genotypes will be appreciated by farmers. The development of striga resistance will be based on the breeding population performances under farmer’s diverse environmental conditions adaptation. The main objective of this study is to evaluate two breeding populations for striga resistance in two different environments at Boulke and Dibissou in Tahoua region, to identify the early and high-yielding striga tolerant genotypes under natural infestation. 展开更多
关键词 Striga Resistance SORGHUM Breeding Population multi Environment
下载PDF
Dynamic optimal allocation of energy storage systems integrated within photovoltaic based on a dual timescale dynamics model
8
作者 Kecun Li Zhenyu Huang +2 位作者 Youbo Liu Yaser Qudaih Junyong Liu 《Global Energy Interconnection》 EI CSCD 2024年第4期415-428,共14页
Energy storage systems(ESSs)operate as independent market participants and collaborate with photovoltaic(PV)generation units to enhance the flexible power supply capabilities of PV units.However,the dynamic variations... Energy storage systems(ESSs)operate as independent market participants and collaborate with photovoltaic(PV)generation units to enhance the flexible power supply capabilities of PV units.However,the dynamic variations in the profitability of ESSs in the electricity market are yet to be fully understood.This study introduces a dual-timescale dynamics model that integrates a spot market clearing(SMC)model into a system dynamics(SD)model to investigate the profit-aware capacity growth of ESSs and compares the profitability of independent energy storage systems(IESSs)with that of an ESS integrated within a PV(PV-ESS).Furthermore,this study aims to ascertain the optimal allocation of the PV-ESS.First,SD and SMC models were set up.Second,the SMC model simulated on an hourly timescale was incorporated into the SD model as a subsystem,a dual-timescale model was constructed.Finally,a development simulation and profitability analysis was conducted from 2022 to 2040 to reveal the dynamic optimal range of PV-ESS allocation.Additionally,negative electricity prices were considered during clearing processes.The simulation results revealed differences in profitability and capacity growth between IESS and PV-ESS,helping grid investors and policymakers to determine the boundaries of ESSs and dynamic optimal allocation of PV-ESSs. 展开更多
关键词 Optimal allocation Profitability analysis PHOTOVOLTAIC Energy storage system Dual timescale dynamics model Spot market clearing
下载PDF
A Robust Approach for Multi Classification-Based Intrusion Detection through Stacking Deep Learning Models
9
作者 Samia Allaoua Chelloug 《Computers, Materials & Continua》 SCIE EI 2024年第6期4845-4861,共17页
Intrusion detection is a predominant task that monitors and protects the network infrastructure.Therefore,many datasets have been published and investigated by researchers to analyze and understand the problem of intr... Intrusion detection is a predominant task that monitors and protects the network infrastructure.Therefore,many datasets have been published and investigated by researchers to analyze and understand the problem of intrusion prediction and detection.In particular,the Network Security Laboratory-Knowledge Discovery in Databases(NSL-KDD)is an extensively used benchmark dataset for evaluating intrusion detection systems(IDSs)as it incorporates various network traffic attacks.It is worth mentioning that a large number of studies have tackled the problem of intrusion detection using machine learning models,but the performance of these models often decreases when evaluated on new attacks.This has led to the utilization of deep learning techniques,which have showcased significant potential for processing large datasets and therefore improving detection accuracy.For that reason,this paper focuses on the role of stacking deep learning models,including convolution neural network(CNN)and deep neural network(DNN)for improving the intrusion detection rate of the NSL-KDD dataset.Each base model is trained on the NSL-KDD dataset to extract significant features.Once the base models have been trained,the stacking process proceeds to the second stage,where a simple meta-model has been trained on the predictions generated from the proposed base models.The combination of the predictions allows the meta-model to distinguish different classes of attacks and increase the detection rate.Our experimental evaluations using the NSL-KDD dataset have shown the efficacy of stacking deep learning models for intrusion detection.The performance of the ensemble of base models,combined with the meta-model,exceeds the performance of individual models.Our stacking model has attained an accuracy of 99%and an average F1-score of 93%for the multi-classification scenario.Besides,the training time of the proposed ensemble model is lower than the training time of benchmark techniques,demonstrating its efficiency and robustness. 展开更多
关键词 Intrusion detection multi classification deep learning STACKING NSL-KDD
下载PDF
Improving Multiple Sclerosis Disease Prediction Using Hybrid Deep Learning Model
10
作者 Stephen Ojo Moez Krichen +3 位作者 Meznah A.Alamro Alaeddine Mihoub Gabriel Avelino Sampedro Jaroslava Kniezova 《Computers, Materials & Continua》 SCIE EI 2024年第10期643-661,共19页
Myelin damage and a wide range of symptoms are caused by the immune system targeting the central nervous system in Multiple Sclerosis(MS),a chronic autoimmune neurological condition.It disrupts signals between the bra... Myelin damage and a wide range of symptoms are caused by the immune system targeting the central nervous system in Multiple Sclerosis(MS),a chronic autoimmune neurological condition.It disrupts signals between the brain and body,causing symptoms including tiredness,muscle weakness,and difficulty with memory and balance.Traditional methods for detecting MS are less precise and time-consuming,which is a major gap in addressing this problem.This gap has motivated the investigation of new methods to improve MS detection consistency and accuracy.This paper proposed a novel approach named FAD consisting of Deep Neural Network(DNN)fused with an Artificial Neural Network(ANN)to detect MS with more efficiency and accuracy,utilizing regularization and combat over-fitting.We use gene expression data for MS research in the GEO GSE17048 dataset.The dataset is preprocessed by performing encoding,standardization using min-max-scaler,and feature selection using Recursive Feature Elimination with Cross-Validation(RFECV)to optimize and refine the dataset.Meanwhile,for experimenting with the dataset,another deep-learning hybrid model is integrated with different ML models,including Random Forest(RF),Gradient Boosting(GB),XGBoost(XGB),K-Nearest Neighbors(KNN)and Decision Tree(DT).Results reveal that FAD performed exceptionally well on the dataset,which was evident with an accuracy of 96.55%and an F1-score of 96.71%.The use of the proposed FAD approach helps in achieving remarkable results with better accuracy than previous studies. 展开更多
关键词 multi Sclerosis(MS) machine learning deep learning artificial neural network healthcare
下载PDF
The real-time dynamic liquid level calculation method of the sucker rod well based on multi-view features fusion
11
作者 Cheng-Zhe Yin Kai Zhang +4 位作者 Jia-Yuan Liu Xin-Yan Wang Min Li Li-Ming Zhang Wen-Sheng Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3575-3586,共12页
In the production of the sucker rod well, the dynamic liquid level is important for the production efficiency and safety in the lifting process. It is influenced by multi-source data which need to be combined for the ... In the production of the sucker rod well, the dynamic liquid level is important for the production efficiency and safety in the lifting process. It is influenced by multi-source data which need to be combined for the dynamic liquid level real-time calculation. In this paper, the multi-source data are regarded as the different views including the load of the sucker rod and liquid in the wellbore, the image of the dynamometer card and production dynamics parameters. These views can be fused by the multi-branch neural network with special fusion layer. With this method, the features of different views can be extracted by considering the difference of the modality and physical meaning between them. Then, the extraction results which are selected by multinomial sampling can be the input of the fusion layer.During the fusion process, the availability under different views determines whether the views are fused in the fusion layer or not. In this way, not only the correlation between the views can be considered, but also the missing data can be processed automatically. The results have shown that the load and production features fusion(the method proposed in this paper) performs best with the lowest mean absolute error(MAE) 39.63 m, followed by the features concatenation with MAE 42.47 m. They both performed better than only a single view and the lower MAE of the features fusion indicates that its generalization ability is stronger. In contrast, the image feature as a single view contributes little to the accuracy improvement after fused with other views with the highest MAE. When there is data missing in some view, compared with the features concatenation, the multi-view features fusion will not result in the unavailability of a large number of samples. When the missing rate is 10%, 30%, 50% and 80%, the method proposed in this paper can reduce MAE by 5.8, 7, 9.3 and 20.3 m respectively. In general, the multi-view features fusion method proposed in this paper can improve the accuracy obviously and process the missing data effectively, which helps provide technical support for real-time monitoring of the dynamic liquid level in oil fields. 展开更多
关键词 Dynamic liquid level multi view Features fusion Sucker rod well Dynamometer cards
下载PDF
Mutual information oriented deep skill chaining for multi‐agent reinforcement learning
12
作者 Zaipeng Xie Cheng Ji +4 位作者 Chentai Qiao WenZhan Song Zewen Li Yufeng Zhang Yujing Zhang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第4期1014-1030,共17页
Multi‐agent reinforcement learning relies on reward signals to guide the policy networks of individual agents.However,in high‐dimensional continuous spaces,the non‐stationary environment can provide outdated experi... Multi‐agent reinforcement learning relies on reward signals to guide the policy networks of individual agents.However,in high‐dimensional continuous spaces,the non‐stationary environment can provide outdated experiences that hinder convergence,resulting in ineffective training performance for multi‐agent systems.To tackle this issue,a novel reinforcement learning scheme,Mutual Information Oriented Deep Skill Chaining(MioDSC),is proposed that generates an optimised cooperative policy by incorporating intrinsic rewards based on mutual information to improve exploration efficiency.These rewards encourage agents to diversify their learning process by engaging in actions that increase the mutual information between their actions and the environment state.In addition,MioDSC can generate cooperative policies using the options framework,allowing agents to learn and reuse complex action sequences and accelerating the convergence speed of multi‐agent learning.MioDSC was evaluated in the multi‐agent particle environment and the StarCraft multi‐agent challenge at varying difficulty levels.The experimental results demonstrate that MioDSC outperforms state‐of‐the‐art methods and is robust across various multi‐agent system tasks with high stability. 展开更多
关键词 artificial intelligence techniques decision making intelligent multi‐agent systems
下载PDF
Multi-scale data joint inversion of minerals and porosity in altered igneous reservoirs—A case study in the South China Sea
13
作者 Xin-Ru Wang Bao-Zhi Pan +2 位作者 Yu-Hang Guo Qing-Hui Wang Yao Guan 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期206-220,共15页
There are abundant igneous gas reservoirs in the South China Sea with significant value of research,and lithology classification,mineral analysis and porosity inversion are important links in reservoir evaluation.Howe... There are abundant igneous gas reservoirs in the South China Sea with significant value of research,and lithology classification,mineral analysis and porosity inversion are important links in reservoir evaluation.However,affected by the diverse lithology,complicated mineral and widespread alteration,conventional logging lithology classification and mineral inversion become considerably difficult.At the same time,owing to the limitation of the wireline log response equation,the quantity and accuracy of minerals can hardly meet the exploration requirements of igneous formations.To overcome those issues,this study takes the South China Sea as an example,and combines multi-scale data such as micro rock slices,petrophysical experiments,wireline log and element cutting log to establish a set of joint inversion methods for minerals and porosity of altered igneous rocks.Specifically,we define the lithology and mineral characteristics through core slices and mineral data,and establish an igneous multi-mineral volumetric model.Then we determine element cutting log correction method based on core element data,and combine wireline log and corrected element cutting log to perform the lithology classification and joint inversion of minerals and porosity.However,it is always difficult to determine the elemental eigenvalues of different minerals in inversion.This paper uses multiple linear regression methods to solve this problem.Finally,an integrated inversion technique for altered igneous formations was developed.The results show that the corrected element cutting log are in good agreement with the core element data,and the mineral and porosity results obtained from the joint inversion based on the wireline log and corrected element cutting log are also in good agreement with the core data from X-ray diffraction.The results demonstrate that the inversion technique is applicable and this study provides a new direction for the mineral inversion research of altered igneous formations. 展开更多
关键词 Joint inversion Altered igneous rock Element correction method Lithology identification multi mineral volume model
下载PDF
Improved Scatter Search Algorithm for Multi-skilled Personnel Scheduling of Ship Block Painting
14
作者 Guanglei Jiao Zuhua Jiang +1 位作者 Jianmin Niu Wenjuan Yu 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第1期1-15,共15页
This paper focuses on the optimization method for multi-skilled painting personnel scheduling.The budget working time analysis is carried out considering the influence of operating area,difficulty of spraying area,mul... This paper focuses on the optimization method for multi-skilled painting personnel scheduling.The budget working time analysis is carried out considering the influence of operating area,difficulty of spraying area,multi-skilled workers,and worker’s efficiency,then a mathematical model is established to minimize the completion time. The constraints of task priority,paint preparation,pump management,and neighbor avoidance in the ship block painting production are considered. Based on this model,an improved scatter search(ISS)algorithm is designed,and the hybrid approximate dynamic programming(ADP)algorithm is used to improve search efficiency. In addition,the two solution combination methods of path-relinking and task sequence combination are used to enhance the search breadth and depth. The numerical experimental results show that ISS has a significant advantage in solving efficiency compared with the solver in small scale instances;Compared with the scatter search algorithm and genetic algorithm,ISS can stably improve the solution quality. Verified by the production example,ISS effectively shortens the total completion time of the production,which is suitable for scheduling problems in the actual painting production of the shipyard. 展开更多
关键词 ship painting personnel scheduling multi⁃skilled workers scatter search task constraints
下载PDF
Integration of Multiple Spectral Data via a Logistic Regression Algorithm for Detection of Crop Residue Burned Areas:A Case Study of Songnen Plain,Northeast China
15
作者 ZHANG Sumei ZHANG Yuan ZHAO Hongmei 《Chinese Geographical Science》 SCIE CSCD 2024年第3期548-563,共16页
The burning of crop residues in fields is a significant global biomass burning activity which is a key element of the terrestrial carbon cycle,and an important source of atmospheric trace gasses and aerosols.Accurate ... The burning of crop residues in fields is a significant global biomass burning activity which is a key element of the terrestrial carbon cycle,and an important source of atmospheric trace gasses and aerosols.Accurate estimation of cropland burned area is both crucial and challenging,especially for the small and fragmented burned scars in China.Here we developed an automated burned area mapping algorithm that was implemented using Sentinel-2 Multi Spectral Instrument(MSI)data and its effectiveness was tested taking Songnen Plain,Northeast China as a case using satellite image of 2020.We employed a logistic regression method for integrating multiple spectral data into a synthetic indicator,and compared the results with manually interpreted burned area reference maps and the Moderate-Resolution Imaging Spectroradiometer(MODIS)MCD64A1 burned area product.The overall accuracy of the single variable logistic regression was 77.38%to 86.90%and 73.47%to 97.14%for the 52TCQ and 51TYM cases,respectively.In comparison,the accuracy of the burned area map was improved to 87.14%and 98.33%for the 52TCQ and 51TYM cases,respectively by multiple variable logistic regression of Sentind-2 images.The balance of omission error and commission error was also improved.The integration of multiple spectral data combined with a logistic regression method proves to be effective for burned area detection,offering a highly automated process with an automatic threshold determination mechanism.This method exhibits excellent extensibility and flexibility taking the image tile as the operating unit.It is suitable for burned area detection at a regional scale and can also be implemented with other satellite data. 展开更多
关键词 crop residue burning burned area Sentinel-2 multi Spectral Instrument(MSI) logistic regression Songnen Plain China
下载PDF
Contribution of Imagery in the Diagnosis of Multisystemic Sarcoidosis in the Service Radiology Department of the Mother and Child Hospital “Le Luxembourg” in Bamako: A Case Report
16
作者 Mariko Mahamane Camara Mamoudou +7 位作者 Keita Aboubacar Sidiki N’Diaye Mahamadou Camara Mody Abdoulaye Fofana Youssouf Traoré Mohamed Maba Sidibé Siaka Sanogo Souleymane Keita Adama Diaman 《Open Journal of Medical Imaging》 2024年第3期79-85,共7页
The aim of this study was to report a case of multi-visceral sarcoidosis at the Mother-Child Hospital Center (CHME) “Le Luxembourg” in Bamako, Mali. Observation: This is a patient aged 62 at the time of consultation... The aim of this study was to report a case of multi-visceral sarcoidosis at the Mother-Child Hospital Center (CHME) “Le Luxembourg” in Bamako, Mali. Observation: This is a patient aged 62 at the time of consultation, a housewife, residing in the Banconi district, who was referred to us for thoracic-abdominopelvic imaging for chronic liver disease. After several diagnostic errors, the thoracic-abdominopelvic CT scan and liver MRI performed in our center showed, at the thoracoabdominal level, bilateral diffuse pulmonary micronodules and bilateral mediastinal-hilar lymphadenopathy;on the abdominal level, a dysmorphic liver with plaques of steatosis and a granular appearance of the liver parenchyma without periportal fibrosis. These imaging data combined with those from the liver nodule biopsy and biology confirmed the diagnosis of sarcoidosis type II. Treatment with corticosteroids gave satisfactory results and the patient recovered after 18 months. Clinical and CT monitoring 2 years from the start of the disease and 2 months from the end of treatment showed complete resolution of the lesions. Conclusion: The multi-visceral location of sarcoidosis is an entity whose diagnosis remains difficult;diagnostic and interventional imaging has an important place in its management. 展开更多
关键词 SARCOIDOSIS multi VISCERAL Imaging CHME Luxembourg
下载PDF
Incidence, risk factors and clinical outcome of multidrug-resistant organisms after heart transplantation
17
作者 Sophia Hatzianastasiou Paraskevas Vlachos +12 位作者 Georgios Stravopodis Dimitrios Elaiopoulos Afentra Koukousli Josef Papaparaskevas Themistoklis Chamogeorgakis Kyrillos Papadopoulos Theodora Soulele Despoina Chilidou Kyriaki Kolovou Aggeliki Gkouziouta Michail Bonios Stamatios Adamopoulos Stavros Dimopoulos 《World Journal of Transplantation》 2024年第2期107-118,共12页
BACKGROUND Transplant recipients commonly harbor multidrug-resistant organisms(MDROs),as a result of frequent hospital admissions and increased exposure to antimi-crobials and invasive procedures.AIM To investigate th... BACKGROUND Transplant recipients commonly harbor multidrug-resistant organisms(MDROs),as a result of frequent hospital admissions and increased exposure to antimi-crobials and invasive procedures.AIM To investigate the impact of patient demographic and clinical characteristics on MDRO acquisition,as well as the impact of MDRO acquisition on intensive care unit(ICU)and hospital length of stay,and on ICU mortality and 1-year mortality post heart transplantation.METHODS This retrospective cohort study analyzed 98 consecutive heart transplant patients over a ten-year period(2013-2022)in a single transplantation center.Data was collected regarding MDROs commonly encountered in critical care.RESULTS Among the 98 transplanted patients(70%male),about a third(32%)acquired or already harbored MDROs upon transplantation(MDRO group),while two thirds did not(MDRO-free group).The prevalent MDROs were Acinetobacter baumannii(14%),Pseudomonas aeruginosa(12%)and Klebsiella pneumoniae(11%).Compared to MDRO-free patients,the MDRO group was characterized by higher body mass index(P=0.002),higher rates of renal failure(P=0.017),primary graft dysfunction(10%vs 4.5%,P=0.001),surgical re-exploration(34%vs 14%,P=0.017),mechanical circulatory support(47%vs 26%P=0.037)and renal replacement therapy(28%vs 9%,P=0.014),as well as longer extracorporeal circulation time(median 210 vs 161 min,P=0.003).The median length of stay was longer in the MDRO group,namely ICU stay was 16 vs 9 d in the MDRO-free group(P=0.001),and hospital stay was 38 vs 28 d(P=0.006),while 1-year mortality was higher(28%vs 7.6%,log-rank-χ2:7.34).CONCLUSION Following heart transplantation,a predominance of Gram-negative MDROs was noted.MDRO acquisition was associated with higher complication rates,prolonged ICU and total hospital stay,and higher post-transplantation mortality. 展开更多
关键词 Heart transplantation multi drug resistant organisms Transplantation complications Transplantation outcome
下载PDF
Research on fault time prediction method for high speed rail BTM unit based on multi method interactive validation
18
作者 Limin Fu Junqiang Gou +2 位作者 Chao Sun Hanrui Li Wei Liu 《High-Speed Railway》 2024年第3期164-171,共8页
The Balise Transmission Module(BTM)unit of the on-board train control system is a crucial component.Due to its unique installation position and complex environment,this unit has a higher fault rate within the on-board... The Balise Transmission Module(BTM)unit of the on-board train control system is a crucial component.Due to its unique installation position and complex environment,this unit has a higher fault rate within the on-board train control system.To conduct fault prediction for the BTM unit based on actual fault data,this study proposes a prediction method combining reliability statistics and machine learning,and achieves the fusion of prediction results from different dimensions through multi-method interactive validation.Firstly,a method for predicting equipment fault time targeting batch equipment is introduced.This method utilizes reliability statistics to construct a model of the remaining faultless operating time distribution considering uncertainty,thereby predicting the remaining faultless operating probability of the BTM unit.Secondly,considering the complexity of the BTM unit’s fault mechanism,the small sample size of fault cases,and the potential presence of multiple fault features in fault text records,an individual-oriented fault prediction method based on Bayesian-optimized Gradient Boosting Regression Tree(Bayes-GBRT)is proposed.This method achieves better prediction results compared to linear regression algorithms and random forest regression algorithms,with an average absolute error of only 0.224 years for predicting the fault time of this type of equipment.Finally,a multi-method interactive validation approach is proposed,enabling the fusion and validation of multi-dimensional results.The results indicate that the predicted fault time and the actual fault time conform to a log-normal distribution,and the parameter estimation results are basically consistent,verifying the accuracy and effectiveness of the prediction results.The above research findings can provide technical support for the maintenance and modification of BTM units,effectively reducing maintenance costs and ensuring the safe operation of high-speed railway,thus having practical engineering value for preventive maintenance. 展开更多
关键词 High speed rail BTM unit Remaining faultless operating time Machine learning multi method interactive verification
下载PDF
Modeling of the Multi-Target Locating and Tracking in the Field Artillery System 被引量:1
19
作者 杨国胜 窦丽华 +1 位作者 陈杰 侯朝桢 《Journal of Beijing Institute of Technology》 EI CAS 2002年第1期14-18,共5页
A method for the multi target locating and tracking with the multi sensor in a field artillery system is studied. A general modeling structure of the system is established. Based on concepts of cluster and closed ba... A method for the multi target locating and tracking with the multi sensor in a field artillery system is studied. A general modeling structure of the system is established. Based on concepts of cluster and closed ball, an algorithm is put forward for multi sensor multi target data fusion and an optimal solution for state estimation is presented. The simulation results prove the algorithm works well for the multi stationary target locating and the multi moving target tracking under the condition of the sparse target environment. Therefore, this method can be directly applied to the field artillery C 3I system. 展开更多
关键词 field artillery system data fusion closed ball cluster single sensor multi target multi sensor multi target
下载PDF
GIS-Based Multi-Criteria Decision Analysis (MCDA) and Analytical Hierarchy Process (AHP) Techniques to Derive Flood Risks Management on Rice Productivity in Gishari Marshland
20
作者 Jean Nepo Nsengiyumva Emmanuel Nshimiyimana +7 位作者 Jean Marie Ntakirutimana Phocas Musabyimana Yvonne Akimana Fred Shema Set Niyitanga Séverin Hishamunda Callixte Musinga Mpamabara Eliezel Habineza 《Journal of Geoscience and Environment Protection》 2024年第3期222-249,共28页
Floods are phenomenon with significant socio-economic implications mainly for human loss, agriculture, livestock, soil loss and land degradation, for which many researchers try to identify the most appropriate methodo... Floods are phenomenon with significant socio-economic implications mainly for human loss, agriculture, livestock, soil loss and land degradation, for which many researchers try to identify the most appropriate methodologies by analyzing their temporal and spatial development. This study therefore attempts to employ the GIS-based multi-criteria decision analysis and analytical hierarchy process techniques to derive the flood risks management on rice productivity in the Gishari Agricultural Marshland in Rwamagana district, Rwanda. Here, six influencing potential factors to flooding, including river slope, soil texture, Land Use Land Cover through Land Sat 8, rainfall, river distance and Digital Elevation Model are considered for the delineation of flood risk zones. Data acquisition like Landsat 8 images, DEM, land use land cover, slope, and soil class in the study area were considered. Results showed that if the DEM is outdated or inaccurate due to changes in the terrain, such as construction, excavation, or erosion, the predicted flood patterns might not reflect the actual water flow. This could result unexpected flood extents and depths, potentially inundating rice fields that were not previously at risk and this, expectedly explained that the increase 1 m in elevation would reduce the rice productivity by 0.17% due to unplanned flood risks in marshland. It was found that the change in rainfall distribution in Gishari agricultural marshland would also decrease the rice productivity by 0.0018%, which is a sign that rainfall is a major factor of flooding in rice scheme. Rainfall distribution plays a crucial role in flooding analysis and can directly impact rice productivity. Oppositely, another causal factor was Land Use Land Cover (LULC), where the Multivariate Logistic Regression Model Analysis findings showed that the increase of one unit in Land Use Land Cover would increase rice productivity by 0.17% of the total rice productivity from the Gishari Agricultural Marshland. Based on findings from these techniques, the Gishari Agricultural Marshlands having steeped land with grassland is classified into five classes of flooding namely very low, low, moderate, high, and very high which include 430%, 361%, 292%, 223%, and 154%. Government of Rwanda and other implementing agencies and major key actors have to contribute on soil and water conservation strategies to reduce the runoff and soil erosion as major contributors of flooding. 展开更多
关键词 multi Criteria Decision Analysis (MCDA) Analytical Hierarchy Analysis (AHA) GIS RS and DEM
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部