At present,one of the methods used to determine the height of points on the Earth’s surface is Global Navigation Satellite System(GNSS)leveling.It is possible to determine the orthometric or normal height by this met...At present,one of the methods used to determine the height of points on the Earth’s surface is Global Navigation Satellite System(GNSS)leveling.It is possible to determine the orthometric or normal height by this method only if there is a geoid or quasi-geoid height model available.This paper proposes the methodology for local correction of the heights of high-order global geoid models such as EGM08,EIGEN-6C4,GECO,and XGM2019e_2159.This methodology was tested in different areas of the research field,covering various relief forms.The dependence of the change in corrected height accuracy on the input data was analyzed,and the correction was also conducted for model heights in three tidal systems:"tide free","mean tide",and"zero tide".The results show that the heights of EIGEN-6C4 model can be corrected with an accuracy of up to 1 cm for flat and foothill terrains with the dimensionality of 1°×1°,2°×2°,and 3°×3°.The EGM08 model presents an almost identical result.The EIGEN-6C4 model is best suited for mountainous relief and provides an accuracy of 1.5 cm on the 1°×1°area.The height correction accuracy of GECO and XGM2019e_2159 models is slightly poor,which has fuzziness in terms of numerical fluctuation.展开更多
Nitrogen(N)and potassium(K)are two key mineral nutrient elements involved in rice growth.Accurate diagnosis of N and K status is very important for the rational application of fertilizers at a specific rice growth sta...Nitrogen(N)and potassium(K)are two key mineral nutrient elements involved in rice growth.Accurate diagnosis of N and K status is very important for the rational application of fertilizers at a specific rice growth stage.Therefore,we propose a hybrid model for diagnosing rice nutrient levels at the early panicle initiation stage(EPIS),which combines a convolutional neural network(CNN)with an attention mechanism and a long short-term memory network(LSTM).The model was validated on a large set of sequential images collected by an unmanned aerial vehicle(UAV)from rice canopies at different growth stages during a two-year experiment.Compared with VGG16,AlexNet,GoogleNet,DenseNet,and inceptionV3,ResNet101 combined with LSTM obtained the highest average accuracy of 83.81%on the dataset of Huanghuazhan(HHZ,an indica cultivar).When tested on the datasets of HHZ and Xiushui 134(XS134,a japonica rice variety)in 2021,the ResNet101-LSTM model enhanced with the squeeze-and-excitation(SE)block achieved the highest accuracies of 85.38 and 88.38%,respectively.Through the cross-dataset method,the average accuracies on the HHZ and XS134 datasets tested in 2022 were 81.25 and 82.50%,respectively,showing a good generalization.Our proposed model works with the dynamic information of different rice growth stages and can efficiently diagnose different rice nutrient status levels at EPIS,which are helpful for making practical decisions regarding rational fertilization treatments at the panicle initiation stage.展开更多
Multi-disciplinary virtual prototypes of complex products are increasingly and widely used in modern advanced manufactur- ing. How to effectively address the problems of unified modeling, composition and reuse based o...Multi-disciplinary virtual prototypes of complex products are increasingly and widely used in modern advanced manufactur- ing. How to effectively address the problems of unified modeling, composition and reuse based on the multi-disciplinary heteroge- neous models has brought great challenges to the modeling and simulation (M&S) science and technology. This paper presents a top-level modeling theory based on the meta modeling framework (M2F) of the COllaborative SIMulation (COSlM) theory of virtual prototyping to solve the problems. Firstly the fundamental prin- ciples of the top-level modeling theory are decribed to expound the premise, assumptions, basic conventions and special require- ments in the description of complex heterogeneous systems. Next the formalized definitions for each factor in top level modeling are proposed and the hierarchical nature of them is illustrated. After demonstrating that they are self-closing, this paper divides the top- level modeling into two views, static structural graph and dynamic behavioral graph. Finally, a case study is discussed to demon- strate the feasibility of the theory.展开更多
An increasing number of drivers are relying on digital map navigation systems in vehicles or mobile phones to select optimal driving routes in order to save time and improve safety. In the near future, digital map nav...An increasing number of drivers are relying on digital map navigation systems in vehicles or mobile phones to select optimal driving routes in order to save time and improve safety. In the near future, digital map navigation systems are expected to play more important roles in transportation systems. In order to extend current navigation systems to more applications, two fundamental problems must be resolved: the lane-level map model and lane-level route planning. This study proposes solutions to both problems. The current limitation of the lane-level map model is not its accuracy but its flexibility;this study proposes a novel seven-layer map structure, called as Tsinghua map model, which is able to support autonomous driving in a flexible and efficient way. For lane-level route planning, we propose a hierarchical route-searching algorithm to accelerate the planning process, even in the presence of complicated lane networks. In addition, we model the travel costs allocated for lane-level road networks by analyzing vehicle maneuvers in traversing lanes, changing lanes, and turning at intersections. Tests were performed on both a grid network and a real lane-level road network to demonstrate the validity and efficiency of the proposed algorithm.展开更多
This study quantified the regional damages resulting from temperature and sea level changes using the Regional Integrated of Climate and Economy(RICE)model,as well as the effects of enabling and disabling the climate ...This study quantified the regional damages resulting from temperature and sea level changes using the Regional Integrated of Climate and Economy(RICE)model,as well as the effects of enabling and disabling the climate impact module on future emission pathways.Results highlight varied damages depending on regional economic development and locations.Specifically,China and Africa could suffer the most serious comprehensive damages caused by temperature change and sea level rise,followed by India,other developing Asian countries(OthAsia),and other high-income countries(OHI).The comprehensive damage fractions for China and Africa are projected to be 15.1%and 12.5%of gross domestic product(GDP)in 2195,with corresponding cumulative damages of 124.0 trillion and 87.3 trillion United States dollars(USD)from 2005 to 2195,respectively.Meanwhile,the comprehensive damage fractions in Japan,Eurasia,and Russia are smaller and projected to be lower than 5.6%of GDP in 2195,with cumulative damages of 6.8 trillion,4.2 trillion,and 3.3 trillion USD,respectively.Additionally,coastal regions like Africa,the European Union(EU),and OHI show comparable damages for sea level rise and temperature change.In China,however,sea level-induced damages are projected to exceed those from temperature changes.Moreover,this study indicates that switching the damage modules on or off affects the regional and global emission trajectories,but the magnitude is relatively small.By 2195,global emissions under the experiments with all of the damage modules switched off,only the sea level damage module switched on,and only the temperature damage module switched on,were 3.5%,2.3%and 1.2%higher than those with all of the damage modules switched on,respectively.展开更多
Objective To evaluate the effect of the aluminum hydroxide (Al-OH) adjuvant on the 2009 pandemic influenza A/H1N1 (pH1N1) vaccine. Methods In a multicenter, double-blind, randomized, placebo-controlled trial, part...Objective To evaluate the effect of the aluminum hydroxide (Al-OH) adjuvant on the 2009 pandemic influenza A/H1N1 (pH1N1) vaccine. Methods In a multicenter, double-blind, randomized, placebo-controlled trial, participants received two doses of split-virion formulation containing 15 ug hemagglutinin antigen, with or without aluminum hydroxide (N-OH). We classified the participants into six age categories (〉61 years, 41-60 years, 19-40 years, 13-18 years, 8-12 years, and 3-7 years) and obtained four blood samples from each participant on days 0, 21, 35, and 42 following the first dose of immunization. We assessed vaccine immunogenicity by measuring the geometric mean titer (GMT) of hemagglutination inhibiting antibody. We used a two-level model to evaluate the fixed effect of aluminum Al-OH and other factors, accounting for repeated measures. Results The predictions of repeated measurement on GMTs of formulations with or without Al-OH, were 80.35 and 112.72, respectively. Al-OH significantly reduced immunogenicity after controlling for time post immunization, age-group and gender. Conclusion The Al-OH adjuvant does not increase but actually reduces the immunogenicity of the split-virion pH1N1 vaccine.展开更多
To implement a quantificational evaluation for mechanical kinematic scheme more effectively,a multi-level and multi-objective evaluation model is presented using neural network and fuzzy theory. Firstly,the structure ...To implement a quantificational evaluation for mechanical kinematic scheme more effectively,a multi-level and multi-objective evaluation model is presented using neural network and fuzzy theory. Firstly,the structure of evaluation model is constructed according to evaluation indicator system. Then evaluation samples are generated and provided to train this model. Thus it can reflect the relation between attributive value and evaluation result,as well as the weight of evaluation indicator. Once evaluation indicators of each candidate are fuzzily quantified and fed into the trained network model,the corresponding evaluation result is outputted and the best alternative can be selected. Under this model,expert knowledge can be effectively acquired and expressed,and the quantificational evaluation can be implemented for kinematic scheme with multi-level evaluation indicator system. Several key problems on this model are discussed and an illustration has demonstrated that this model is feasible and can be regarded as a new idea for solving kinematic scheme evaluation.展开更多
This paper uses inter-provincial panel data from 2011 to 2017,a linear regression model,and a threshold model to conduct empirical analyses of the impact of the digital economy on China's overall economic growth a...This paper uses inter-provincial panel data from 2011 to 2017,a linear regression model,and a threshold model to conduct empirical analyses of the impact of the digital economy on China's overall economic growth and the three main sectors of industry.The paper then investigates the impact and effects the digital economy has had on the economic growth of the three main sectors of industry in China's eastern,central,and western regions.Finally,the paper investigates the most significant differences among the various regions and the threshold effects of urbanization levels on the relationship between the digital economy and economic growth.The findings indicate a significantly positive correlation between the digital economy and regional economic growth.Moreover,geographical factors notably influence this correlation.The digital economy exerts a positive effect on all sectors of industry.It may not substantially impact industrial development in regions with highly developed infrastructure.Regarding the other regions,the digital economy exhibits varying degrees of impact due to the differences in the specific indicators.The conclusion drawn by the threshold model is that the magnitude of the threshold effect correlates with geographic factors.No threshold effect was observed in the eastern region,while the threshold effect occurred in the central region when the urbanization levels for the provinces were below 0.6645.Similarly,the threshold effect was noted in the western region when the urbanization level was below 0.3931.Considering all of this,the study also offers policy recommendations that will help balance the regional development of digital economies,accelerate the digital transformation of traditional industries,enhance digital infrastructure construction,refine the formulation and implementation of data policy,and establish relevant incentive mechanisms.展开更多
BACKGROUND There is an increasingly strong demand for appearance and physical beauty in social life,marriage,and other aspects with the development of society and the improvement of material living standards.An increa...BACKGROUND There is an increasingly strong demand for appearance and physical beauty in social life,marriage,and other aspects with the development of society and the improvement of material living standards.An increasing number of people have improved their appearance and physical shape through aesthetic plastic surgery.The female breast plays a significant role in physical beauty,and droopy or atrophied breasts can frequently lead to psychological inferiority and lack of confidence in women.This,in turn,can affect their mental health and quality of life.AIM To analyze preoperative and postoperative self-image pressure-level changes of autologous fat breast augmentation patients and their impact on social adaptability.METHODS We selected 160 patients who underwent autologous fat breast augmentation at the First Affiliated Hospital of Xinxiang Medical University from January 2020 to December 2022 using random sampling method.The general information,selfimage pressure level,and social adaptability of the patients were investigated using a basic information survey,body image self-assessment scale,and social adaptability scale.The self-image pressure-level changes and their effects on the social adaptability of patients before and after autologous fat breast augmentation were analyzed.RESULTS We collected 142 valid questionnaires.The single-factor analysis results showed no statistically significant difference in the self-image pressure level and social adaptability score of patients with different ages,marital status,and monthly income.However,there were significant differences in social adaptability among patients with different education levels and employment statuses.The correlation analysis results revealed a significant correlation between the self-image pressure level and social adaptability score before and after surgery.Multiple factors analysis results showed that the degree of concern caused by appearance in selfimage pressure,the degree of possible behavioral intervention,the related distress caused by body image,and the influence of body image on social life influenced the social adaptability of autologous fat breast augmentation patients.CONCLUSION The self-image pressure on autologous fat breast augmentation patients is inversely proportional to their social adaptability.展开更多
Climate change and increasing anthropogenic activities,such as over-exploitation of groundwater,are exerting unavoidable stress on groundwater resources.This study investigated the spatio-temporal variation of depth t...Climate change and increasing anthropogenic activities,such as over-exploitation of groundwater,are exerting unavoidable stress on groundwater resources.This study investigated the spatio-temporal variation of depth to groundwater level(DGWL)and the impacts of climatic(precipitation,maximum temperature,and minimum temperature)and anthropogenic(gross district product(GDP),population,and net irrigated area(NIA))variables on DGWL during 1994-2020.The study considered DGWL in 113 observation wells and piezometers located in arid western plains(Barmer and Jodhpur districts)and semi-arid eastern plains(Jaipur,Ajmer,Dausa,and Tonk districts)of Rajasthan State,India.Statistical methods were employed to examine the annual and seasonal patterns of DGWL,and the generalized additive model(GAM)was used to determine the impacts of climatic and anthropogenic variables on DGWL.During 1994-2020,except for Barmer District,where the mean annual DGWL was almost constant(around 26.50 m),all other districts exhibited increase in DGWL,with Ajmer District experiencing the most increase.The results also revealed that 36 observation wells and piezometers showed a statistically significant annual increasing trend in DGWL and 34 observation wells and piezometers exhibited a statistically significant decreasing trend in DGWL.Similarly,32 observation wells and piezometers showed an statistically significant increasing trend and 37 observation wells and piezometers showed a statistically significant decreasing trend in winter;33 observation wells and piezometers indicated a statistically significant increasing trend and 34 had a statistically significant decreasing trend in post-monsoon;35 observation wells and piezometers exhibited a statistically significant increasing trend and 32 observation wells and piezometers showed a statistically significant decreasing trend in pre-monsoon;and 36 observation wells and piezometers reflected a statistically significant increasing trend and 30 observation wells and piezometers reflected a statistically significant decreasing trend in monsoon.Interestingly,most of the observation wells and piezometers with increasing trends of DGWL were located in Dausa and Jaipur districts.Furthermore,the GAM analysis revealed that climatic variables,such as precipitation,significantly affected DGWL in Barmer District,and DGWL in all other districts was influenced by anthropogenic variables,including GDP,NIA,and population.As a result,stringent regulations should be implemented to curb excessive groundwater extraction,manage agricultural water demand,initiate proactive aquifer recharge programs,and strengthen sustainable management in these water-scarce regions.展开更多
Multi-level multi-scale resource selection models using machine learning were compared and contrasted for generating predictive maps of jaguar habitat (Panthera onca) in the Brazilian Pantanal. Multiple spatial scales...Multi-level multi-scale resource selection models using machine learning were compared and contrasted for generating predictive maps of jaguar habitat (Panthera onca) in the Brazilian Pantanal. Multiple spatial scales and temporal movement levels were run within several analytical modeling frameworks for comparison. Included in the analysis were multi-scale raster grains (30 m, 90 m, 180 m, 360 m, 720 m, 1440 m) and GPS collaring temporal movement levels (point, path, and step). Various analytical methods were used for comparison of models that could accommodate data structural levels (group, individual, case-control). Models compared included conditional logistic regression, generalized additive modeling (GAM), and classification regression trees, such as random forests (RF) and gradient boosted regression tree (GBM). The goals of the study were to discuss the potential and limitations for machine learning methods using GPS collaring data to produce predictive habitat suitability mapping using the various scales and levels available. Results indicated that choosing the appropriate temporal level and raster scale improved model outputs. Overall, larger level analytical modeling frameworks and those that used multi-scale raster grains showed the best model evaluation with the inherent condition that they predict a broader scale and subset of data. The identification of the appropriate spatial scale, temporal scale and statistical model need careful consideration in predictive mapping efforts.展开更多
Markov modeling of HIV/AIDS progression was done under the assumption that the state holding time (waiting time) had a constant hazard. This paper discusses the properties of the hazard function of the Exponential dis...Markov modeling of HIV/AIDS progression was done under the assumption that the state holding time (waiting time) had a constant hazard. This paper discusses the properties of the hazard function of the Exponential distributions and its modifications namely;Parameter proportion hazard (PH) and Accelerated failure time models (AFT) and their effectiveness in modeling the state holding time in Markov modeling of HIV/AIDS progression with and without risk factors. Patients were categorized by gender and age with female gender being the baseline. Data simulated using R software was fitted to each model, and the model parameters were estimated. The estimated P and Z values were then used to test the null hypothesis that the state waiting time data followed an Exponential distribution. Model identification criteria;Akaike information criteria (AIC), Bayesian information criteria (BIC), log-likelihood (LL), and R2 were used to evaluate the performance of the models. For the Survival Regression model, P and Z values supported the non-rejection of the null hypothesis for mixed gender without interaction and supported the rejection of the same for mixed gender with interaction term and males aged 50 - 60 years. Both Parameters supported the non-rejection of the null hypothesis in the rest of the age groups. For Gender male with interaction both P and Z values supported rejection in all the age groups except the age group 20 - 30 years. For Cox Proportional hazard and AFT models, both P and Z values supported the non-rejection of the null hypothesis across all age groups. The P-values for the three models supported different decisions for and against the Null hypothesis with AFT and Cox values supporting similar decisions in most of the age groups. Among the models considered, the regression assumption provided a superior fit based on (AIC), (BIC), (LL), and R2 Model identification criteria. This was particularly evident in age and gender subgroups where the data exhibited non-proportional hazards and violated the assumptions required for the Cox Proportional Hazard model. Moreover, the simplicity of the regression model, along with its ability to capture essential state transitions without over fitting, made it a more appropriate choice.展开更多
Future potential sea level change in the South China Sea (SCS) is estimated by using 24 CMIP5 models under different representative concentration pathway (RCP) scenarios. By the end of the 21st century (2081–210...Future potential sea level change in the South China Sea (SCS) is estimated by using 24 CMIP5 models under different representative concentration pathway (RCP) scenarios. By the end of the 21st century (2081–2100 relative to 1986–2005), the multimodel ensemble mean dynamic sea level (DSL) is projected to rise 0.9, 1.6, and 1.1 cm under RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively, resulting in a total sea level rise (SLR) of 40.9, 48.6, and 64.1 cm in the SCS. It indicates that the SCS will experience a substantial SLR over the 21st century, and the rise is only marginal larger than the global mean SLR. During the same period, the steric sea level (SSL) rise is estimated to be 6.7, 10.0, and 15.3 cm under the three scenarios, respectively, which accounts only for 16%, 21% and 24% of the total SLR in this region. The changes of the SSL in the SCS are almost out of phase with those of the DSL for the three scenarios. The central deep basin has a slightly weak DSL rise, but a strong SSL rise during the 21st century, compared with the north and southwest shelves.展开更多
Sea level rise (SLR) is one of the major socioeconomic risks associated with global warming. Mass losses from the Greenland ice sheet (GrIS) will be partially responsible for future SLR, although there are large u...Sea level rise (SLR) is one of the major socioeconomic risks associated with global warming. Mass losses from the Greenland ice sheet (GrIS) will be partially responsible for future SLR, although there are large uncertainties in modeled climate and ice sheet behavior. We used the ice sheet model SICOPOLIS (Simulation COde for POLythermal Ice Sheets) driven by climate projections from 20 models in the fifth phase of the Coupled Model Intercomparison Project (CMIP5) to estimate the GrlS contribution to global SLR. Based on the outputs of the 20 models, it is estimated that the GrIS will contribute 0-16 (0-27) cm to global SLR by 2100 under the Representative Concentration Pathways (RCP) 4.5 (RCP 8.5) scenarios. The projected SLR increases further to 7-22 (7-33) cm with 2~basal sliding included. In response to the results of the multimodel ensemble mean, the ice sheet model projects a global SLR of 3 cm and 7 cm (10 cm and 13 cm with 2~basal sliding) under the RCP 4.5 and RCP 8.5 scenarios, respectively. In addition, our results suggest that the uncertainty in future sea level projection caused by the large spread in climate projections could be reduced with model-evaluation and the selective use of model outputs.展开更多
Partial cooperation models are studied for many years to solve the bilevel programming problems where the follower’s optimal reaction is not unique. However, in these existed models, the follower’s cooperation level...Partial cooperation models are studied for many years to solve the bilevel programming problems where the follower’s optimal reaction is not unique. However, in these existed models, the follower’s cooperation level does not depend on the leader’s decision. A new model is proposed to solve this deficiency. It is proved the feasibility of the new model when the reaction set of the lower level is lower semicontinuous. And the numerical results show that the new model has optimal solutions when the reaction set of the lower level is discrete, lower semi-continuous and non-lower semi-continuous.展开更多
To improve the agility, dynamics, composability, reusability, and development efficiency restricted by monolithic federation object model (FOM), a modular FOM is proposed by high level architecture (HLA) evolved p...To improve the agility, dynamics, composability, reusability, and development efficiency restricted by monolithic federation object model (FOM), a modular FOM is proposed by high level architecture (HLA) evolved product development group. This paper reviews the state-of-the-art of HLA evolved modular FOM. In particular, related concepts, the overall impact on HLA standards, extension principles, and merging processes are discussed. Also permitted and restricted combinations, and merging rules are provided, and the influence on HLA interface specification is given. The comparison between modular FOM and base object model (BOM) is performed to illustrate the importance of their combination. The applications of modular FOM are summarized. Finally, the significance to facilitate compoable simulation both in academia and practice is presented and future directions are pointed out.展开更多
Many landslides in reservoir areas continuously deform under cyclic water level fluctuations due to reservoir operations. In this paper,a landslide model, developed for a typical colluvial landslide in the Three Gorge...Many landslides in reservoir areas continuously deform under cyclic water level fluctuations due to reservoir operations. In this paper,a landslide model, developed for a typical colluvial landslide in the Three Gorges Reservoir area, is used to study the effect of cyclic water level fluctuations on the landslide. Five cyclic water level fluctuations were implemented in the test, and the fluctuation rate in the last two fluctuations doubled over the first three fluctuations. The pore water pressure and lateral landslide profiles were obtained during the test. A measurement of the landslide soil loss was proposed to quantitatively evaluate the influence of water level fluctuations. The test results show that the first water level rising is most negative to the landslide among the five cycles. The fourth drawdown with a higher drawdown rate caused further large landslide deformation. An increase of the water level drawdown rate is much more unfavorable to the landslide than an increase of the water level rising rate. In addition, the landslide was found to have an adaptive ability to resist subsequent water level fluctuations after undergoing large deformation during a water level fluctuation. The landslide deformation and observations in the field were found to support the test results well.展开更多
Water resources management usually requires that hydraulic, ecological, and hydrological models be linked. The Hy- drologic Engineering Center River Analysis System (HEC-RAS) hydraulic model and the Hydrologic Enginee...Water resources management usually requires that hydraulic, ecological, and hydrological models be linked. The Hy- drologic Engineering Center River Analysis System (HEC-RAS) hydraulic model and the Hydrologic Engineering Center Geospatial River Analysis System (HEC-GEORAS), imitates flow and water profiles in the Neka river basin’s downstream flood plain. Hydrograph phases studied during the flood seasons of 1986-1999 and from 2002-2004 were used to calibrate and verify the hydraulic model respectively. Simulations of peak flood stages and hydrographs’ evaluations are congruent with studies and observations, with the former showing mean square errors between 4.8 - 10 cm. HECRAS calculations and forecast flood water levels. Nash-Sutcliffe effectiveness (CR3) is more than 0.92 along with elevated levels of water which were created with some effectiveness (CR5) of 0.94 for the validation period. The coupled two models show good performance in the water level modeling.展开更多
基金the International Center for Global Earth Models(ICGEM)for the height anomaly and gravity anomaly data and Bureau Gravimetrique International(BGI)for free-air gravity anomaly data from the World Gravity Map project(WGM2012)The authors are grateful to Głowny Urza˛d Geodezji i Kartografii of Poland for the height anomaly data of the quasi-geoid PL-geoid2021.
文摘At present,one of the methods used to determine the height of points on the Earth’s surface is Global Navigation Satellite System(GNSS)leveling.It is possible to determine the orthometric or normal height by this method only if there is a geoid or quasi-geoid height model available.This paper proposes the methodology for local correction of the heights of high-order global geoid models such as EGM08,EIGEN-6C4,GECO,and XGM2019e_2159.This methodology was tested in different areas of the research field,covering various relief forms.The dependence of the change in corrected height accuracy on the input data was analyzed,and the correction was also conducted for model heights in three tidal systems:"tide free","mean tide",and"zero tide".The results show that the heights of EIGEN-6C4 model can be corrected with an accuracy of up to 1 cm for flat and foothill terrains with the dimensionality of 1°×1°,2°×2°,and 3°×3°.The EGM08 model presents an almost identical result.The EIGEN-6C4 model is best suited for mountainous relief and provides an accuracy of 1.5 cm on the 1°×1°area.The height correction accuracy of GECO and XGM2019e_2159 models is slightly poor,which has fuzziness in terms of numerical fluctuation.
基金supported by the National Key Research and Development Program of China(2022YFD2300700)the Open Project Program of State Key Laboratory of Rice Biology,China National Rice Research Institute(20210403)the Zhejiang“Ten Thousand Talents”Plan Science and Technology Innovation Leading Talent Project,China(2020R52035)。
文摘Nitrogen(N)and potassium(K)are two key mineral nutrient elements involved in rice growth.Accurate diagnosis of N and K status is very important for the rational application of fertilizers at a specific rice growth stage.Therefore,we propose a hybrid model for diagnosing rice nutrient levels at the early panicle initiation stage(EPIS),which combines a convolutional neural network(CNN)with an attention mechanism and a long short-term memory network(LSTM).The model was validated on a large set of sequential images collected by an unmanned aerial vehicle(UAV)from rice canopies at different growth stages during a two-year experiment.Compared with VGG16,AlexNet,GoogleNet,DenseNet,and inceptionV3,ResNet101 combined with LSTM obtained the highest average accuracy of 83.81%on the dataset of Huanghuazhan(HHZ,an indica cultivar).When tested on the datasets of HHZ and Xiushui 134(XS134,a japonica rice variety)in 2021,the ResNet101-LSTM model enhanced with the squeeze-and-excitation(SE)block achieved the highest accuracies of 85.38 and 88.38%,respectively.Through the cross-dataset method,the average accuracies on the HHZ and XS134 datasets tested in 2022 were 81.25 and 82.50%,respectively,showing a good generalization.Our proposed model works with the dynamic information of different rice growth stages and can efficiently diagnose different rice nutrient status levels at EPIS,which are helpful for making practical decisions regarding rational fertilization treatments at the panicle initiation stage.
基金supported by the National High Technology Research and Development Program (863 Program) (2011AA040502).
文摘Multi-disciplinary virtual prototypes of complex products are increasingly and widely used in modern advanced manufactur- ing. How to effectively address the problems of unified modeling, composition and reuse based on the multi-disciplinary heteroge- neous models has brought great challenges to the modeling and simulation (M&S) science and technology. This paper presents a top-level modeling theory based on the meta modeling framework (M2F) of the COllaborative SIMulation (COSlM) theory of virtual prototyping to solve the problems. Firstly the fundamental prin- ciples of the top-level modeling theory are decribed to expound the premise, assumptions, basic conventions and special require- ments in the description of complex heterogeneous systems. Next the formalized definitions for each factor in top level modeling are proposed and the hierarchical nature of them is illustrated. After demonstrating that they are self-closing, this paper divides the top- level modeling into two views, static structural graph and dynamic behavioral graph. Finally, a case study is discussed to demon- strate the feasibility of the theory.
基金the National Key Research and Development Program of China (2018YFB0105000)the National Natural Science Foundation of China (61773234 and U1864203)+2 种基金the Project of Tsinghua University and Toyota Joint Research Center for AI Technology of Automated Vehicle (TT2018-02)the International Science and Technology Cooperation Program of China (2016YFE0102200)the software developed in the Beijing Municipal Science and Technology Program (D171100005117001 and Z181100005918001).
文摘An increasing number of drivers are relying on digital map navigation systems in vehicles or mobile phones to select optimal driving routes in order to save time and improve safety. In the near future, digital map navigation systems are expected to play more important roles in transportation systems. In order to extend current navigation systems to more applications, two fundamental problems must be resolved: the lane-level map model and lane-level route planning. This study proposes solutions to both problems. The current limitation of the lane-level map model is not its accuracy but its flexibility;this study proposes a novel seven-layer map structure, called as Tsinghua map model, which is able to support autonomous driving in a flexible and efficient way. For lane-level route planning, we propose a hierarchical route-searching algorithm to accelerate the planning process, even in the presence of complicated lane networks. In addition, we model the travel costs allocated for lane-level road networks by analyzing vehicle maneuvers in traversing lanes, changing lanes, and turning at intersections. Tests were performed on both a grid network and a real lane-level road network to demonstrate the validity and efficiency of the proposed algorithm.
基金funded by the National Natu-ral Science Foundation of China(Grant No.42075044 and No.41975112)a project supported by the Innovation Group Project of the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.311022006).
文摘This study quantified the regional damages resulting from temperature and sea level changes using the Regional Integrated of Climate and Economy(RICE)model,as well as the effects of enabling and disabling the climate impact module on future emission pathways.Results highlight varied damages depending on regional economic development and locations.Specifically,China and Africa could suffer the most serious comprehensive damages caused by temperature change and sea level rise,followed by India,other developing Asian countries(OthAsia),and other high-income countries(OHI).The comprehensive damage fractions for China and Africa are projected to be 15.1%and 12.5%of gross domestic product(GDP)in 2195,with corresponding cumulative damages of 124.0 trillion and 87.3 trillion United States dollars(USD)from 2005 to 2195,respectively.Meanwhile,the comprehensive damage fractions in Japan,Eurasia,and Russia are smaller and projected to be lower than 5.6%of GDP in 2195,with cumulative damages of 6.8 trillion,4.2 trillion,and 3.3 trillion USD,respectively.Additionally,coastal regions like Africa,the European Union(EU),and OHI show comparable damages for sea level rise and temperature change.In China,however,sea level-induced damages are projected to exceed those from temperature changes.Moreover,this study indicates that switching the damage modules on or off affects the regional and global emission trajectories,but the magnitude is relatively small.By 2195,global emissions under the experiments with all of the damage modules switched off,only the sea level damage module switched on,and only the temperature damage module switched on,were 3.5%,2.3%and 1.2%higher than those with all of the damage modules switched on,respectively.
基金supported by the Infectious Disease Prevention and Control Major Research plan from the Ministry of Science and Technology of China-the Platform of Construction of Clinical Trial of Vaccine. (Project number 2009ZX0004-806)
文摘Objective To evaluate the effect of the aluminum hydroxide (Al-OH) adjuvant on the 2009 pandemic influenza A/H1N1 (pH1N1) vaccine. Methods In a multicenter, double-blind, randomized, placebo-controlled trial, participants received two doses of split-virion formulation containing 15 ug hemagglutinin antigen, with or without aluminum hydroxide (N-OH). We classified the participants into six age categories (〉61 years, 41-60 years, 19-40 years, 13-18 years, 8-12 years, and 3-7 years) and obtained four blood samples from each participant on days 0, 21, 35, and 42 following the first dose of immunization. We assessed vaccine immunogenicity by measuring the geometric mean titer (GMT) of hemagglutination inhibiting antibody. We used a two-level model to evaluate the fixed effect of aluminum Al-OH and other factors, accounting for repeated measures. Results The predictions of repeated measurement on GMTs of formulations with or without Al-OH, were 80.35 and 112.72, respectively. Al-OH significantly reduced immunogenicity after controlling for time post immunization, age-group and gender. Conclusion The Al-OH adjuvant does not increase but actually reduces the immunogenicity of the split-virion pH1N1 vaccine.
基金Supported by the Shanxi Natural Science Foundation under contract number 20041070 and Natural Science Foundation of north u-niversity of China .
文摘To implement a quantificational evaluation for mechanical kinematic scheme more effectively,a multi-level and multi-objective evaluation model is presented using neural network and fuzzy theory. Firstly,the structure of evaluation model is constructed according to evaluation indicator system. Then evaluation samples are generated and provided to train this model. Thus it can reflect the relation between attributive value and evaluation result,as well as the weight of evaluation indicator. Once evaluation indicators of each candidate are fuzzily quantified and fed into the trained network model,the corresponding evaluation result is outputted and the best alternative can be selected. Under this model,expert knowledge can be effectively acquired and expressed,and the quantificational evaluation can be implemented for kinematic scheme with multi-level evaluation indicator system. Several key problems on this model are discussed and an illustration has demonstrated that this model is feasible and can be regarded as a new idea for solving kinematic scheme evaluation.
文摘This paper uses inter-provincial panel data from 2011 to 2017,a linear regression model,and a threshold model to conduct empirical analyses of the impact of the digital economy on China's overall economic growth and the three main sectors of industry.The paper then investigates the impact and effects the digital economy has had on the economic growth of the three main sectors of industry in China's eastern,central,and western regions.Finally,the paper investigates the most significant differences among the various regions and the threshold effects of urbanization levels on the relationship between the digital economy and economic growth.The findings indicate a significantly positive correlation between the digital economy and regional economic growth.Moreover,geographical factors notably influence this correlation.The digital economy exerts a positive effect on all sectors of industry.It may not substantially impact industrial development in regions with highly developed infrastructure.Regarding the other regions,the digital economy exhibits varying degrees of impact due to the differences in the specific indicators.The conclusion drawn by the threshold model is that the magnitude of the threshold effect correlates with geographic factors.No threshold effect was observed in the eastern region,while the threshold effect occurred in the central region when the urbanization levels for the provinces were below 0.6645.Similarly,the threshold effect was noted in the western region when the urbanization level was below 0.3931.Considering all of this,the study also offers policy recommendations that will help balance the regional development of digital economies,accelerate the digital transformation of traditional industries,enhance digital infrastructure construction,refine the formulation and implementation of data policy,and establish relevant incentive mechanisms.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences [grant number XDA20060500]the National Natural Science Foundation of China[grant numbers 41731173 and 42275035]+8 种基金the Natural Science Foundation of Guangdong ProvinceChina [grant number 2022A1515011967]the Science and Technology Program of GuangzhouChina [grant number 202002030492]the Open Fund Project of the Key Laboratory of Marine Environmental Information Technology,the Key Laboratory of Marine Science and Numerical Modeling,Ministry of Natural Resources of the People’s Republic of China [grant number 2020-YB-05]the MEL Visiting Fellowship [grant number MELRS2102]the Independent Research Project Program of the State Key Laboratory of Tropical Oceanography [grant number LTOZZ2005]the Key Special Project for the Introducing Talents Team of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)[grant number GML2019ZD0306]the Innovation Academy of South China Sea Ecology and Environmental Engineering [grant number ISEE2018PY06]
文摘BACKGROUND There is an increasingly strong demand for appearance and physical beauty in social life,marriage,and other aspects with the development of society and the improvement of material living standards.An increasing number of people have improved their appearance and physical shape through aesthetic plastic surgery.The female breast plays a significant role in physical beauty,and droopy or atrophied breasts can frequently lead to psychological inferiority and lack of confidence in women.This,in turn,can affect their mental health and quality of life.AIM To analyze preoperative and postoperative self-image pressure-level changes of autologous fat breast augmentation patients and their impact on social adaptability.METHODS We selected 160 patients who underwent autologous fat breast augmentation at the First Affiliated Hospital of Xinxiang Medical University from January 2020 to December 2022 using random sampling method.The general information,selfimage pressure level,and social adaptability of the patients were investigated using a basic information survey,body image self-assessment scale,and social adaptability scale.The self-image pressure-level changes and their effects on the social adaptability of patients before and after autologous fat breast augmentation were analyzed.RESULTS We collected 142 valid questionnaires.The single-factor analysis results showed no statistically significant difference in the self-image pressure level and social adaptability score of patients with different ages,marital status,and monthly income.However,there were significant differences in social adaptability among patients with different education levels and employment statuses.The correlation analysis results revealed a significant correlation between the self-image pressure level and social adaptability score before and after surgery.Multiple factors analysis results showed that the degree of concern caused by appearance in selfimage pressure,the degree of possible behavioral intervention,the related distress caused by body image,and the influence of body image on social life influenced the social adaptability of autologous fat breast augmentation patients.CONCLUSION The self-image pressure on autologous fat breast augmentation patients is inversely proportional to their social adaptability.
文摘Climate change and increasing anthropogenic activities,such as over-exploitation of groundwater,are exerting unavoidable stress on groundwater resources.This study investigated the spatio-temporal variation of depth to groundwater level(DGWL)and the impacts of climatic(precipitation,maximum temperature,and minimum temperature)and anthropogenic(gross district product(GDP),population,and net irrigated area(NIA))variables on DGWL during 1994-2020.The study considered DGWL in 113 observation wells and piezometers located in arid western plains(Barmer and Jodhpur districts)and semi-arid eastern plains(Jaipur,Ajmer,Dausa,and Tonk districts)of Rajasthan State,India.Statistical methods were employed to examine the annual and seasonal patterns of DGWL,and the generalized additive model(GAM)was used to determine the impacts of climatic and anthropogenic variables on DGWL.During 1994-2020,except for Barmer District,where the mean annual DGWL was almost constant(around 26.50 m),all other districts exhibited increase in DGWL,with Ajmer District experiencing the most increase.The results also revealed that 36 observation wells and piezometers showed a statistically significant annual increasing trend in DGWL and 34 observation wells and piezometers exhibited a statistically significant decreasing trend in DGWL.Similarly,32 observation wells and piezometers showed an statistically significant increasing trend and 37 observation wells and piezometers showed a statistically significant decreasing trend in winter;33 observation wells and piezometers indicated a statistically significant increasing trend and 34 had a statistically significant decreasing trend in post-monsoon;35 observation wells and piezometers exhibited a statistically significant increasing trend and 32 observation wells and piezometers showed a statistically significant decreasing trend in pre-monsoon;and 36 observation wells and piezometers reflected a statistically significant increasing trend and 30 observation wells and piezometers reflected a statistically significant decreasing trend in monsoon.Interestingly,most of the observation wells and piezometers with increasing trends of DGWL were located in Dausa and Jaipur districts.Furthermore,the GAM analysis revealed that climatic variables,such as precipitation,significantly affected DGWL in Barmer District,and DGWL in all other districts was influenced by anthropogenic variables,including GDP,NIA,and population.As a result,stringent regulations should be implemented to curb excessive groundwater extraction,manage agricultural water demand,initiate proactive aquifer recharge programs,and strengthen sustainable management in these water-scarce regions.
文摘Multi-level multi-scale resource selection models using machine learning were compared and contrasted for generating predictive maps of jaguar habitat (Panthera onca) in the Brazilian Pantanal. Multiple spatial scales and temporal movement levels were run within several analytical modeling frameworks for comparison. Included in the analysis were multi-scale raster grains (30 m, 90 m, 180 m, 360 m, 720 m, 1440 m) and GPS collaring temporal movement levels (point, path, and step). Various analytical methods were used for comparison of models that could accommodate data structural levels (group, individual, case-control). Models compared included conditional logistic regression, generalized additive modeling (GAM), and classification regression trees, such as random forests (RF) and gradient boosted regression tree (GBM). The goals of the study were to discuss the potential and limitations for machine learning methods using GPS collaring data to produce predictive habitat suitability mapping using the various scales and levels available. Results indicated that choosing the appropriate temporal level and raster scale improved model outputs. Overall, larger level analytical modeling frameworks and those that used multi-scale raster grains showed the best model evaluation with the inherent condition that they predict a broader scale and subset of data. The identification of the appropriate spatial scale, temporal scale and statistical model need careful consideration in predictive mapping efforts.
文摘Markov modeling of HIV/AIDS progression was done under the assumption that the state holding time (waiting time) had a constant hazard. This paper discusses the properties of the hazard function of the Exponential distributions and its modifications namely;Parameter proportion hazard (PH) and Accelerated failure time models (AFT) and their effectiveness in modeling the state holding time in Markov modeling of HIV/AIDS progression with and without risk factors. Patients were categorized by gender and age with female gender being the baseline. Data simulated using R software was fitted to each model, and the model parameters were estimated. The estimated P and Z values were then used to test the null hypothesis that the state waiting time data followed an Exponential distribution. Model identification criteria;Akaike information criteria (AIC), Bayesian information criteria (BIC), log-likelihood (LL), and R2 were used to evaluate the performance of the models. For the Survival Regression model, P and Z values supported the non-rejection of the null hypothesis for mixed gender without interaction and supported the rejection of the same for mixed gender with interaction term and males aged 50 - 60 years. Both Parameters supported the non-rejection of the null hypothesis in the rest of the age groups. For Gender male with interaction both P and Z values supported rejection in all the age groups except the age group 20 - 30 years. For Cox Proportional hazard and AFT models, both P and Z values supported the non-rejection of the null hypothesis across all age groups. The P-values for the three models supported different decisions for and against the Null hypothesis with AFT and Cox values supporting similar decisions in most of the age groups. Among the models considered, the regression assumption provided a superior fit based on (AIC), (BIC), (LL), and R2 Model identification criteria. This was particularly evident in age and gender subgroups where the data exhibited non-proportional hazards and violated the assumptions required for the Cox Proportional Hazard model. Moreover, the simplicity of the regression model, along with its ability to capture essential state transitions without over fitting, made it a more appropriate choice.
基金The National Basic Research Program(973 Program)of China under contract No.2010CB950501the National Natural Science Foundation of China under contract No.41276035the National Natural Science Foundation of China–Shandong Province Joint Fund of Marine Science Research Centers under contract No.U1406404
文摘Future potential sea level change in the South China Sea (SCS) is estimated by using 24 CMIP5 models under different representative concentration pathway (RCP) scenarios. By the end of the 21st century (2081–2100 relative to 1986–2005), the multimodel ensemble mean dynamic sea level (DSL) is projected to rise 0.9, 1.6, and 1.1 cm under RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively, resulting in a total sea level rise (SLR) of 40.9, 48.6, and 64.1 cm in the SCS. It indicates that the SCS will experience a substantial SLR over the 21st century, and the rise is only marginal larger than the global mean SLR. During the same period, the steric sea level (SSL) rise is estimated to be 6.7, 10.0, and 15.3 cm under the three scenarios, respectively, which accounts only for 16%, 21% and 24% of the total SLR in this region. The changes of the SSL in the SCS are almost out of phase with those of the DSL for the three scenarios. The central deep basin has a slightly weak DSL rise, but a strong SSL rise during the 21st century, compared with the north and southwest shelves.
基金funded by the National Basic Research Program of China(Grant Nos.2010CB950102 and 2009CB421406)the Nansen Scientific Society(Norway)part of the SeaLev projects at the Centre of Climate Dynamics/Bjerknes Center in Bergen
文摘Sea level rise (SLR) is one of the major socioeconomic risks associated with global warming. Mass losses from the Greenland ice sheet (GrIS) will be partially responsible for future SLR, although there are large uncertainties in modeled climate and ice sheet behavior. We used the ice sheet model SICOPOLIS (Simulation COde for POLythermal Ice Sheets) driven by climate projections from 20 models in the fifth phase of the Coupled Model Intercomparison Project (CMIP5) to estimate the GrlS contribution to global SLR. Based on the outputs of the 20 models, it is estimated that the GrIS will contribute 0-16 (0-27) cm to global SLR by 2100 under the Representative Concentration Pathways (RCP) 4.5 (RCP 8.5) scenarios. The projected SLR increases further to 7-22 (7-33) cm with 2~basal sliding included. In response to the results of the multimodel ensemble mean, the ice sheet model projects a global SLR of 3 cm and 7 cm (10 cm and 13 cm with 2~basal sliding) under the RCP 4.5 and RCP 8.5 scenarios, respectively. In addition, our results suggest that the uncertainty in future sea level projection caused by the large spread in climate projections could be reduced with model-evaluation and the selective use of model outputs.
基金supported by the National Natural Science Foundationof China (70771080)the National Science Foundation of Hubei Province(20091107)Hubei Province Key Laboratory of Systems Science in Metallurgical Process (B201003)
文摘Partial cooperation models are studied for many years to solve the bilevel programming problems where the follower’s optimal reaction is not unique. However, in these existed models, the follower’s cooperation level does not depend on the leader’s decision. A new model is proposed to solve this deficiency. It is proved the feasibility of the new model when the reaction set of the lower level is lower semicontinuous. And the numerical results show that the new model has optimal solutions when the reaction set of the lower level is discrete, lower semi-continuous and non-lower semi-continuous.
基金supported by the National Natural Science Foundation of China(6067406960574056).
文摘To improve the agility, dynamics, composability, reusability, and development efficiency restricted by monolithic federation object model (FOM), a modular FOM is proposed by high level architecture (HLA) evolved product development group. This paper reviews the state-of-the-art of HLA evolved modular FOM. In particular, related concepts, the overall impact on HLA standards, extension principles, and merging processes are discussed. Also permitted and restricted combinations, and merging rules are provided, and the influence on HLA interface specification is given. The comparison between modular FOM and base object model (BOM) is performed to illustrate the importance of their combination. The applications of modular FOM are summarized. Finally, the significance to facilitate compoable simulation both in academia and practice is presented and future directions are pointed out.
基金funded by the Key Program of National Natural Science Foundation of China (41630643)the National Key Research and Development Program of China (2017YFC1501302)the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (CUGCJ1701)
文摘Many landslides in reservoir areas continuously deform under cyclic water level fluctuations due to reservoir operations. In this paper,a landslide model, developed for a typical colluvial landslide in the Three Gorges Reservoir area, is used to study the effect of cyclic water level fluctuations on the landslide. Five cyclic water level fluctuations were implemented in the test, and the fluctuation rate in the last two fluctuations doubled over the first three fluctuations. The pore water pressure and lateral landslide profiles were obtained during the test. A measurement of the landslide soil loss was proposed to quantitatively evaluate the influence of water level fluctuations. The test results show that the first water level rising is most negative to the landslide among the five cycles. The fourth drawdown with a higher drawdown rate caused further large landslide deformation. An increase of the water level drawdown rate is much more unfavorable to the landslide than an increase of the water level rising rate. In addition, the landslide was found to have an adaptive ability to resist subsequent water level fluctuations after undergoing large deformation during a water level fluctuation. The landslide deformation and observations in the field were found to support the test results well.
文摘Water resources management usually requires that hydraulic, ecological, and hydrological models be linked. The Hy- drologic Engineering Center River Analysis System (HEC-RAS) hydraulic model and the Hydrologic Engineering Center Geospatial River Analysis System (HEC-GEORAS), imitates flow and water profiles in the Neka river basin’s downstream flood plain. Hydrograph phases studied during the flood seasons of 1986-1999 and from 2002-2004 were used to calibrate and verify the hydraulic model respectively. Simulations of peak flood stages and hydrographs’ evaluations are congruent with studies and observations, with the former showing mean square errors between 4.8 - 10 cm. HECRAS calculations and forecast flood water levels. Nash-Sutcliffe effectiveness (CR3) is more than 0.92 along with elevated levels of water which were created with some effectiveness (CR5) of 0.94 for the validation period. The coupled two models show good performance in the water level modeling.