In order to accurately simulate the diffusion of chloride ion in the existing concrete bridge and acquire the precise chloride ion concentration at given time, a cellular automata (CA)-based model is proposed. The p...In order to accurately simulate the diffusion of chloride ion in the existing concrete bridge and acquire the precise chloride ion concentration at given time, a cellular automata (CA)-based model is proposed. The process of chloride ion diffusion is analyzed by the CA-based method and a nonlinear solution of the Fick's second law is obtained. Considering the impact of various factors such as stress states, temporal and spatial variability of diffusion parameters and water-cement ratio on the process of chloride ion diffusion, the model of chloride ion diffusion under multi-factor coupling actions is presented. A chloride ion penetrating experiment reported in the literature is used to prove the effectiveness and reasonability of the present method, and a T-type beam is taken as an illustrative example to analyze the process of chloride ion diffusion in practical application. The results indicate that CA-based method can simulate the diffusion of chloride ion in the concrete structures with acceptable precision.展开更多
A new calculation formula of THM coupling stress intensity factor was derived by the boundary collocation method, in which an additional constant stress function was successfully introduced for the cracked specimen wi...A new calculation formula of THM coupling stress intensity factor was derived by the boundary collocation method, in which an additional constant stress function was successfully introduced for the cracked specimen with hydraulic pressure applied on its crack surface. Based on the newly derived formula, THM coupling fracture modes (including tensile, shear and mixed fracture mode) can be predicted by a new fracture criterion of stress intensity factor ratio, where the maximum axial load was measured by self-designed THM coupling fracture test. SEM analyses of THM coupling fractured surface indicate that the higher the temperature and hydraulic pressure are and the lower the confining pressure is, the more easily the intergranular (tension) fracture occurs. The transgranular (shear) fracture occurs in the opposite case while the mixed-mode fracture occurs in the middle case. The tested THM coupling fracture mechanisms are in good agreement with the predicted THM coupling fracture modes, which can verify correction of the newly-derived THM coupling stress intensity factor formula.展开更多
The study presents a comprehensive coupled thermo-bio-chemo-hydraulic(T-BCH)modeling framework for stabilizing soils using microbially induced calcite precipitation(MICP).The numerical model considers relevant multiph...The study presents a comprehensive coupled thermo-bio-chemo-hydraulic(T-BCH)modeling framework for stabilizing soils using microbially induced calcite precipitation(MICP).The numerical model considers relevant multiphysics involved in MICP,such as bacterial ureolytic activities,biochemical reactions,multiphase and multicomponent transport,and alteration of the porosity and permeability.The model incorporates multiphysical coupling effects through well-established constitutive relations that connect parameters and variables from different physical fields.It was implemented in the open-source finite element code OpenGeoSys(OGS),and a semi-staggered solution strategy was designed to solve the couplings,allowing for flexible model settings.Therefore,the developed model can be easily adapted to simulate MICP applications in different scenarios.The numerical model was employed to analyze the effect of various factors,including temperature,injection strategies,and application scales.Besides,a TBCH modeling study was conducted on the laboratory-scale domain to analyze the effects of temperature on urease activity and precipitated calcium carbonate.To understand the scale dependency of MICP treatment,a large-scale heterogeneous domain was subjected to variable biochemical injection strategies.The simulations conducted at the field-scale guided the selection of an injection strategy to achieve the desired type and amount of precipitation.Additionally,the study emphasized the potential of numerical models as reliable tools for optimizing future developments in field-scale MICP treatment.The present study demonstrates the potential of this numerical framework for designing and optimizing the MICP applications in laboratory-,prototype-,and field-scale scenarios.展开更多
Using a transient thermoreflectance (TTR) technique, several Au films with different thicknesses on glass and SiC substrates are measured for thermal characterization of metMlic nano-films, including the electron ph...Using a transient thermoreflectance (TTR) technique, several Au films with different thicknesses on glass and SiC substrates are measured for thermal characterization of metMlic nano-films, including the electron phonon coupling factor G, interfazial thermal resistance R, and thermal conductivity Ks of the substrate. The rear heating-front detecting (RF) method is used to ensure the femtosecond temporal resolution. An intense laser beam is focused on the rear surface to heat the film, and another weak laser beam is focused on the very spot of the front surface to detect the change in the electron temperature. By varying the optical path delay between the two beams, a complete electron temperature profile can be scanned. Different from the normally used single-layer model, the double-layer model involving interfaciM thermal resistance is studied here. The electron temperature cooling profile can be affected by the electron energy transfer into the substrate or the electron-phonon interactions in the metallic films. For multiple-target optimization, the genetic algorithm (GA) is used to obtain both G and R. The experimental result gives a deep understanding of the mechanism of ultra-fast heat transfer in metals.展开更多
The coupling model of major influence factors such state affecting the chloride diffusion process in concrete is as environmental relative humidity, load-induced crack and stress discussed. The probability distributio...The coupling model of major influence factors such state affecting the chloride diffusion process in concrete is as environmental relative humidity, load-induced crack and stress discussed. The probability distributions of the critical chloride concentration Cc, the chloride diffusion coefficient D, and the surface chloride concentration Cs were determined based on the collected natural exposure data. And the estimation of probability of corrosion initiation considering the coupling effects of influence factors is presented. It is found that the relative humidity and curing time are the most effective factors affecting the probability of corrosion initiation before and after 10 years of exposure time. At the same exposure time, the influence of load-induced crack and stress state on the probability of corrosion initiation is obvious, in which the effect of crack is the most one展开更多
The transmission of transverse vibrational energy of a vertically rigid beam plate coupled structure is analyzed to get the theoretical results of coupling loss factor(CLF), a very important parameter in statistical ...The transmission of transverse vibrational energy of a vertically rigid beam plate coupled structure is analyzed to get the theoretical results of coupling loss factor(CLF), a very important parameter in statistical energy analysis(SEA). The modal analysis method is used to discuss the vibration energy of the typical model, as well as the power flow between the two subsystems. Furthermore, the resolution to the coupling loss factor is also derived and compared with the measured values. The analytical results of the coupling loss factor agree with the measured ones fully, this new resolution is significant for the application of SEA.展开更多
We have investigated the transverse mode pattern and the optical field confinement factor of gallium nitride (GaN) laser diodes (LDs) theoretically. For the particular LD structure, composed of approximate 4 μm t...We have investigated the transverse mode pattern and the optical field confinement factor of gallium nitride (GaN) laser diodes (LDs) theoretically. For the particular LD structure, composed of approximate 4 μm thick n-GaN substrate layer, the maximum optical confinement factor was found to be corresponding to the 5^th order transverse mode, the so-called lasing mode. Moreover, the value of the maximum confinement factor varies periodically when increasing the n-side GaN layer thickness, which simultaneously changes and increases the oscillation mode order of the GaN LD caused by the effects of mode coupling. The effects of the thickness and the average composition of Al in the AlGaN/GaN superlat.tice on the optical confinement factor are also presented. Finally, the mode coupling and optimization of the layers in the GaN-based LD are discussed.展开更多
The construction of a livable environment for the elderly is an important measure to address the challenges of aging and improve their livelihood and well-being.Based on China’s national conditions and combined with ...The construction of a livable environment for the elderly is an important measure to address the challenges of aging and improve their livelihood and well-being.Based on China’s national conditions and combined with the actual development needs of the cities,it is of great significance to explore the coupling and coordination characteristics and influencing factors within the livable environment system for the elderly for the coordination and stable development.This article was based on the three subsystems of’living service environment,socioeconomic environment and ecological livable environment’,following the research framework of’process-pattern-trend-impact’,constructs an evaluation index system for the livable environment for the elderly.Entropy weight-TOPSIS evaluation model,coupling coordination degree model,center of gravity and standard deviation ellipse model and the geographic detector model were used starting from the evolution of coupling coordination types to study the spatial and temporal pattern and dynamic trend characteristics and influencing factors of internal coupling coordination types in the livable environment system for the elderly from2010 to 2019.The results showed that:1)The coordinated development of life service environment system and ecological livable environment system(LE)and socioeconomic environment system and ecological livable environment system(SE)in the livable environment for the elderly decreased from the intermediate coordination level coordination areas to the low-level quality improvement and optimization areas:coordinated transition type.The overall development level of life service environment system and socioeconomic environment system(LS)was low,and it was always at a low level.2)The coupling degree of livable environment system for the elderly was high,the coupling coordination type shown a gradually decreasing layer structure with Zhejiang,Beijing and Guangdong high-level leading demonstration areas as the axis belt.3)The coupling coordination center of the elderly livable environment system was located in Henan,and the standard deviation ellipse was distributed in the northeast-southwest direction.The development center and the ellipse of the high-level leading demonstration areas and the intermediate coordination level areas were concentrated in the central and eastern regions,while the low-level coordination areas for improving quality and efficiency are mainly located in the western region.4)Urban development,green facilities,infrastructure,government macroscopic regulation and control,economic stimulus,and housing construction were all important factors affecting the coordinated development of the livable environment system for the elderly,exerting a varying degree of effect on the level of coordinated development of various types of systems.展开更多
Wetland is a transition zone between terrestrial and aquatic ecosystems,and is the source and sink of various biogenic elements in the earth’s epipelagic zone.In order to investigate the driving force and coupling me...Wetland is a transition zone between terrestrial and aquatic ecosystems,and is the source and sink of various biogenic elements in the earth’s epipelagic zone.In order to investigate the driving force and coupling mechanism of carbon(C),nitrogen(N)and phosphorus(P)migration in the critical zone of lake wetland,this paper studies the natural wetland of Dongting Lake area,through measuring and analysing the C,N and P contents in the wetland soil and groundwater.Methods of Pearson correlation,non-linear regression and machine learning were employed to analyse the influencing factors,and to explore the coupling patterns of the C,N and P in both soils and groundwater,with data derived from soil and water samples collected from the wetland critical zone.The results show that the mean values of organic carbon(TOC),total nitrogen(TN)and total phosphorus(TP)in groundwater are 1.59 mg/L,4.19 mg/L and 0.5 mg/L,respectively,while the mean values of C,N and P in the soils are 18.05 g/kg,0.86 g/kg and 0.52 g/kg.The results also show that the TOC,TN and TP in the groundwater are driven by a variety of environmental factors.However,the concentrations of C,N and P in the soils are mainly related to vegetation abundance and species which influence each other.In addition,the fitted curves of wetland soil C-N and C-P appear to follow the power function and S-shaped curve,respectively.In order to establish a multivariate regression model,the soil N and P contents were used as the input parameters and the soil C content used as the output one.By comparing the prediction effects of machine learning and nonlinear regression modelling,the results show that coupled relationship equation for the C,N and P contents is highly reliable.Future modelling of the coupled soil and groundwater elemental cycles needs to consider the complexity of hydrogeological conditions and to explore the quantitative relationships among the influencing factors and chemical constituents.展开更多
In a wind-vehicle-bridge(WVB) system,there are various interactions among wind,vehicle and bridge.The mechanism for coupling vibration of wind-vehicle-bridge systems is explored to demonstrate the effects of fundament...In a wind-vehicle-bridge(WVB) system,there are various interactions among wind,vehicle and bridge.The mechanism for coupling vibration of wind-vehicle-bridge systems is explored to demonstrate the effects of fundamental factors,such as mean wind,fluctuating wind,buffeting,rail irregularities,light rail vehicle vibration and bridge stiffness.A long cable-stayed bridge which carries light rail traffic is regarded as a numerical example.Firstly,a finite element model is built for the long cable-stayed bridge.The deck can generally be idealized as three-dimensional spine beam while cables are modeled as truss elements.Vehicles are modeled as mass-spring-damper systems.Rail irregularities and wind fluctuation are simulated in time domain by spectrum representation method.Then,aerodynamic loads on vehicle and bridge deck are measured by section model wind tunnel tests.Eight vertical and torsional flutter derivatives of bridge deck are identified by weighting ensemble least-square method.Finally,dynamic responses of the WVB system are analyzed in a series of cases.The results show that the accelerations of the vehicle are excited by the fluctuating wind and the track irregularity to a great extent.The transverse forces of wheel axles mainly depend on the track irregularity.The displacements of the bridge are predominantly determined by the mean wind and restricted by its stiffness.And the accelerations of the bridge are enlarged after adding the fluctuating wind.展开更多
Addressing the issue of the healthy and coordinated development of the population and economic factors in rural areas will not only help consolidate and expand the achievements of poverty alleviation,but will also lay...Addressing the issue of the healthy and coordinated development of the population and economic factors in rural areas will not only help consolidate and expand the achievements of poverty alleviation,but will also lay a foundation for comprehensive rural revitalization.In this paper,the spatial coupling relationship between the population and economic factors in rural areas in the QinlingDaba Mountains,China,is explored to provide a reference for rural revitalization and regional sustainable development in poverty areas.Sixty-eight county units in rural areas in the Qinling-Daba Mountains,as well as the population and economic factors in rural areas,are used to study the spatial coupling relationship between population and economy,as well as the driving mechanism,in rural areas in the Qinling-Daba Mountains from 2010 to 2020.The results show that a population contraction phenomenon occurred in the rural areas in the Qinling-Daba Mountains,and the spatial agglomeration trends of the population and economic factors were consistent.The agglomeration was mainly located in the suburban areas of the municipal area,and the agglomeration degree was significantly higher in these areas than in other areas.In terms of the spatial distribution,the economic development level of the rural areas in the northeastern part of the Qinling-Daba Mountains was generally higher than that in the central and western parts,and the unbalanced trends of the population and economic spatial differentiation in the eastern and western regions were significant.The spatial coupling relationship between the population and economy changed from coordinated development to economic advancement.This was mainly due to the mutual restriction and joint actions of the industrial structure,capital situation,natural environment,policies,and institutional regulations,among which the industrial structure and capital status had significant effects.展开更多
In multi-infeed HVDC system, the interactions and influences between DC systems AC systems are complex as the electrical distances among DC converter stations which are relatively short. Multi-infeed interaction facto...In multi-infeed HVDC system, the interactions and influences between DC systems AC systems are complex as the electrical distances among DC converter stations which are relatively short. Multi-infeed interaction factor (MIIF) can effectively reflect the interaction among DC systems. The paper theoretically analyzes the impact factors of MIIF like the electrical distances between two DC converter stations and the equivalent impedance of the receiving end AC system. By applying the Kirchhoff’s current law on the inverter AC bus, the paper deduces the analytical expressions for MIIF. From the expression, it is clear how the equivalent impedance of AC system and coupling impedance can affect MIIF. PSCAD simulations validate the effectiveness and the correctness of the proposed expression and some useful conclusions are drawn.展开更多
In order to clarify the mechanism and main influencing factors of the vibration energy coupling transmission with a dual-piston structure,a thermodynamic and dynamic coupling model of the free piston linear generator(...In order to clarify the mechanism and main influencing factors of the vibration energy coupling transmission with a dual-piston structure,a thermodynamic and dynamic coupling model of the free piston linear generator(FPLG)was established.The system energy conversion,vibration energy coupling transmission,and influencing factors were studied in detail.The coupling transmission paths and the secondary influence mechanism from in-cylinder combustion on vibration energy transmission were obtained.In addition,the influence of the movement characteristics of the dual-piston on the vibration energy transmission was studied,and the typical parameter variation law was obtained,which provides theoretical guidance for the subsequent vibration reduction design of the FPLG.展开更多
The fragile eco-environment is a special type of ecosystem,its response to the change of environmental condi -tions is very susceptive.So it is rather prone to be disturbed under unfav orable conditions.Human activity...The fragile eco-environment is a special type of ecosystem,its response to the change of environmental condi -tions is very susceptive.So it is rather prone to be disturbed under unfav orable conditions.Human activity h as greatly changed the geo-chemical process in the ecosystem,thus caused a series o f positive and negative effects.In t he ecosys-tem,especially in the fragile eco-e nvironment,different systems and r egimes are interconnected and interdetermined.For the suntainable development of ecosystem and the protection and rational utilization of resources,it is of great impor-tance to study these internal relati onships and seek rational regulatio n and control measure.This paper tak es the fragile eco-environment in the west of the Songnen Plain as an example.Based on th e study of the topograph,physiognom y,soil,vegetation and their geographic distribution in the landscape,th e paper explains the structure of the ecologic land-scape and quantifies the ecologic ge o-chemical processes under differe nt landscape conditions.In additio n,the paper al-so tries making coupling analyses of the ecologic succession and the landscape geochemical environment.And in the pa-per,some research results are given.展开更多
Based on the present coupled mode theory of the photonic crystal resonator array in this paper, we propose a novel side-coupled waveguide to achieve highly efficient coupling of photonic crystal devices. It is found t...Based on the present coupled mode theory of the photonic crystal resonator array in this paper, we propose a novel side-coupled waveguide to achieve highly efficient coupling of photonic crystal devices. It is found that the coupling efficiency is sensitive to the interval, the total number and the quality factor of the resonator. Considering the coupling efficiency and the coupling region, we select five resonators with an interval of six lattice periods. By optimizing the structure parameters of the waveguide and resonator, the quality factors of the resonator can be modulated and the coupling efficiency of the side-coupled waveguide reaches 95.47% in theory. Compared with other coupling methods, the side-coupled waveguide can realize efficient coupling with a compact structure, a high level of integration and a low degree of operational difficulties.展开更多
Employing theory on vehicle-track coupled dynamics, the equation of motion of a vehicle-track vertical coupled system was established by combining frequency analysis and symplectic mathematics. The frequency response ...Employing theory on vehicle-track coupled dynamics, the equation of motion of a vehicle-track vertical coupled system was established by combining frequency analysis and symplectic mathematics. The frequency response of the vehicle-track vertical coupled system was calculated under the excitation of the German low-interfer- ence spectrum, and the effects of the vehicle speed, vehicle suspension parameters, and track support parameters on the frequency response of the coupled system were studied. Results show that, under the excitation of the German low- interference spectrum, the vertical vibration of the car body is mainly concentrated in the low-frequency band, while that of the bogie has a wide frequency distribution, being strong from several Hertz to dozens of Hertz. The vertical vibrations of the wheel-rail force, wheelset, and track structure mainly occur at a frequency of dozens of Hertz. In general, the vertical vibration of the vehicle-track coupled system increases with vehicle speed, and the vertical vibrations of the car body and bogie obviously shift to higher frequency. Increasing the vehicle suspension stiffness increases the low- frequency vibrations of the vehicle system and track struc- ture. With an increase in vehicle suspension damping, the low-frequency vibrations of the car body and bogie and the vibrations of the wheel-rail vertical force and track structure decrease at 50-80 Hz, while the mid-frequency and high- frequency vibrations of the car body and bogie increase. Similarly, an increase in track stiffness amplifies the vertical vibrations of the wheel-rail force and track structure, while an increase in track damping effectively reduces the vertical vibrations of the wheel-rail vertical force and track structure.展开更多
The marine biopharmaceutical industry(MBI)has been considered as an important part of the blue economy.The high-quality development of this industry depends on the high-level coordinated development of technological i...The marine biopharmaceutical industry(MBI)has been considered as an important part of the blue economy.The high-quality development of this industry depends on the high-level coordinated development of technological innovation system(TIS).In the present study,the coupling mechanism of industrial innovation input subsystem and innovation output subsystem was analyzed for the first time.On this basis,the development level and coupling coordination level of TIS in China’s MBI during 2008-2018 were empirically evaluated with the capacity coupling coordination model.Then,the obstacle factors were diagnosed and recognized with the obstacle model.The results showed that the innovation input index fluctuated at a low level in China’s MBI.The innovation output index has basically maintained a growth trend,whereas the quality of development was not high.Although the coupling coordination level of TIS showed a positive change as mild disordered→primary coordinated→well-coordinated,the development type of innovation system has changed from the lagging output of innovation into the lagging input of innovation.Insufficient input of innovation factors remained the main obstacle to the improvement of coordination level.Based on the above analysis,suggestions were put forward from the perspectives of policy and fund guarantees to improve the coupling coordination level in China’s MBI.展开更多
Objective:To assess and compare the relationship between spousal communication,fertility preference,and other factors with contraceptive use among married couples in Ekiti State,Nigeria.Methods:This cross-sectional st...Objective:To assess and compare the relationship between spousal communication,fertility preference,and other factors with contraceptive use among married couples in Ekiti State,Nigeria.Methods:This cross-sectional study was carried out in AdoEkiti Local Government Area of Ekiti State,Nigeria between the 12th of August 2017 and the 15th of February 2018.A pre-tested,semi-structured interviewer-administered questionnaire was used to collect data from 976 respondents by a multi-stage sampling technique.Data were analyzed(univariate,bivariate,and binary logistic regression analysis)using SPSS version 24.0.Factors that showed statistical significance(P<0.05)were included in a binary logistic regression to determine significant predictors of contraceptive use.Results:The proportion of respondents currently using contraceptives was 56.9%.The education status of the respondents revealed that those with primary education were more likely to use contraceptives than those without formal education[adjusted odds ratio(aOR)8.4,95%confidence interval(CI)1.97-36.2,P<0.001].Respondents with fair spousal communication were more likely to use contraceptive than those with poor communication(aOR 4.9,95%CI 2.80-8.71,P<0.001).In addition,fertility preference of 4 or less children was found to be significantly associated with contraceptive use(aOR 3.0,95%CI 1.67-5.50,P<0.001)compared to a preference of more than 4 children.Finally,the urban respondents were more likely to use contraceptives than those in the rural setting(aOR 1.7,95%CI 1.16-2.41,P=0.047).Conclusions:Educational status,residential site,spousal communication,and fertility preference significantly influence the level of contraceptive use among married couples.Couples should endeavor to discuss more on issues bordering on their fertility preference and contraceptive issue.Government should formulate policies to improve the rural uptake of contraceptives using identified target interventions.展开更多
Introduction: Unmet need for family planning (UNFP) is defined as women with unmet needs who want to stop or delay childbearing but are not using any method of contraception. The objective of this study was to analyze...Introduction: Unmet need for family planning (UNFP) is defined as women with unmet needs who want to stop or delay childbearing but are not using any method of contraception. The objective of this study was to analyze the factors associated with unmet needs for family planning among couples living in rural and urban areas of Guinea in 2019. Methodology: This was a prospective, analytical cross-sectional, multicenter study of a six-month period from August 1, 2018 to January 31, 2019, focusing on couples with unmet needs for family planning. Result: Among 189 couples interviewed, 567 had UNFP (33.3%), the reasons for not using modern contraceptive methods were desire for pregnancy (AOR = 2.74, 95% CI: 1.74, 4.31), husband’s refusal (AOR = 0.23, 95% CI: 0.06, 0.81), spousal attitude (AOR = 0.20, 95% CI: 0.130, 30), birth spacing (AOR = 2.10% to 95%: 1.16, 3.82), difficulty with a new pregnancy (AOR = 0.17, 95% CI: 0.04, 0.74), and spousal attitude (AOR = 0.20, 95% CI: 0.14, 0.30). Conclusion: The involvement of spouses, especially in rural communities, would help achieve family planning objectives and reduce unmet needs for family planning.展开更多
The effects of different masks and patterns on the top stripping of GaAs microwire arrays fabricated by inductively coupled plasma etching for 20min and 40min are investigated. The results show that the mask layer is ...The effects of different masks and patterns on the top stripping of GaAs microwire arrays fabricated by inductively coupled plasma etching for 20min and 40min are investigated. The results show that the mask layer is the main affect of the top stripping of the GaAs microwires in 40min. Increasing the mask layers and reducing the photoresist layers can prevent top stripping and result in a suitable GaAs microwire array.展开更多
基金the National Natural Science Foundation of China (No.51178305)Key Projects in the Science & Technology Pillar Program of Tianjin (No.11ZCKFSF00300)
文摘In order to accurately simulate the diffusion of chloride ion in the existing concrete bridge and acquire the precise chloride ion concentration at given time, a cellular automata (CA)-based model is proposed. The process of chloride ion diffusion is analyzed by the CA-based method and a nonlinear solution of the Fick's second law is obtained. Considering the impact of various factors such as stress states, temporal and spatial variability of diffusion parameters and water-cement ratio on the process of chloride ion diffusion, the model of chloride ion diffusion under multi-factor coupling actions is presented. A chloride ion penetrating experiment reported in the literature is used to prove the effectiveness and reasonability of the present method, and a T-type beam is taken as an illustrative example to analyze the process of chloride ion diffusion in practical application. The results indicate that CA-based method can simulate the diffusion of chloride ion in the concrete structures with acceptable precision.
基金Project(11072269)supported by the National Natural Science Foundation of ChinaProject(20090162110066)supported by the Research Fund for the Doctoral Program of Higher Education of China
文摘A new calculation formula of THM coupling stress intensity factor was derived by the boundary collocation method, in which an additional constant stress function was successfully introduced for the cracked specimen with hydraulic pressure applied on its crack surface. Based on the newly derived formula, THM coupling fracture modes (including tensile, shear and mixed fracture mode) can be predicted by a new fracture criterion of stress intensity factor ratio, where the maximum axial load was measured by self-designed THM coupling fracture test. SEM analyses of THM coupling fractured surface indicate that the higher the temperature and hydraulic pressure are and the lower the confining pressure is, the more easily the intergranular (tension) fracture occurs. The transgranular (shear) fracture occurs in the opposite case while the mixed-mode fracture occurs in the middle case. The tested THM coupling fracture mechanisms are in good agreement with the predicted THM coupling fracture modes, which can verify correction of the newly-derived THM coupling stress intensity factor formula.
基金support from the OpenGeoSys communitypartially funded by the Prime Minister Research Fellowship,Ministry of Education,Government of India with the project number SB21221901CEPMRF008347.
文摘The study presents a comprehensive coupled thermo-bio-chemo-hydraulic(T-BCH)modeling framework for stabilizing soils using microbially induced calcite precipitation(MICP).The numerical model considers relevant multiphysics involved in MICP,such as bacterial ureolytic activities,biochemical reactions,multiphase and multicomponent transport,and alteration of the porosity and permeability.The model incorporates multiphysical coupling effects through well-established constitutive relations that connect parameters and variables from different physical fields.It was implemented in the open-source finite element code OpenGeoSys(OGS),and a semi-staggered solution strategy was designed to solve the couplings,allowing for flexible model settings.Therefore,the developed model can be easily adapted to simulate MICP applications in different scenarios.The numerical model was employed to analyze the effect of various factors,including temperature,injection strategies,and application scales.Besides,a TBCH modeling study was conducted on the laboratory-scale domain to analyze the effects of temperature on urease activity and precipitated calcium carbonate.To understand the scale dependency of MICP treatment,a large-scale heterogeneous domain was subjected to variable biochemical injection strategies.The simulations conducted at the field-scale guided the selection of an injection strategy to achieve the desired type and amount of precipitation.Additionally,the study emphasized the potential of numerical models as reliable tools for optimizing future developments in field-scale MICP treatment.The present study demonstrates the potential of this numerical framework for designing and optimizing the MICP applications in laboratory-,prototype-,and field-scale scenarios.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50730006,50976053,and 50906042)
文摘Using a transient thermoreflectance (TTR) technique, several Au films with different thicknesses on glass and SiC substrates are measured for thermal characterization of metMlic nano-films, including the electron phonon coupling factor G, interfazial thermal resistance R, and thermal conductivity Ks of the substrate. The rear heating-front detecting (RF) method is used to ensure the femtosecond temporal resolution. An intense laser beam is focused on the rear surface to heat the film, and another weak laser beam is focused on the very spot of the front surface to detect the change in the electron temperature. By varying the optical path delay between the two beams, a complete electron temperature profile can be scanned. Different from the normally used single-layer model, the double-layer model involving interfaciM thermal resistance is studied here. The electron temperature cooling profile can be affected by the electron energy transfer into the substrate or the electron-phonon interactions in the metallic films. For multiple-target optimization, the genetic algorithm (GA) is used to obtain both G and R. The experimental result gives a deep understanding of the mechanism of ultra-fast heat transfer in metals.
基金Project(50925829) supported by the National Science Fund for Distinguished Young Scholars of ChinaProject(50908148) supported by the National Natural Science Foundation of ChinaProjects(2009-K4-23,2010-11-33) supported by the Research of Ministry of Housing and Urban Rural Development of China
文摘The coupling model of major influence factors such state affecting the chloride diffusion process in concrete is as environmental relative humidity, load-induced crack and stress discussed. The probability distributions of the critical chloride concentration Cc, the chloride diffusion coefficient D, and the surface chloride concentration Cs were determined based on the collected natural exposure data. And the estimation of probability of corrosion initiation considering the coupling effects of influence factors is presented. It is found that the relative humidity and curing time are the most effective factors affecting the probability of corrosion initiation before and after 10 years of exposure time. At the same exposure time, the influence of load-induced crack and stress state on the probability of corrosion initiation is obvious, in which the effect of crack is the most one
文摘The transmission of transverse vibrational energy of a vertically rigid beam plate coupled structure is analyzed to get the theoretical results of coupling loss factor(CLF), a very important parameter in statistical energy analysis(SEA). The modal analysis method is used to discuss the vibration energy of the typical model, as well as the power flow between the two subsystems. Furthermore, the resolution to the coupling loss factor is also derived and compared with the measured values. The analytical results of the coupling loss factor agree with the measured ones fully, this new resolution is significant for the application of SEA.
基金Project supported by the Wang Faculty Fellowship at Peking University,Beijing,China,2006-2007 through California State University (CSU) International Programs USAthe National Basic Research Program of China (Grant No 2007CB307004)+1 种基金the National High Technology Research and Development Program of China (Grant No 2006AA03A113)the National Natural Science Foundation of China (Grant Nos 60276034,60577030 and 60607003)
文摘We have investigated the transverse mode pattern and the optical field confinement factor of gallium nitride (GaN) laser diodes (LDs) theoretically. For the particular LD structure, composed of approximate 4 μm thick n-GaN substrate layer, the maximum optical confinement factor was found to be corresponding to the 5^th order transverse mode, the so-called lasing mode. Moreover, the value of the maximum confinement factor varies periodically when increasing the n-side GaN layer thickness, which simultaneously changes and increases the oscillation mode order of the GaN LD caused by the effects of mode coupling. The effects of the thickness and the average composition of Al in the AlGaN/GaN superlat.tice on the optical confinement factor are also presented. Finally, the mode coupling and optimization of the layers in the GaN-based LD are discussed.
基金Under the auspices of Natural Science Foundation of Heilongjiang Province(No.LH2019D008)Youth Fund for Humanities and Social Sciences of the Ministry of Education(No.19YJC630177)+1 种基金Innovative Youth Talent Cultivation Plan of Heilongjiang Provincial Universities(No.UNPYSCT-2018194)Human Civilization and Social Science Supportive Program for Excellent Young Scholars of Harbin Normal University(No.SYQ2014-06)。
文摘The construction of a livable environment for the elderly is an important measure to address the challenges of aging and improve their livelihood and well-being.Based on China’s national conditions and combined with the actual development needs of the cities,it is of great significance to explore the coupling and coordination characteristics and influencing factors within the livable environment system for the elderly for the coordination and stable development.This article was based on the three subsystems of’living service environment,socioeconomic environment and ecological livable environment’,following the research framework of’process-pattern-trend-impact’,constructs an evaluation index system for the livable environment for the elderly.Entropy weight-TOPSIS evaluation model,coupling coordination degree model,center of gravity and standard deviation ellipse model and the geographic detector model were used starting from the evolution of coupling coordination types to study the spatial and temporal pattern and dynamic trend characteristics and influencing factors of internal coupling coordination types in the livable environment system for the elderly from2010 to 2019.The results showed that:1)The coordinated development of life service environment system and ecological livable environment system(LE)and socioeconomic environment system and ecological livable environment system(SE)in the livable environment for the elderly decreased from the intermediate coordination level coordination areas to the low-level quality improvement and optimization areas:coordinated transition type.The overall development level of life service environment system and socioeconomic environment system(LS)was low,and it was always at a low level.2)The coupling degree of livable environment system for the elderly was high,the coupling coordination type shown a gradually decreasing layer structure with Zhejiang,Beijing and Guangdong high-level leading demonstration areas as the axis belt.3)The coupling coordination center of the elderly livable environment system was located in Henan,and the standard deviation ellipse was distributed in the northeast-southwest direction.The development center and the ellipse of the high-level leading demonstration areas and the intermediate coordination level areas were concentrated in the central and eastern regions,while the low-level coordination areas for improving quality and efficiency are mainly located in the western region.4)Urban development,green facilities,infrastructure,government macroscopic regulation and control,economic stimulus,and housing construction were all important factors affecting the coordinated development of the livable environment system for the elderly,exerting a varying degree of effect on the level of coordinated development of various types of systems.
基金supported by National Natural Science Foundation of China(No.42077176,No.41976057)Natural Science Foundation of Shanghai(No.20ZR1459700).
文摘Wetland is a transition zone between terrestrial and aquatic ecosystems,and is the source and sink of various biogenic elements in the earth’s epipelagic zone.In order to investigate the driving force and coupling mechanism of carbon(C),nitrogen(N)and phosphorus(P)migration in the critical zone of lake wetland,this paper studies the natural wetland of Dongting Lake area,through measuring and analysing the C,N and P contents in the wetland soil and groundwater.Methods of Pearson correlation,non-linear regression and machine learning were employed to analyse the influencing factors,and to explore the coupling patterns of the C,N and P in both soils and groundwater,with data derived from soil and water samples collected from the wetland critical zone.The results show that the mean values of organic carbon(TOC),total nitrogen(TN)and total phosphorus(TP)in groundwater are 1.59 mg/L,4.19 mg/L and 0.5 mg/L,respectively,while the mean values of C,N and P in the soils are 18.05 g/kg,0.86 g/kg and 0.52 g/kg.The results also show that the TOC,TN and TP in the groundwater are driven by a variety of environmental factors.However,the concentrations of C,N and P in the soils are mainly related to vegetation abundance and species which influence each other.In addition,the fitted curves of wetland soil C-N and C-P appear to follow the power function and S-shaped curve,respectively.In order to establish a multivariate regression model,the soil N and P contents were used as the input parameters and the soil C content used as the output one.By comparing the prediction effects of machine learning and nonlinear regression modelling,the results show that coupled relationship equation for the C,N and P contents is highly reliable.Future modelling of the coupled soil and groundwater elemental cycles needs to consider the complexity of hydrogeological conditions and to explore the quantitative relationships among the influencing factors and chemical constituents.
基金Projects (U1334201,51525804) supported by the National Natural Science Foundation of ChinaProject (15CXTD0005) supported by the Sichuan Province Youth Science and Technology Innovation Team,China
文摘In a wind-vehicle-bridge(WVB) system,there are various interactions among wind,vehicle and bridge.The mechanism for coupling vibration of wind-vehicle-bridge systems is explored to demonstrate the effects of fundamental factors,such as mean wind,fluctuating wind,buffeting,rail irregularities,light rail vehicle vibration and bridge stiffness.A long cable-stayed bridge which carries light rail traffic is regarded as a numerical example.Firstly,a finite element model is built for the long cable-stayed bridge.The deck can generally be idealized as three-dimensional spine beam while cables are modeled as truss elements.Vehicles are modeled as mass-spring-damper systems.Rail irregularities and wind fluctuation are simulated in time domain by spectrum representation method.Then,aerodynamic loads on vehicle and bridge deck are measured by section model wind tunnel tests.Eight vertical and torsional flutter derivatives of bridge deck are identified by weighting ensemble least-square method.Finally,dynamic responses of the WVB system are analyzed in a series of cases.The results show that the accelerations of the vehicle are excited by the fluctuating wind and the track irregularity to a great extent.The transverse forces of wheel axles mainly depend on the track irregularity.The displacements of the bridge are predominantly determined by the mean wind and restricted by its stiffness.And the accelerations of the bridge are enlarged after adding the fluctuating wind.
基金Under the auspices of National Natural Science Foundation of China(No.42071220,42371223)China Postdoctoral Science Foundation(No.2021M701053)Postgraduate Cultivating Innovation and Quality Improvement Action Plan of Henan University(No.SYLYC2022017)。
文摘Addressing the issue of the healthy and coordinated development of the population and economic factors in rural areas will not only help consolidate and expand the achievements of poverty alleviation,but will also lay a foundation for comprehensive rural revitalization.In this paper,the spatial coupling relationship between the population and economic factors in rural areas in the QinlingDaba Mountains,China,is explored to provide a reference for rural revitalization and regional sustainable development in poverty areas.Sixty-eight county units in rural areas in the Qinling-Daba Mountains,as well as the population and economic factors in rural areas,are used to study the spatial coupling relationship between population and economy,as well as the driving mechanism,in rural areas in the Qinling-Daba Mountains from 2010 to 2020.The results show that a population contraction phenomenon occurred in the rural areas in the Qinling-Daba Mountains,and the spatial agglomeration trends of the population and economic factors were consistent.The agglomeration was mainly located in the suburban areas of the municipal area,and the agglomeration degree was significantly higher in these areas than in other areas.In terms of the spatial distribution,the economic development level of the rural areas in the northeastern part of the Qinling-Daba Mountains was generally higher than that in the central and western parts,and the unbalanced trends of the population and economic spatial differentiation in the eastern and western regions were significant.The spatial coupling relationship between the population and economy changed from coordinated development to economic advancement.This was mainly due to the mutual restriction and joint actions of the industrial structure,capital situation,natural environment,policies,and institutional regulations,among which the industrial structure and capital status had significant effects.
文摘In multi-infeed HVDC system, the interactions and influences between DC systems AC systems are complex as the electrical distances among DC converter stations which are relatively short. Multi-infeed interaction factor (MIIF) can effectively reflect the interaction among DC systems. The paper theoretically analyzes the impact factors of MIIF like the electrical distances between two DC converter stations and the equivalent impedance of the receiving end AC system. By applying the Kirchhoff’s current law on the inverter AC bus, the paper deduces the analytical expressions for MIIF. From the expression, it is clear how the equivalent impedance of AC system and coupling impedance can affect MIIF. PSCAD simulations validate the effectiveness and the correctness of the proposed expression and some useful conclusions are drawn.
文摘In order to clarify the mechanism and main influencing factors of the vibration energy coupling transmission with a dual-piston structure,a thermodynamic and dynamic coupling model of the free piston linear generator(FPLG)was established.The system energy conversion,vibration energy coupling transmission,and influencing factors were studied in detail.The coupling transmission paths and the secondary influence mechanism from in-cylinder combustion on vibration energy transmission were obtained.In addition,the influence of the movement characteristics of the dual-piston on the vibration energy transmission was studied,and the typical parameter variation law was obtained,which provides theoretical guidance for the subsequent vibration reduction design of the FPLG.
文摘The fragile eco-environment is a special type of ecosystem,its response to the change of environmental condi -tions is very susceptive.So it is rather prone to be disturbed under unfav orable conditions.Human activity h as greatly changed the geo-chemical process in the ecosystem,thus caused a series o f positive and negative effects.In t he ecosys-tem,especially in the fragile eco-e nvironment,different systems and r egimes are interconnected and interdetermined.For the suntainable development of ecosystem and the protection and rational utilization of resources,it is of great impor-tance to study these internal relati onships and seek rational regulatio n and control measure.This paper tak es the fragile eco-environment in the west of the Songnen Plain as an example.Based on th e study of the topograph,physiognom y,soil,vegetation and their geographic distribution in the landscape,th e paper explains the structure of the ecologic land-scape and quantifies the ecologic ge o-chemical processes under differe nt landscape conditions.In additio n,the paper al-so tries making coupling analyses of the ecologic succession and the landscape geochemical environment.And in the pa-per,some research results are given.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60877031)
文摘Based on the present coupled mode theory of the photonic crystal resonator array in this paper, we propose a novel side-coupled waveguide to achieve highly efficient coupling of photonic crystal devices. It is found that the coupling efficiency is sensitive to the interval, the total number and the quality factor of the resonator. Considering the coupling efficiency and the coupling region, we select five resonators with an interval of six lattice periods. By optimizing the structure parameters of the waveguide and resonator, the quality factors of the resonator can be modulated and the coupling efficiency of the side-coupled waveguide reaches 95.47% in theory. Compared with other coupling methods, the side-coupled waveguide can realize efficient coupling with a compact structure, a high level of integration and a low degree of operational difficulties.
文摘Employing theory on vehicle-track coupled dynamics, the equation of motion of a vehicle-track vertical coupled system was established by combining frequency analysis and symplectic mathematics. The frequency response of the vehicle-track vertical coupled system was calculated under the excitation of the German low-interfer- ence spectrum, and the effects of the vehicle speed, vehicle suspension parameters, and track support parameters on the frequency response of the coupled system were studied. Results show that, under the excitation of the German low- interference spectrum, the vertical vibration of the car body is mainly concentrated in the low-frequency band, while that of the bogie has a wide frequency distribution, being strong from several Hertz to dozens of Hertz. The vertical vibrations of the wheel-rail force, wheelset, and track structure mainly occur at a frequency of dozens of Hertz. In general, the vertical vibration of the vehicle-track coupled system increases with vehicle speed, and the vertical vibrations of the car body and bogie obviously shift to higher frequency. Increasing the vehicle suspension stiffness increases the low- frequency vibrations of the vehicle system and track struc- ture. With an increase in vehicle suspension damping, the low-frequency vibrations of the car body and bogie and the vibrations of the wheel-rail vertical force and track structure decrease at 50-80 Hz, while the mid-frequency and high- frequency vibrations of the car body and bogie increase. Similarly, an increase in track stiffness amplifies the vertical vibrations of the wheel-rail force and track structure, while an increase in track damping effectively reduces the vertical vibrations of the wheel-rail vertical force and track structure.
基金supported by the National Natural Science Foundation of China(Nos.42176126,42076221)the Department of Marine Strategic Planning and Economy,Ministry of Natural Resources of China,and Marine Development Research Society of China(No.CAMA201817).
文摘The marine biopharmaceutical industry(MBI)has been considered as an important part of the blue economy.The high-quality development of this industry depends on the high-level coordinated development of technological innovation system(TIS).In the present study,the coupling mechanism of industrial innovation input subsystem and innovation output subsystem was analyzed for the first time.On this basis,the development level and coupling coordination level of TIS in China’s MBI during 2008-2018 were empirically evaluated with the capacity coupling coordination model.Then,the obstacle factors were diagnosed and recognized with the obstacle model.The results showed that the innovation input index fluctuated at a low level in China’s MBI.The innovation output index has basically maintained a growth trend,whereas the quality of development was not high.Although the coupling coordination level of TIS showed a positive change as mild disordered→primary coordinated→well-coordinated,the development type of innovation system has changed from the lagging output of innovation into the lagging input of innovation.Insufficient input of innovation factors remained the main obstacle to the improvement of coordination level.Based on the above analysis,suggestions were put forward from the perspectives of policy and fund guarantees to improve the coupling coordination level in China’s MBI.
文摘Objective:To assess and compare the relationship between spousal communication,fertility preference,and other factors with contraceptive use among married couples in Ekiti State,Nigeria.Methods:This cross-sectional study was carried out in AdoEkiti Local Government Area of Ekiti State,Nigeria between the 12th of August 2017 and the 15th of February 2018.A pre-tested,semi-structured interviewer-administered questionnaire was used to collect data from 976 respondents by a multi-stage sampling technique.Data were analyzed(univariate,bivariate,and binary logistic regression analysis)using SPSS version 24.0.Factors that showed statistical significance(P<0.05)were included in a binary logistic regression to determine significant predictors of contraceptive use.Results:The proportion of respondents currently using contraceptives was 56.9%.The education status of the respondents revealed that those with primary education were more likely to use contraceptives than those without formal education[adjusted odds ratio(aOR)8.4,95%confidence interval(CI)1.97-36.2,P<0.001].Respondents with fair spousal communication were more likely to use contraceptive than those with poor communication(aOR 4.9,95%CI 2.80-8.71,P<0.001).In addition,fertility preference of 4 or less children was found to be significantly associated with contraceptive use(aOR 3.0,95%CI 1.67-5.50,P<0.001)compared to a preference of more than 4 children.Finally,the urban respondents were more likely to use contraceptives than those in the rural setting(aOR 1.7,95%CI 1.16-2.41,P=0.047).Conclusions:Educational status,residential site,spousal communication,and fertility preference significantly influence the level of contraceptive use among married couples.Couples should endeavor to discuss more on issues bordering on their fertility preference and contraceptive issue.Government should formulate policies to improve the rural uptake of contraceptives using identified target interventions.
文摘Introduction: Unmet need for family planning (UNFP) is defined as women with unmet needs who want to stop or delay childbearing but are not using any method of contraception. The objective of this study was to analyze the factors associated with unmet needs for family planning among couples living in rural and urban areas of Guinea in 2019. Methodology: This was a prospective, analytical cross-sectional, multicenter study of a six-month period from August 1, 2018 to January 31, 2019, focusing on couples with unmet needs for family planning. Result: Among 189 couples interviewed, 567 had UNFP (33.3%), the reasons for not using modern contraceptive methods were desire for pregnancy (AOR = 2.74, 95% CI: 1.74, 4.31), husband’s refusal (AOR = 0.23, 95% CI: 0.06, 0.81), spousal attitude (AOR = 0.20, 95% CI: 0.130, 30), birth spacing (AOR = 2.10% to 95%: 1.16, 3.82), difficulty with a new pregnancy (AOR = 0.17, 95% CI: 0.04, 0.74), and spousal attitude (AOR = 0.20, 95% CI: 0.14, 0.30). Conclusion: The involvement of spouses, especially in rural communities, would help achieve family planning objectives and reduce unmet needs for family planning.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61261009 and 61067001the Key Program of Science and Technology Research of the Ministry of Education of China under Grant No 212090+1 种基金the Natural Science Foundation of Jiangxi Province under Grant No 20133ACB20005the Foundation of Training Academic and Technical Leaders for Main Majors of Jiangxi Province under Grant No 20142BCB22006
文摘The effects of different masks and patterns on the top stripping of GaAs microwire arrays fabricated by inductively coupled plasma etching for 20min and 40min are investigated. The results show that the mask layer is the main affect of the top stripping of the GaAs microwires in 40min. Increasing the mask layers and reducing the photoresist layers can prevent top stripping and result in a suitable GaAs microwire array.