To locate and quantify local damage in a simply supported bridge, in this study, we derived a rotational-angle influence line equation of a simply supported beam model with local damage. Using the diagram multiplicati...To locate and quantify local damage in a simply supported bridge, in this study, we derived a rotational-angle influence line equation of a simply supported beam model with local damage. Using the diagram multiplication method, we introduce an analytical formula for a novel damage-identification indicator, namely the diff erence of rotational-angle influence linescurvature(DRAIL-C). If the initial stiff ness of the simply supported beam is known, the analytical formula can be effectively used to determine the extent of damage under certain circumstances. We determined the effectiveness and anti-noise performance of this new damage-identification method using numerical examples of a simply supported beam, a simply supported hollow-slab bridge, and a simply supported truss bridge. The results show that the DRAIL-C is directly proportional to the moving concentrated load and inversely proportional to the distance between the bridge support and the concentrated load and the distance between the damaged truss girder and the angle measuring points. The DRAIL-C indicator is more sensitive to the damage in a steel-truss-bridge bottom chord than it is to the other elements.展开更多
Spatial linear features are often represented as a series of line segments joined by measured endpoints in surveying and geographic information science.There are not only the measuring errors of the endpoints but also...Spatial linear features are often represented as a series of line segments joined by measured endpoints in surveying and geographic information science.There are not only the measuring errors of the endpoints but also the modeling errors between the line segments and the actual geographical features.This paper presents a Brownian bridge error model for line segments combining both the modeling and measuring errors.First,the Brownian bridge is used to establish the position distribution of the actual geographic feature represented by the line segment.Second,an error propagation model with the constraints of the measuring error distribution of the endpoints is proposed.Third,a comprehensive error band of the line segment is constructed,wherein both the modeling and measuring errors are contained.The proposed error model can be used to evaluate line segments’overall accuracy and trustability influenced by modeling and measuring errors,and provides a comprehensive quality indicator for the geospatial data.展开更多
Fragility analysis for highway bridges has become increasingly important in the risk assessment of highway transportation networks exposed to seismic hazards. This study introduces a methodology to calculate fragility...Fragility analysis for highway bridges has become increasingly important in the risk assessment of highway transportation networks exposed to seismic hazards. This study introduces a methodology to calculate fragility that considers multi-dimensional performance limit state parameters and makes a first attempt to develop fragility curves for a multi-span continuous (MSC) concrete girder bridge considering two performance limit state parameters: column ductility and transverse deformation in the abutments. The main purpose of this paper is to show that the performance limit states, which are compared with the seismic response parameters in the calculation of fragility, should be properly modeled as randomly interdependent variables instead of deterministic quantities. The sensitivity of fragility curves is also investigated when the dependency between the limit states is different. The results indicate that the proposed method can be used to describe the vulnerable behavior of bridges which are sensitive to multiple response parameters and that the fragility information generated by this method will be more reliable and likely to be implemented into transportation network loss estimation.展开更多
Representing the relationships between ontologies is the key problem of semantic annotations based on multi-ontologies. Traditional approaches only had the ability of denoting the simple concept subsumption relations ...Representing the relationships between ontologies is the key problem of semantic annotations based on multi-ontologies. Traditional approaches only had the ability of denoting the simple concept subsumption relations between ontologies. Through analyzing and classifying the relationships between ontologies, the idea of bridge ontology was proposed, which had the powerful capability of expressing the complex relationships between concepts and relationships between relations in multi-ontologies. Meanwhile, a new approach employing bridge ontology was proposed to deal with the multi-ontologies-based semantic annotation problem. The bridge ontology is a peculiar ontology, which can be created and maintained conveniently, and is effective in the multi-ontologies-based semantic annotation. The approach using bridge ontology has the advantages of low-cost, scalable, robust in the web circumstance, and avoiding the unnecessary ontology extending and integration. Key words semantic web - bridge ontology - multi-ontologies - semantic annotation CLC number TP 391 Foundation item: Supported by the National Natural Science Foundation of China (60373066, 60303024). National Grand Fundamental Research 973 Program of China (2002CB312000), National Re-search Foundation for the Doctoral Program of Higher Education of China (20020286004)Biography: WANG Peng (1977-), male, Ph.D candidate, research direction: semantic web, ontology, and knowledge representation on the Web.展开更多
In order to accurately simulate the diffusion of chloride ion in the existing concrete bridge and acquire the precise chloride ion concentration at given time, a cellular automata (CA)-based model is proposed. The p...In order to accurately simulate the diffusion of chloride ion in the existing concrete bridge and acquire the precise chloride ion concentration at given time, a cellular automata (CA)-based model is proposed. The process of chloride ion diffusion is analyzed by the CA-based method and a nonlinear solution of the Fick's second law is obtained. Considering the impact of various factors such as stress states, temporal and spatial variability of diffusion parameters and water-cement ratio on the process of chloride ion diffusion, the model of chloride ion diffusion under multi-factor coupling actions is presented. A chloride ion penetrating experiment reported in the literature is used to prove the effectiveness and reasonability of the present method, and a T-type beam is taken as an illustrative example to analyze the process of chloride ion diffusion in practical application. The results indicate that CA-based method can simulate the diffusion of chloride ion in the concrete structures with acceptable precision.展开更多
In this paper, wind-induced vibration control of a single column tower of a cable-stayed bridge with a multi- stage pendulum mass damper (MSPMD) is investigated. Special attention is given to overcoming space limita...In this paper, wind-induced vibration control of a single column tower of a cable-stayed bridge with a multi- stage pendulum mass damper (MSPMD) is investigated. Special attention is given to overcoming space limitations for installing the control device in the tower and the effect of varying natural frequency of the towers during construction. First, the finite element model of the bridge during its construction and the basic equation of motion of the MSPMD are introduced. The equation of motion of the bridge with the MSPMD under along-wind excitation is then established. Finally, a numerical simulation and parametric study are conducted to assess the effectiveness of the control system for reducing the wind-induced vibration of the bridge towers during construction. The numerical simulation results show that the MSPMD is practical and effective for reducing the along-wind response of the single column tower, can be installed in a small area of the tower, and complies with the time-variant characteristics of the bridge during its entire construction stage.展开更多
In the U.S., the current Load and Resistance Factor Design (LRFD) Specifications for highway bridges is a reliability-based formulation that considers failure probabilities of bridge components due to the actions of...In the U.S., the current Load and Resistance Factor Design (LRFD) Specifications for highway bridges is a reliability-based formulation that considers failure probabilities of bridge components due to the actions of typical dead load and frequent vehicular loads. Various extreme load effects, such as earthquake and vessel collision, are on the same reliability-based platform. Since these extreme loads are time variables, combining them with not considered frequent. non- extreme loads is a significant challenge. The number of design limit state equations based on these failure probabilities can be unrealistically large and unnecessary from the view point of practical applications. Based on the opinion of AASHTO State Bridge Engineers, many load combinations are insignificant in their states. This paper describes the formulation of a criterion to include only the necessary load combinations to establish the design limit states. This criterion is established by examining the total failure probabilities for all possible time-invariant and time varying load combinations and breaking them down into partial terms. Then, important load combinations can be readily determined quantitatively,展开更多
The possibility of using a multi-stage pendulum mass damper (MSPMD) to control wind-induced vibration of a single column tower of a cable-stayed bridge during construction was studied theoretically in part I of this...The possibility of using a multi-stage pendulum mass damper (MSPMD) to control wind-induced vibration of a single column tower of a cable-stayed bridge during construction was studied theoretically in part I of this work. In this paper, the performance of the MSPMD for reducing bridge tower vibration is studied experimentally. A MSPMD model and a tower model of the bridge with geometry scaling of 1:100 were designed and manufactured. Calibration of the MSPMD model with different wire lengths is conducted to verify the analytical model of the damper. A series of tests for the uncontrolled freestanding tower, tower with cables, and tower with MSPMD model are then performed under harmonic and white noise excitations. The experimental results show that the responses of the tower model significantly decrease with the installation of the MSPMD model, which demonstrates the effectiveness of the M SPMD to mitigate the vibration of the bridge tower.展开更多
Modem dynamic tests such as networked collaborative pseudo-dynamic testing (PDT) provide new tools to study the dynamic performance of large and complex structures. In this paper, several networked collaborative PDT...Modem dynamic tests such as networked collaborative pseudo-dynamic testing (PDT) provide new tools to study the dynamic performance of large and complex structures. In this paper, several networked collaborative PDT systems established in China and abroad are introduced, including a detailed description of the first networked collaborative platform that involved the construction of a standardized demonstration procedure for networked collaborative PDT. The example is a multi-span bridge with RC piers retrofitted by FRP, and a networked structural laboratory (NetSLab) platform is used to link distributed laboratories located at several universities together. Substructure technology is also used in the testing. The characteristics, resource sharing and collaborative work of NetSLab are described, and the results illustrate that use of the NetSLab is feasible for studying the dynamic performance of multi-span bridge structures.展开更多
To investigate the hydrodynamic characteristic of pontoon bridge, the multi-block grid generation technique with numerical methods for viscous fluid dynamics is applied to numerical simulations on the hydrodynamic cha...To investigate the hydrodynamic characteristic of pontoon bridge, the multi-block grid generation technique with numerical methods for viscous fluid dynamics is applied to numerical simulations on the hydrodynamic characteristic of a ribbon ferrying raft model at a series of towing speeds. Comparison of the simulated results with the experimental data indicates that the simulated results are acceptable. It shows that the multi-block grid generation technique is effective in the computation on pontoon bridge hydrodynamics.展开更多
In the AASHTO Guide Specifications for Seismic Bridge Design Provisions,ductile diaphragms are identified as Permissible Earthquake-Resisting Elements(EREs),designed to help resist seismic loads applied in the trans...In the AASHTO Guide Specifications for Seismic Bridge Design Provisions,ductile diaphragms are identified as Permissible Earthquake-Resisting Elements(EREs),designed to help resist seismic loads applied in the transverse direction of bridges.When adding longitudinal ductile diaphragms,a bidirectional ductile diaphragm system is created that can address seismic excitations acting along both the bridge’s longitudinal and transverse axes.This paper investigates bidirectional ductile diaphragms with Buckling Restrained Braces(BRBs)in straight multi-span bridge with simply supported floating spans.The flexibility of the substructures in the transverse and longitudinal direction of the bridge is considered.Design procedures for the bidirectional ductile diaphragms are first proposed.An analytical model of the example bridge with bidirectional ductile diaphragms,designed based on the proposed methodology,is then built in SAP2000.Pushover and nonlinear time history analyses are performed on the bridge model,and corresponding results are presented.The effect of changing the longitudinal stiffness of the bidirectional ductile diaphragms in the end spans connecting to the abutment is also investigated,in order to better understand the impact on the bridge’s dynamic performance.展开更多
For establishing the refined numerical simulation model for coupled vibration between vehicle and bridge, the refined three-dimensional vehicle model is setup by multi-body system dynamics method, and finite element m...For establishing the refined numerical simulation model for coupled vibration between vehicle and bridge, the refined three-dimensional vehicle model is setup by multi-body system dynamics method, and finite element method of dynamic model is adopted to model the bridge. Taking Yujiang River Bridge on Nanning-Guangzhou railway line in China as study background, the?refined numerical simulation model of whole vehicle and whole bridge system for coupled vibration analysis is set up. The dynamic analysis model of the cable-stayed bridge is established by finite element method, and the natural vibration properties of the bridge are analyzed. The German ICE Electric Multiple Unit (EMU) train refined three-dimensional space vehicle model is set up by multi-system dynamics software SIMPACK, and the multiple non-linear properties are considered. The space vibration responses are calculated by co-simulation based on multi-body system dynamics and finite element method when the ICE EMU train passes the long span cable-stayed bridge at different speeds. In order to test if the bridge has the sufficient lateral or vertical rigidity and the operation stability is fine. The calculation results show: The operation safety can be guaranteed, and comfort?index is “excellent”. The bridge has sufficient rigidity, and vibration is in good condition.展开更多
Multi-modular system plays an important role in power system architecture because low voltage and low power converters can be connected in any combination parallel or series at input/ output side in order to obtained ...Multi-modular system plays an important role in power system architecture because low voltage and low power converters can be connected in any combination parallel or series at input/ output side in order to obtained any given power system specifications. Multi-modular boost haft bridge DC-DC converter in the configuration of input series output parallel has been investigated in this paper. The boost half bridge DC-DC converters are connected in input series output parallel con- figuration in order to achieve equal input voltage sharing and output current sharing between the con- verters. This can be achieved with the help of dynamic control scheme which consists of two loops, a voltage loop and a current loop, for each module. Dynamic behavior of multi-modular converter configuration has been observe by varying the load condition. Moreover, the results obtained through multi-modular converter describe that the system has good dynamic and steady state response. Al- though two converter modules are focused in this paper but it can be modified to any number of modules.展开更多
通过把3种不同尺寸的L-bridge单元进行组合,在多层PCB板的电源层上,设计了一种新的多周期平面型超宽带电磁带隙(Electromagnetic Band Gap,EBG)结构,可用于抑制数字电路系统中的同步开关噪声(Simultaneous Switching Noise,SSN)。利用H...通过把3种不同尺寸的L-bridge单元进行组合,在多层PCB板的电源层上,设计了一种新的多周期平面型超宽带电磁带隙(Electromagnetic Band Gap,EBG)结构,可用于抑制数字电路系统中的同步开关噪声(Simultaneous Switching Noise,SSN)。利用HFSS软件对该EBG结构进行了建模和仿真,并在仿真基础上制作了电路实物,实测与仿真结果吻合良好。组合结构EBG比传统L-bridge EBG的阻带宽度有明显提高,当抑制深度为-40 d B时,具有从0.8 GHz到9.5 GHz的超宽带阻带特性。展开更多
In many regions of the world, a bridge will experience multiple extreme hazards during its expected service life. The current American Association of State Highway and Transportation Officials (AASHTO) load and resi...In many regions of the world, a bridge will experience multiple extreme hazards during its expected service life. The current American Association of State Highway and Transportation Officials (AASHTO) load and resistance factor design (LRFD) specifications are formulated based on failure probabilities, which are fully calibrated for dead load and nonextreme live loads. Design against earthquake loads is established separately. Design against scour effect is also formulated separately by using the concept of capacity reduction (or increased scour depth). Furthermore, scour effect cannot be linked directly to an LRFD limit state equation, because the latter is formulated using force-based analysis. This paper (in two parts) presents a probability-based procedure to estimate the combined hazard effects on bridges due to truck, earthquake and scour, by treating the effect of scour as an equivalent load effect so that it can be included in reliability-based bridge failure calculations. In Part I of this series, the general principle of treating the scour depth as an equivalent load effect is presented. The individual and combined partial failure probabilities due to truck, earthquake and scour effects are described. To explain the method of including non-force-based natural hazards effects, two types of common scour failures are considered. In Part 11, the corresponding bridge failure probability, the occurrence of scour as well as simultaneously having both truck load and equivalent scour load are quantitatively discussed.展开更多
In many regions of the world, a bridge will experience multiple extreme hazards during its expected service life. The current American Association of State Highway and Transportation Officials (AASHTO) load and resi...In many regions of the world, a bridge will experience multiple extreme hazards during its expected service life. The current American Association of State Highway and Transportation Officials (AASHTO) load and resistance factor design (LRFD) specifications are formulated based on failure probabilities, which are fully calibrated for dead load and non-extreme live loads. Design against earthquake load effect is established separately. Design against scour effect is also formulated separately by using the concept of capacity reduction (or increased scour depth). Furthermore, scour effect cannot be linked directly to an LRFD limit state equation because the latter is formulated using force-based analysis. This paper (in two parts) presents a probability-based procedure to estimate the combined hazard effects on bridges due to truck, earthquake and scour, by treating the effect of scour as an equivalent load effect so that it can be included in reliability-based failure calculations. In Part I of this series, the general principle for treating the scour depth as an equivalent load effect is presented. In Part II, the corresponding bridge failure probability, the occurrence of scour as well as simultaneously having both truck load and equivalent scour load effect are quantitatively discussed. The key formulae of the conditional partial failure probabilities and the necessary conditions are established. In order to illustrate the methodology, an example of dead, truck, earthquake and scour effects on a simple bridge pile foundation is represented.展开更多
Multi-sensor vision system plays an important role in the 3D measurement of large objects.However,due to the widely distribution of sensors,the problem of lacking common fields of view(FOV) arises frequently,which m...Multi-sensor vision system plays an important role in the 3D measurement of large objects.However,due to the widely distribution of sensors,the problem of lacking common fields of view(FOV) arises frequently,which makes the global calibration of the vision system quite difficult.The primary existing solution relies on large-scale surveying equipments,which is ponderous and inconvenient for field calibrations.In this paper,a global calibration method of multi-sensor vision system is proposed and investigated.The proposed method utilizes pairs of skew laser lines,which are generated by a group of laser pointers,as the calibration objects.Each pair of skew laser lines provides a unique coordinate system in space which can be reconstructed in certain vision sensor's coordinates by using a planar pattern.Then the geometries of sensors are computed under rigid transformation constrains by taking coordinates of each skew lines pair as the intermediary.The method is applied on both visual cameras with synthetic data and a real two-camera vision system;results show the validity and good performance.The prime contribution of this paper is taking skew laser lines as the global calibration objects,which makes the method simple and flexible.The method need no expensive equipments and can be used in large-scale calibration.展开更多
To evaluate the importance of the canyon topography effects on large structures, based on a rigid frame bridge across a 137-m-deep and 600-m-wide canyon, the seismic response of the canyon site is analyzed using a two...To evaluate the importance of the canyon topography effects on large structures, based on a rigid frame bridge across a 137-m-deep and 600-m-wide canyon, the seismic response of the canyon site is analyzed using a two-dimensional finite element model under different seismic SV waves with the assumptions of vertical incidence and oblique incidence to obtain the ground motions, which are used as the excitation input on the pier foundations of the bridge with improved large mass method. The results indicate that canyon topography has significant influences on the ground motions in terms of inci- dent angle. The peak ground acceleration values vary greatly from the bottom of the canyon to the upper comers. Under ver- tical incident SV waves, at the upper comers of canyon the peak ground accelerations greatly increase; whereas the peak ground accelerations diminish at the bottom comers of canyon. Under oblique incident SV waves, the shaking of the canyon slope perpendicular to the incidence direction is much more severe than that of the opposite side of canyon. And the ground surface has been characterized by larger deformations in the case of oblique incident waves. It is also concluded that the low piers and frame of the continuous rigid frame bridge ape more sensitive to the multi-support seismic excitations than the flexible high piers. The canyon topography as well as the oblique incidence of the waves brings the continuous rigid frame bridge severe responses, which should be taken into account in bridge design.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51608245 and 51568041)Natural Science Foundation of Gansu Province(Nos.148RJZA026 and 2014GS02269)
文摘To locate and quantify local damage in a simply supported bridge, in this study, we derived a rotational-angle influence line equation of a simply supported beam model with local damage. Using the diagram multiplication method, we introduce an analytical formula for a novel damage-identification indicator, namely the diff erence of rotational-angle influence linescurvature(DRAIL-C). If the initial stiff ness of the simply supported beam is known, the analytical formula can be effectively used to determine the extent of damage under certain circumstances. We determined the effectiveness and anti-noise performance of this new damage-identification method using numerical examples of a simply supported beam, a simply supported hollow-slab bridge, and a simply supported truss bridge. The results show that the DRAIL-C is directly proportional to the moving concentrated load and inversely proportional to the distance between the bridge support and the concentrated load and the distance between the damaged truss girder and the angle measuring points. The DRAIL-C indicator is more sensitive to the damage in a steel-truss-bridge bottom chord than it is to the other elements.
基金National Natural Science Foundation of China(Nos.42071372,42221002)。
文摘Spatial linear features are often represented as a series of line segments joined by measured endpoints in surveying and geographic information science.There are not only the measuring errors of the endpoints but also the modeling errors between the line segments and the actual geographical features.This paper presents a Brownian bridge error model for line segments combining both the modeling and measuring errors.First,the Brownian bridge is used to establish the position distribution of the actual geographic feature represented by the line segment.Second,an error propagation model with the constraints of the measuring error distribution of the endpoints is proposed.Third,a comprehensive error band of the line segment is constructed,wherein both the modeling and measuring errors are contained.The proposed error model can be used to evaluate line segments’overall accuracy and trustability influenced by modeling and measuring errors,and provides a comprehensive quality indicator for the geospatial data.
基金National Natural Science Foundation of China Under Award Number 50878184National High Technology Research and Development Program (863 Program) of China Under Grant No. 2006AA04Z437Graduate Starting Seed Fund of Northwestern Polytechnical University Under the Grant No. Z2012059
文摘Fragility analysis for highway bridges has become increasingly important in the risk assessment of highway transportation networks exposed to seismic hazards. This study introduces a methodology to calculate fragility that considers multi-dimensional performance limit state parameters and makes a first attempt to develop fragility curves for a multi-span continuous (MSC) concrete girder bridge considering two performance limit state parameters: column ductility and transverse deformation in the abutments. The main purpose of this paper is to show that the performance limit states, which are compared with the seismic response parameters in the calculation of fragility, should be properly modeled as randomly interdependent variables instead of deterministic quantities. The sensitivity of fragility curves is also investigated when the dependency between the limit states is different. The results indicate that the proposed method can be used to describe the vulnerable behavior of bridges which are sensitive to multiple response parameters and that the fragility information generated by this method will be more reliable and likely to be implemented into transportation network loss estimation.
文摘Representing the relationships between ontologies is the key problem of semantic annotations based on multi-ontologies. Traditional approaches only had the ability of denoting the simple concept subsumption relations between ontologies. Through analyzing and classifying the relationships between ontologies, the idea of bridge ontology was proposed, which had the powerful capability of expressing the complex relationships between concepts and relationships between relations in multi-ontologies. Meanwhile, a new approach employing bridge ontology was proposed to deal with the multi-ontologies-based semantic annotation problem. The bridge ontology is a peculiar ontology, which can be created and maintained conveniently, and is effective in the multi-ontologies-based semantic annotation. The approach using bridge ontology has the advantages of low-cost, scalable, robust in the web circumstance, and avoiding the unnecessary ontology extending and integration. Key words semantic web - bridge ontology - multi-ontologies - semantic annotation CLC number TP 391 Foundation item: Supported by the National Natural Science Foundation of China (60373066, 60303024). National Grand Fundamental Research 973 Program of China (2002CB312000), National Re-search Foundation for the Doctoral Program of Higher Education of China (20020286004)Biography: WANG Peng (1977-), male, Ph.D candidate, research direction: semantic web, ontology, and knowledge representation on the Web.
基金the National Natural Science Foundation of China (No.51178305)Key Projects in the Science & Technology Pillar Program of Tianjin (No.11ZCKFSF00300)
文摘In order to accurately simulate the diffusion of chloride ion in the existing concrete bridge and acquire the precise chloride ion concentration at given time, a cellular automata (CA)-based model is proposed. The process of chloride ion diffusion is analyzed by the CA-based method and a nonlinear solution of the Fick's second law is obtained. Considering the impact of various factors such as stress states, temporal and spatial variability of diffusion parameters and water-cement ratio on the process of chloride ion diffusion, the model of chloride ion diffusion under multi-factor coupling actions is presented. A chloride ion penetrating experiment reported in the literature is used to prove the effectiveness and reasonability of the present method, and a T-type beam is taken as an illustrative example to analyze the process of chloride ion diffusion in practical application. The results indicate that CA-based method can simulate the diffusion of chloride ion in the concrete structures with acceptable precision.
基金Area Strategic Development Program inStructural Control and Intelligent Building from The HongKong Polytechnic University, and National Natural SciencFoundation of China Under Grant No. 50408011
文摘In this paper, wind-induced vibration control of a single column tower of a cable-stayed bridge with a multi- stage pendulum mass damper (MSPMD) is investigated. Special attention is given to overcoming space limitations for installing the control device in the tower and the effect of varying natural frequency of the towers during construction. First, the finite element model of the bridge during its construction and the basic equation of motion of the MSPMD are introduced. The equation of motion of the bridge with the MSPMD under along-wind excitation is then established. Finally, a numerical simulation and parametric study are conducted to assess the effectiveness of the control system for reducing the wind-induced vibration of the bridge towers during construction. The numerical simulation results show that the MSPMD is practical and effective for reducing the along-wind response of the single column tower, can be installed in a small area of the tower, and complies with the time-variant characteristics of the bridge during its entire construction stage.
基金Federal Highway Administration at the University at Buffalo under Contract No.DTFH61-08-C-00012
文摘In the U.S., the current Load and Resistance Factor Design (LRFD) Specifications for highway bridges is a reliability-based formulation that considers failure probabilities of bridge components due to the actions of typical dead load and frequent vehicular loads. Various extreme load effects, such as earthquake and vessel collision, are on the same reliability-based platform. Since these extreme loads are time variables, combining them with not considered frequent. non- extreme loads is a significant challenge. The number of design limit state equations based on these failure probabilities can be unrealistically large and unnecessary from the view point of practical applications. Based on the opinion of AASHTO State Bridge Engineers, many load combinations are insignificant in their states. This paper describes the formulation of a criterion to include only the necessary load combinations to establish the design limit states. This criterion is established by examining the total failure probabilities for all possible time-invariant and time varying load combinations and breaking them down into partial terms. Then, important load combinations can be readily determined quantitatively,
基金Area Strategic Development Program in Structural Control and Intelligent Building from The Hong Kong Polytechnic UniversityNational Natural Science Foundation of China Under Grant No. 50408011
文摘The possibility of using a multi-stage pendulum mass damper (MSPMD) to control wind-induced vibration of a single column tower of a cable-stayed bridge during construction was studied theoretically in part I of this work. In this paper, the performance of the MSPMD for reducing bridge tower vibration is studied experimentally. A MSPMD model and a tower model of the bridge with geometry scaling of 1:100 were designed and manufactured. Calibration of the MSPMD model with different wire lengths is conducted to verify the analytical model of the damper. A series of tests for the uncontrolled freestanding tower, tower with cables, and tower with MSPMD model are then performed under harmonic and white noise excitations. The experimental results show that the responses of the tower model significantly decrease with the installation of the MSPMD model, which demonstrates the effectiveness of the M SPMD to mitigate the vibration of the bridge tower.
基金The Key Project of the Major Research Plan of Natural Science Foundation of China Under Grant No.90715036the Key Project of the Natural Science Foundation of China Under Grant No.50338020
文摘Modem dynamic tests such as networked collaborative pseudo-dynamic testing (PDT) provide new tools to study the dynamic performance of large and complex structures. In this paper, several networked collaborative PDT systems established in China and abroad are introduced, including a detailed description of the first networked collaborative platform that involved the construction of a standardized demonstration procedure for networked collaborative PDT. The example is a multi-span bridge with RC piers retrofitted by FRP, and a networked structural laboratory (NetSLab) platform is used to link distributed laboratories located at several universities together. Substructure technology is also used in the testing. The characteristics, resource sharing and collaborative work of NetSLab are described, and the results illustrate that use of the NetSLab is feasible for studying the dynamic performance of multi-span bridge structures.
文摘To investigate the hydrodynamic characteristic of pontoon bridge, the multi-block grid generation technique with numerical methods for viscous fluid dynamics is applied to numerical simulations on the hydrodynamic characteristic of a ribbon ferrying raft model at a series of towing speeds. Comparison of the simulated results with the experimental data indicates that the simulated results are acceptable. It shows that the multi-block grid generation technique is effective in the computation on pontoon bridge hydrodynamics.
文摘In the AASHTO Guide Specifications for Seismic Bridge Design Provisions,ductile diaphragms are identified as Permissible Earthquake-Resisting Elements(EREs),designed to help resist seismic loads applied in the transverse direction of bridges.When adding longitudinal ductile diaphragms,a bidirectional ductile diaphragm system is created that can address seismic excitations acting along both the bridge’s longitudinal and transverse axes.This paper investigates bidirectional ductile diaphragms with Buckling Restrained Braces(BRBs)in straight multi-span bridge with simply supported floating spans.The flexibility of the substructures in the transverse and longitudinal direction of the bridge is considered.Design procedures for the bidirectional ductile diaphragms are first proposed.An analytical model of the example bridge with bidirectional ductile diaphragms,designed based on the proposed methodology,is then built in SAP2000.Pushover and nonlinear time history analyses are performed on the bridge model,and corresponding results are presented.The effect of changing the longitudinal stiffness of the bidirectional ductile diaphragms in the end spans connecting to the abutment is also investigated,in order to better understand the impact on the bridge’s dynamic performance.
基金the framework of the China-Greece joint research andtechnology programmes 2000-2002(Project title:‘Investigation on the characteristics of forest fires in the early stage andits control technique National Natural Science Foundation of China under Grants 50346038 , 50320120156,the China NK-BRSF project(No.2001CB409600)the Anhui Ex-cellent Youth Scientist Fundation(2001-2002),and the National Key Technologies R&D Programme(2001BA510B09-03).
文摘For establishing the refined numerical simulation model for coupled vibration between vehicle and bridge, the refined three-dimensional vehicle model is setup by multi-body system dynamics method, and finite element method of dynamic model is adopted to model the bridge. Taking Yujiang River Bridge on Nanning-Guangzhou railway line in China as study background, the?refined numerical simulation model of whole vehicle and whole bridge system for coupled vibration analysis is set up. The dynamic analysis model of the cable-stayed bridge is established by finite element method, and the natural vibration properties of the bridge are analyzed. The German ICE Electric Multiple Unit (EMU) train refined three-dimensional space vehicle model is set up by multi-system dynamics software SIMPACK, and the multiple non-linear properties are considered. The space vibration responses are calculated by co-simulation based on multi-body system dynamics and finite element method when the ICE EMU train passes the long span cable-stayed bridge at different speeds. In order to test if the bridge has the sufficient lateral or vertical rigidity and the operation stability is fine. The calculation results show: The operation safety can be guaranteed, and comfort?index is “excellent”. The bridge has sufficient rigidity, and vibration is in good condition.
文摘Multi-modular system plays an important role in power system architecture because low voltage and low power converters can be connected in any combination parallel or series at input/ output side in order to obtained any given power system specifications. Multi-modular boost haft bridge DC-DC converter in the configuration of input series output parallel has been investigated in this paper. The boost half bridge DC-DC converters are connected in input series output parallel con- figuration in order to achieve equal input voltage sharing and output current sharing between the con- verters. This can be achieved with the help of dynamic control scheme which consists of two loops, a voltage loop and a current loop, for each module. Dynamic behavior of multi-modular converter configuration has been observe by varying the load condition. Moreover, the results obtained through multi-modular converter describe that the system has good dynamic and steady state response. Al- though two converter modules are focused in this paper but it can be modified to any number of modules.
文摘通过把3种不同尺寸的L-bridge单元进行组合,在多层PCB板的电源层上,设计了一种新的多周期平面型超宽带电磁带隙(Electromagnetic Band Gap,EBG)结构,可用于抑制数字电路系统中的同步开关噪声(Simultaneous Switching Noise,SSN)。利用HFSS软件对该EBG结构进行了建模和仿真,并在仿真基础上制作了电路实物,实测与仿真结果吻合良好。组合结构EBG比传统L-bridge EBG的阻带宽度有明显提高,当抑制深度为-40 d B时,具有从0.8 GHz到9.5 GHz的超宽带阻带特性。
基金Federal Highway Administration at the University at Buffalo under Contract No. DTFH61-08-C-00012
文摘In many regions of the world, a bridge will experience multiple extreme hazards during its expected service life. The current American Association of State Highway and Transportation Officials (AASHTO) load and resistance factor design (LRFD) specifications are formulated based on failure probabilities, which are fully calibrated for dead load and nonextreme live loads. Design against earthquake loads is established separately. Design against scour effect is also formulated separately by using the concept of capacity reduction (or increased scour depth). Furthermore, scour effect cannot be linked directly to an LRFD limit state equation, because the latter is formulated using force-based analysis. This paper (in two parts) presents a probability-based procedure to estimate the combined hazard effects on bridges due to truck, earthquake and scour, by treating the effect of scour as an equivalent load effect so that it can be included in reliability-based bridge failure calculations. In Part I of this series, the general principle of treating the scour depth as an equivalent load effect is presented. The individual and combined partial failure probabilities due to truck, earthquake and scour effects are described. To explain the method of including non-force-based natural hazards effects, two types of common scour failures are considered. In Part 11, the corresponding bridge failure probability, the occurrence of scour as well as simultaneously having both truck load and equivalent scour load are quantitatively discussed.
基金Federal Highway Administration at the University at Buffalo under Contract Number DTFH61-08-C-00012
文摘In many regions of the world, a bridge will experience multiple extreme hazards during its expected service life. The current American Association of State Highway and Transportation Officials (AASHTO) load and resistance factor design (LRFD) specifications are formulated based on failure probabilities, which are fully calibrated for dead load and non-extreme live loads. Design against earthquake load effect is established separately. Design against scour effect is also formulated separately by using the concept of capacity reduction (or increased scour depth). Furthermore, scour effect cannot be linked directly to an LRFD limit state equation because the latter is formulated using force-based analysis. This paper (in two parts) presents a probability-based procedure to estimate the combined hazard effects on bridges due to truck, earthquake and scour, by treating the effect of scour as an equivalent load effect so that it can be included in reliability-based failure calculations. In Part I of this series, the general principle for treating the scour depth as an equivalent load effect is presented. In Part II, the corresponding bridge failure probability, the occurrence of scour as well as simultaneously having both truck load and equivalent scour load effect are quantitatively discussed. The key formulae of the conditional partial failure probabilities and the necessary conditions are established. In order to illustrate the methodology, an example of dead, truck, earthquake and scour effects on a simple bridge pile foundation is represented.
基金supported by National Natural Science Foundation of China (Grant No. 60804060)Research Fund for the Doctoral Program of Higher Education of China (Grant No. 200800061003)
文摘Multi-sensor vision system plays an important role in the 3D measurement of large objects.However,due to the widely distribution of sensors,the problem of lacking common fields of view(FOV) arises frequently,which makes the global calibration of the vision system quite difficult.The primary existing solution relies on large-scale surveying equipments,which is ponderous and inconvenient for field calibrations.In this paper,a global calibration method of multi-sensor vision system is proposed and investigated.The proposed method utilizes pairs of skew laser lines,which are generated by a group of laser pointers,as the calibration objects.Each pair of skew laser lines provides a unique coordinate system in space which can be reconstructed in certain vision sensor's coordinates by using a planar pattern.Then the geometries of sensors are computed under rigid transformation constrains by taking coordinates of each skew lines pair as the intermediary.The method is applied on both visual cameras with synthetic data and a real two-camera vision system;results show the validity and good performance.The prime contribution of this paper is taking skew laser lines as the global calibration objects,which makes the method simple and flexible.The method need no expensive equipments and can be used in large-scale calibration.
基金supported by National Natural Science Foundation of China (No. 50708100)National Science and Technology Support Project of China (No. 2006BAC13B02)partially by Basic Research Program of Institute of Mechanics Engineering, China Earthquake Administration (No. 2007B02)
文摘To evaluate the importance of the canyon topography effects on large structures, based on a rigid frame bridge across a 137-m-deep and 600-m-wide canyon, the seismic response of the canyon site is analyzed using a two-dimensional finite element model under different seismic SV waves with the assumptions of vertical incidence and oblique incidence to obtain the ground motions, which are used as the excitation input on the pier foundations of the bridge with improved large mass method. The results indicate that canyon topography has significant influences on the ground motions in terms of inci- dent angle. The peak ground acceleration values vary greatly from the bottom of the canyon to the upper comers. Under ver- tical incident SV waves, at the upper comers of canyon the peak ground accelerations greatly increase; whereas the peak ground accelerations diminish at the bottom comers of canyon. Under oblique incident SV waves, the shaking of the canyon slope perpendicular to the incidence direction is much more severe than that of the opposite side of canyon. And the ground surface has been characterized by larger deformations in the case of oblique incident waves. It is also concluded that the low piers and frame of the continuous rigid frame bridge ape more sensitive to the multi-support seismic excitations than the flexible high piers. The canyon topography as well as the oblique incidence of the waves brings the continuous rigid frame bridge severe responses, which should be taken into account in bridge design.