A variable dimensional state space(VDSS) has been proposed to improve the re-planning time when the robotic systems operate in large unknown environments.VDSS is constructed by uniforming lattice state space and gri...A variable dimensional state space(VDSS) has been proposed to improve the re-planning time when the robotic systems operate in large unknown environments.VDSS is constructed by uniforming lattice state space and grid state space.In VDSS,the lattice state space is only used to construct search space in the local area which is a small circle area near the robot,and grid state space elsewhere.We have tested VDSS with up to 80 indoor and outdoor maps in simulation and on segbot robot platform.Through the simulation and segbot robot experiments,it shows that exploring on VDSS is significantly faster than exploring on lattice state space by Anytime Dynamic A*(AD*) planner and VDSS is feasible to be used on robotic systems.展开更多
To correct a lower limb deformity, orthopedic surgeons must have an exact understanding of the deformity. In general, preoperative planning is carried out using anterior-posterior (AP) and lateral radiographs. However...To correct a lower limb deformity, orthopedic surgeons must have an exact understanding of the deformity. In general, preoperative planning is carried out using anterior-posterior (AP) and lateral radiographs. However, for severe cases with a combination of angular and rotational deformities of the lower limb, obtaining true AP and lateral radiographs is difficult and accurate calculation of the rotational deformity from radiographs is impossible. In this report, we propose to focus on preoperative assessment using three-dimensional (3D) reconstruction images of computed tomography (CT) scans for severe lower limb deformity in a patient with bilateral fibular hemimelia type II according to the Achterman- Kalamchi classification. She underwent bifocal deformity corrections of the bilateral tibiae using Taylor spatial frames in combination with the Ilizarov external fixator. Complete bony union was achieved, without angular deformity or limb length discrepancy.展开更多
The objective of this work is to analyze the intrinsic aspects for policy dimension inside the energy planning and energy long term sustainability. In that sense, the methodology intends to take the Brazilian example ...The objective of this work is to analyze the intrinsic aspects for policy dimension inside the energy planning and energy long term sustainability. In that sense, the methodology intends to take the Brazilian example as a case study and offer a somewhat unorthodox perspective on the subject of State energy planning. This matter is, beyond a purely technical question or a problem for the field of exact sciences, a point of primary interest to the field of social and human sciences. More the backbone methodology in this research is the Integrated Energy-Resources Planning (IRP), chosen for its ability to integrate both the supply and demand perspectives in the discussions about energy planning [1] [2]. A historical perspective is a guideline to approach issue: starting at the early Twentieth century, this study covers the major landmarks of the country energy concern to the present day;particularly noteworthy are the implications of the realpolitik—that is, the elements in politics that are developed within the institutional frameworks, such as governmental plans and decisions. As a result, it presents a complex picture, which we try to understand from the perspective of supply and demand integration. The originality of the study lies in the refusal to accept fallacious technical statements, as we consider the issue primarily a human and social problem, but considering the validity of technical statements that are correct.展开更多
The purpose of this study was to compare the dose distribution of intensity-modulated ra- diotherapy (IMRT) in 7 and 5 fields as well as 3-D conformal radiotherapy (3D-CRT) plans for gastric cancer using dosimetri...The purpose of this study was to compare the dose distribution of intensity-modulated ra- diotherapy (IMRT) in 7 and 5 fields as well as 3-D conformal radiotherapy (3D-CRT) plans for gastric cancer using dosimetric analysis. In 15 patients with gastric cancer after D1 resection, dosimetric pa- rameters for IMRT (7 and 5 fields) and 3D-CRT were calculated with a total dose of 45 Gy (1.8 Gy/day) These parameters included the conformal index (CI), homogeneity index (HI), maximum dose spot for the planned target volume (PTV), dose-volume histogram (DVH) and dose distribution in the organs at risk (OAR), mean dose (Dmean), maximal dose (Dmax) in the spinal cord, percentage of the normal liver volume receiving more than 30 Gy (V30) and percentage of the normal kidney volume receiving more than 20 Gy (V20). IMRT (7 and 5 fields) and 3D-CRT achieved the PTV coverage. However, IMRT presented significantly higher CI and HI values and lower maximum dose spot distribution than 3D-CRT (P=0.001). For dose distribution of OAR, IMRT had a significantly lower Dmean and Dmax in spinal cord than 3D-CRT (P=-0.009). There was no obvious difference in V30 of liver and V20 of kidney between IMRT and 3D-CRT, but 5-field IMRT showed lower Dmean in the normal liver than other two plans (P=0.001). IMRT revealed favorable tumor coverage as compared to 3D-CRT and IMRT plans. Specifically, 5-field IMRT plan was superior to 3D-CRT in protecting the spinal cord and liver, but this superiority was not observed in the kidney. Further studies are needed to compare differences among the three approaches.展开更多
This paper gives insight into the use of underground space in Helsinki,Finland.The city has an underground master plan(UMP) for its whole municipal area,not only for certain parts of the city.Further,the decision-maki...This paper gives insight into the use of underground space in Helsinki,Finland.The city has an underground master plan(UMP) for its whole municipal area,not only for certain parts of the city.Further,the decision-making history of the UMP is described step-by-step.Some examples of underground space use in other cities are also given.The focus of this paper is on the sustainability issues related to urban underground space use,including its contribution to an environmentally sustainable and aesthetically acceptable landscape,anticipated structural longevity and maintaining the opportunity for urban development by future generations.Underground planning enhances overall safety and economy efficiency.The need for underground space use in city areas has grown rapidly since the 21 st century;at the same time,the necessity to control construction work has also increased.The UMP of Helsinki reserves designated space for public and private utilities in various underground areas of bedrock over the long term.The plan also provides the framework for managing and controlling the city’s underground construction work and allows suitable locations to be allocated for underground facilities.Tampere,the third most populated city in Finland and the biggest inland city in the Nordic countries,is also a good example of a city that is taking steps to utilise underground resources.Oulu,the capital city of northern Finland,has also started to ‘go underground’.An example of the possibility to combine two cities by an 80-km subsea tunnel is also discussed.A new fixed link would generate huge potential for the capital areas of Finland and Estonia to become a real Helsinki-Tallinn twin city.展开更多
Path planning for space vehicles is still a challenging problem although considerable progress has been made over the past decades.The major difficulties are that most of existing methods only adapt to static environm...Path planning for space vehicles is still a challenging problem although considerable progress has been made over the past decades.The major difficulties are that most of existing methods only adapt to static environment instead of dynamic one,and also can not solve the inherent constraints arising from the robot body and the exterior environment.To address these difficulties,this research aims to provide a feasible trajectory based on quadratic programming(QP) for path planning in three-dimensional space where an autonomous vehicle is requested to pursue a target while avoiding static or dynamic obstacles.First,the objective function is derived from the pursuit task which is defined in terms of the relative distance to the target,as well as the angle between the velocity and the position in the relative velocity coordinates(RVCs).The optimization is in quadratic polynomial form according to QP formulation.Then,the avoidance task is modeled with linear constraints in RVCs.Some other constraints,such as kinematics,dynamics,and sensor range,are included.Last,simulations with typical multiple obstacles are carried out,including in static and dynamic environments and one of human-in-the-loop.The results indicate that the optimal trajectories of the autonomous robot in three-dimensional space satisfy the required performances.Therefore,the QP model proposed in this paper not only adapts to dynamic environment with uncertainty,but also can satisfy all kinds of constraints,and it provides an efficient approach to solve the problems of path planning in three-dimensional space.展开更多
Background:Old pelvis fractures are among the most challenging fractures to treat because of their complex anatomy,difficult-to-access surgical sites,and the relatively low incidence of such cases.Proper evaluation a...Background:Old pelvis fractures are among the most challenging fractures to treat because of their complex anatomy,difficult-to-access surgical sites,and the relatively low incidence of such cases.Proper evaluation and surgical planning are necessary to achieve the pelvic ring symmetry and stable fixation of the fracture.The goal of this study was to assess the use of three-dimensional (3D) printing techniques for surgical management of old pelvic fractures.Methods:First,16 dried human cadaveric pelvises were used to confirm the anatomical accuracy of the 3D models printed based on radiographic data.Next,nine clinical cases between January 2009 and April 2013 were used to evaluate the surgical reconstruction based on the 3D printed models.The pelvic injuries were all type C,and the average time from injury to reconstruction was 11 weeks (range:8-17 weeks).The workflow consisted of.:(1) Printing patient-specific bone models based on preoperative computed tomography (CT) scans,(2) virtual fracture reduction using the printed 3D anatomic template,(3) virtual fracture fixation using Kirschner wires,and (4) preoperatively measuring the osteotomy and implant position relative to landmarks using the virtually defined deformation.These models aided communication between surgical team members during the procedure.This technique was validated by comparing the preoperative planning to the intraoperative procedure.Results:The accuracy of the 3D printed models was within specification.Production of a model from standard CT DICOM data took 7 hours (range:6-9 hours).Preoperative planning using the 3D printed models was feasible in all cases.Good correlation was found between the preoperative planning and postoperative follow-up X-ray in all nine cases.The patients were followed for 3-29 months (median:5 months).The fracture healing time was 9-17 weeks (mean:l0 weeks).No delayed incision healing,wound infection,or nonunions occurred.The results were excellent in two cases,good in five,and poor in two based on the Majeed score.Conclusions:The 3D printing planning technique for pelvic surgery was successfully integrated into a clinical workflow to improve patient-specific preoperative planning by providing a visual and haptic model of the injury and allowing patient-specific adaptation of each osteosynthesis implant to the virtually reduced pelvis.展开更多
基金Supported by the National Natural Science Foundation of China(90920304)
文摘A variable dimensional state space(VDSS) has been proposed to improve the re-planning time when the robotic systems operate in large unknown environments.VDSS is constructed by uniforming lattice state space and grid state space.In VDSS,the lattice state space is only used to construct search space in the local area which is a small circle area near the robot,and grid state space elsewhere.We have tested VDSS with up to 80 indoor and outdoor maps in simulation and on segbot robot platform.Through the simulation and segbot robot experiments,it shows that exploring on VDSS is significantly faster than exploring on lattice state space by Anytime Dynamic A*(AD*) planner and VDSS is feasible to be used on robotic systems.
文摘To correct a lower limb deformity, orthopedic surgeons must have an exact understanding of the deformity. In general, preoperative planning is carried out using anterior-posterior (AP) and lateral radiographs. However, for severe cases with a combination of angular and rotational deformities of the lower limb, obtaining true AP and lateral radiographs is difficult and accurate calculation of the rotational deformity from radiographs is impossible. In this report, we propose to focus on preoperative assessment using three-dimensional (3D) reconstruction images of computed tomography (CT) scans for severe lower limb deformity in a patient with bilateral fibular hemimelia type II according to the Achterman- Kalamchi classification. She underwent bifocal deformity corrections of the bilateral tibiae using Taylor spatial frames in combination with the Ilizarov external fixator. Complete bony union was achieved, without angular deformity or limb length discrepancy.
文摘The objective of this work is to analyze the intrinsic aspects for policy dimension inside the energy planning and energy long term sustainability. In that sense, the methodology intends to take the Brazilian example as a case study and offer a somewhat unorthodox perspective on the subject of State energy planning. This matter is, beyond a purely technical question or a problem for the field of exact sciences, a point of primary interest to the field of social and human sciences. More the backbone methodology in this research is the Integrated Energy-Resources Planning (IRP), chosen for its ability to integrate both the supply and demand perspectives in the discussions about energy planning [1] [2]. A historical perspective is a guideline to approach issue: starting at the early Twentieth century, this study covers the major landmarks of the country energy concern to the present day;particularly noteworthy are the implications of the realpolitik—that is, the elements in politics that are developed within the institutional frameworks, such as governmental plans and decisions. As a result, it presents a complex picture, which we try to understand from the perspective of supply and demand integration. The originality of the study lies in the refusal to accept fallacious technical statements, as we consider the issue primarily a human and social problem, but considering the validity of technical statements that are correct.
文摘The purpose of this study was to compare the dose distribution of intensity-modulated ra- diotherapy (IMRT) in 7 and 5 fields as well as 3-D conformal radiotherapy (3D-CRT) plans for gastric cancer using dosimetric analysis. In 15 patients with gastric cancer after D1 resection, dosimetric pa- rameters for IMRT (7 and 5 fields) and 3D-CRT were calculated with a total dose of 45 Gy (1.8 Gy/day) These parameters included the conformal index (CI), homogeneity index (HI), maximum dose spot for the planned target volume (PTV), dose-volume histogram (DVH) and dose distribution in the organs at risk (OAR), mean dose (Dmean), maximal dose (Dmax) in the spinal cord, percentage of the normal liver volume receiving more than 30 Gy (V30) and percentage of the normal kidney volume receiving more than 20 Gy (V20). IMRT (7 and 5 fields) and 3D-CRT achieved the PTV coverage. However, IMRT presented significantly higher CI and HI values and lower maximum dose spot distribution than 3D-CRT (P=0.001). For dose distribution of OAR, IMRT had a significantly lower Dmean and Dmax in spinal cord than 3D-CRT (P=-0.009). There was no obvious difference in V30 of liver and V20 of kidney between IMRT and 3D-CRT, but 5-field IMRT showed lower Dmean in the normal liver than other two plans (P=0.001). IMRT revealed favorable tumor coverage as compared to 3D-CRT and IMRT plans. Specifically, 5-field IMRT plan was superior to 3D-CRT in protecting the spinal cord and liver, but this superiority was not observed in the kidney. Further studies are needed to compare differences among the three approaches.
文摘This paper gives insight into the use of underground space in Helsinki,Finland.The city has an underground master plan(UMP) for its whole municipal area,not only for certain parts of the city.Further,the decision-making history of the UMP is described step-by-step.Some examples of underground space use in other cities are also given.The focus of this paper is on the sustainability issues related to urban underground space use,including its contribution to an environmentally sustainable and aesthetically acceptable landscape,anticipated structural longevity and maintaining the opportunity for urban development by future generations.Underground planning enhances overall safety and economy efficiency.The need for underground space use in city areas has grown rapidly since the 21 st century;at the same time,the necessity to control construction work has also increased.The UMP of Helsinki reserves designated space for public and private utilities in various underground areas of bedrock over the long term.The plan also provides the framework for managing and controlling the city’s underground construction work and allows suitable locations to be allocated for underground facilities.Tampere,the third most populated city in Finland and the biggest inland city in the Nordic countries,is also a good example of a city that is taking steps to utilise underground resources.Oulu,the capital city of northern Finland,has also started to ‘go underground’.An example of the possibility to combine two cities by an 80-km subsea tunnel is also discussed.A new fixed link would generate huge potential for the capital areas of Finland and Estonia to become a real Helsinki-Tallinn twin city.
基金supported by National Natural Science Foundation of China (Grant Nos. 61035005,61075087)Hubei Provincial Natural Science Foundation of China (Grant No. 2010CDA005)Hubei Provincial Education Department Foundation of China (Grant No.Q20111105)
文摘Path planning for space vehicles is still a challenging problem although considerable progress has been made over the past decades.The major difficulties are that most of existing methods only adapt to static environment instead of dynamic one,and also can not solve the inherent constraints arising from the robot body and the exterior environment.To address these difficulties,this research aims to provide a feasible trajectory based on quadratic programming(QP) for path planning in three-dimensional space where an autonomous vehicle is requested to pursue a target while avoiding static or dynamic obstacles.First,the objective function is derived from the pursuit task which is defined in terms of the relative distance to the target,as well as the angle between the velocity and the position in the relative velocity coordinates(RVCs).The optimization is in quadratic polynomial form according to QP formulation.Then,the avoidance task is modeled with linear constraints in RVCs.Some other constraints,such as kinematics,dynamics,and sensor range,are included.Last,simulations with typical multiple obstacles are carried out,including in static and dynamic environments and one of human-in-the-loop.The results indicate that the optimal trajectories of the autonomous robot in three-dimensional space satisfy the required performances.Therefore,the QP model proposed in this paper not only adapts to dynamic environment with uncertainty,but also can satisfy all kinds of constraints,and it provides an efficient approach to solve the problems of path planning in three-dimensional space.
基金This study was supported by grants from the National Natural Science Foundation of China,the Beijing Municipal Committee of Science and Technology
文摘Background:Old pelvis fractures are among the most challenging fractures to treat because of their complex anatomy,difficult-to-access surgical sites,and the relatively low incidence of such cases.Proper evaluation and surgical planning are necessary to achieve the pelvic ring symmetry and stable fixation of the fracture.The goal of this study was to assess the use of three-dimensional (3D) printing techniques for surgical management of old pelvic fractures.Methods:First,16 dried human cadaveric pelvises were used to confirm the anatomical accuracy of the 3D models printed based on radiographic data.Next,nine clinical cases between January 2009 and April 2013 were used to evaluate the surgical reconstruction based on the 3D printed models.The pelvic injuries were all type C,and the average time from injury to reconstruction was 11 weeks (range:8-17 weeks).The workflow consisted of.:(1) Printing patient-specific bone models based on preoperative computed tomography (CT) scans,(2) virtual fracture reduction using the printed 3D anatomic template,(3) virtual fracture fixation using Kirschner wires,and (4) preoperatively measuring the osteotomy and implant position relative to landmarks using the virtually defined deformation.These models aided communication between surgical team members during the procedure.This technique was validated by comparing the preoperative planning to the intraoperative procedure.Results:The accuracy of the 3D printed models was within specification.Production of a model from standard CT DICOM data took 7 hours (range:6-9 hours).Preoperative planning using the 3D printed models was feasible in all cases.Good correlation was found between the preoperative planning and postoperative follow-up X-ray in all nine cases.The patients were followed for 3-29 months (median:5 months).The fracture healing time was 9-17 weeks (mean:l0 weeks).No delayed incision healing,wound infection,or nonunions occurred.The results were excellent in two cases,good in five,and poor in two based on the Majeed score.Conclusions:The 3D printing planning technique for pelvic surgery was successfully integrated into a clinical workflow to improve patient-specific preoperative planning by providing a visual and haptic model of the injury and allowing patient-specific adaptation of each osteosynthesis implant to the virtually reduced pelvis.