As the differences of sensor's precision and some random factors are difficult to control,the actual measurement signals are far from the target signals that affect the reliability and precision of rotating machinery...As the differences of sensor's precision and some random factors are difficult to control,the actual measurement signals are far from the target signals that affect the reliability and precision of rotating machinery fault diagnosis.The traditional signal processing methods,such as classical inference and weighted averaging algorithm usually lack dynamic adaptability that is easy for trends to cause the faults to be misjudged or left out.To enhance the measuring veracity and precision of vibration signal in rotary machine multi-sensor vibration signal fault diagnosis,a novel data level fusion approach is presented on the basis of correlation function analysis to fast determine the weighted value of multi-sensor vibration signals.The approach doesn't require knowing the prior information about sensors,and the weighted value of sensors can be confirmed depending on the correlation measure of real-time data tested in the data level fusion process.It gives greater weighted value to the greater correlation measure of sensor signals,and vice versa.The approach can effectively suppress large errors and even can still fuse data in the case of sensor failures because it takes full advantage of sensor's own-information to determine the weighted value.Moreover,it has good performance of anti-jamming due to the correlation measures between noise and effective signals are usually small.Through the simulation of typical signal collected from multi-sensors,the comparative analysis of dynamic adaptability and fault tolerance between the proposed approach and traditional weighted averaging approach is taken.Finally,the rotor dynamics and integrated fault simulator is taken as an example to verify the feasibility and advantages of the proposed approach,it is shown that the multi-sensor data level fusion based on correlation function weighted approach is better than the traditional weighted average approach with respect to fusion precision and dynamic adaptability.Meantime,the approach is adaptable and easy to use,can be applied to other areas of vibration measurement.展开更多
The coal-rock interface recognition method based on multi-sensor data fusiontechnique is put forward because of the localization of single type sensor recognition method. Themeasuring theory based on multi-sensor data...The coal-rock interface recognition method based on multi-sensor data fusiontechnique is put forward because of the localization of single type sensor recognition method. Themeasuring theory based on multi-sensor data fusion technique is analyzed, and hereby the testplatform of recognition system is manufactured. The advantage of data fusion with the fuzzy neuralnetwork (FNN) technique has been probed. The two-level FNN is constructed and data fusion is carriedout. The experiments show that in various conditions the method can always acquire a much higherrecognition rate than normal ones.展开更多
In order to effectively reduce the uncertainty error of mobile robot localization with a single sensor and improve the accuracy and robustness of robot localization and mapping,a mobile robot localization algorithm ba...In order to effectively reduce the uncertainty error of mobile robot localization with a single sensor and improve the accuracy and robustness of robot localization and mapping,a mobile robot localization algorithm based on multi-sensor information fusion(MSIF)was proposed.In this paper,simultaneous localization and mapping(SLAM)was realized on the basis of laser Rao-Blackwellized particle filter(RBPF)-SLAM algorithm and graph-based optimization theory was used to constrain and optimize the pose estimation results of Monte Carlo localization.The feature point extraction and quadrilateral closed loop matching algorithm based on oriented FAST and rotated BRIEF(ORB)were improved aiming at the problems of generous calculation and low tracking accuracy in visual information processing by means of the three-dimensional(3D)point feature in binocular visual reconstruction environment.Factor graph model was used for the information fusion under the maximum posterior probability criterion for laser RBPF-SLAM localization and binocular visual localization.The results of simulation and experiment indicate that localization accuracy of the above-mentioned method is higher than that of traditional RBPF-SLAM algorithm and general improved algorithms,and the effectiveness and usefulness of the proposed method are verified.展开更多
Data fusion can effectively process multi-sensor information to obtain more accurate and reliable results than a single sensor.The data of water quality in the environment comes from different sensors,thus the data mu...Data fusion can effectively process multi-sensor information to obtain more accurate and reliable results than a single sensor.The data of water quality in the environment comes from different sensors,thus the data must be fused.In our research,self-adaptive weighted data fusion method is used to respectively integrate the data from the PH value,temperature,oxygen dissolved and NH3 concentration of water quality environment.Based on the fusion,the Grubbs method is used to detect the abnormal data so as to provide data support for estimation,prediction and early warning of the water quality.展开更多
For existing indoor localization algorithm has low accuracy, high cost in deployment and maintenance, lack of robustness, and low sensor utilization, this paper proposes a particle filter algorithm based on multi-sens...For existing indoor localization algorithm has low accuracy, high cost in deployment and maintenance, lack of robustness, and low sensor utilization, this paper proposes a particle filter algorithm based on multi-sensor fusion. The pedestrian’s localization in indoor environment is described as dynamic system state estimation problem. The algorithm combines the smart mobile terminal with indoor localization, and filters the result of localization with the particle filter. In this paper, a dynamic interval particle filter algorithm based on pedestrian dead reckoning (PDR) information and RSSI localization information have been used to improve the filtering precision and the stability. Moreover, the localization results will be uploaded to the server in time, and the location fingerprint database will be built incrementally, which can adapt the dynamic changes of the indoor environment. Experimental results show that the algorithm based on multi-sensor improves the localization accuracy and robustness compared with the location algorithm based on Wi-Fi.展开更多
Seamless and reliable navigation for civilian/military application is possible by fusing prominent Global Positioning System (GPS) with Inertial Navigation System (INS). This integrated GPS/INS unit exhibits a continu...Seamless and reliable navigation for civilian/military application is possible by fusing prominent Global Positioning System (GPS) with Inertial Navigation System (INS). This integrated GPS/INS unit exhibits a continuous navigation solution with increased accuracy and reduced uncertainty or ambiguity. In this paper, we propose a novel approach of dynamically creating a Voronoi based Particle Filter (VPF) for integrating INS and GPS data. This filter is based on redistribution of the proposal distribution such that the redistributed particles lie in high likelihood region;thereby increasing the filter accuracy. The usual limitations like degeneracy, sample impoverishment that are seen in conventional particle filter are overcome using our VPF with minimum feasible particles. The small particle size in our methodology reduces the computational load of the filter and makes real-time implementation feasible. Our field test results clearly indicate that the proposed VPF algorithm effectively compensated and reduced positional inaccuracies when GPS data is available. We also present the preliminary results for cases with short GPS outages that occur for low-cost inertial sensors.展开更多
This paper proposes an adaptive discrete finite-time synergetic control (ADFTSC) scheme based on a multi-rate sensor fusion estimator for flexible-joint mechanical systems in the presence of unmeasured states and dy...This paper proposes an adaptive discrete finite-time synergetic control (ADFTSC) scheme based on a multi-rate sensor fusion estimator for flexible-joint mechanical systems in the presence of unmeasured states and dynamic uncertainties. Multi-rate sensors are employed to observe the system states which cannot be directly obtained by encoders due to the existence of joint flexibilities. By using an extended Kalman filter (EKF), the finite-time synergetic controller is designed based on a sensor fusion estimator which estimates states and parameters of the mechanical system with multi-rate measurements. The proposed controller can guarantee the finite-time convergence of tracking errors by the theoretical derivation. Simulation and experimental studies are included to validate the effectiveness of the proposed approach.展开更多
For complementarity and redundancy of multi-sensor data fusion (MSDF) system,it is an effective approach for multiple components measurement.In order to measure nutrient solution on-line,a dynamic and complex system ...For complementarity and redundancy of multi-sensor data fusion (MSDF) system,it is an effective approach for multiple components measurement.In order to measure nutrient solution on-line,a dynamic and complex system under greenhouse environment,sensors should have intelligent properties including self-calibration and self-compensation. Meanwhile,it is necessary for multiple sensors to cooperate and interact for enhancing reliability of multi-sensor system. Because of the properties of multi-agent system (MAS),it is an appropriate tool to study MSDF system.This paper proposed an architecture of MSDF system based on MAS for the multiple components measurement of nutrient solution.The sensor agent's structure and function modules are analyzed and described in detail,the formal definitions are given,too.The relations of the sensors are modeled to implement reliability diagnosis of the multi-sensor system,so that the reliability of nutrient control system is enhanced.This study offers an effective approach for the study of MSDF.展开更多
Image fusion has been developing into an important area of research. In remote sensing, the use of the same image sensor in different working modes, or different image sensors, can provide reinforcing or complementary...Image fusion has been developing into an important area of research. In remote sensing, the use of the same image sensor in different working modes, or different image sensors, can provide reinforcing or complementary information. Therefore, it is highly valuable to fuse outputs from multiple sensors (or the same sensor in different working modes) to improve the overall performance of the remote images, which are very useful for human visual perception and image processing task. Accordingly, in this paper, we first provide a comprehensive survey of the state of the art of multi-sensor image fusion methods in terms of three aspects: pixel-level fusion, feature-level fusion and decision-level fusion. An overview of existing fusion strategies is then introduced, after which the existing fusion quality measures are summarized. Finally, this review analyzes the development trends in fusion algorithms that may attract researchers to further explore the research in this field.展开更多
This paper presents an obstacle detection approach for blind pedestrians by fusing data from camera and laser sensor.For purely vision-based blind guidance system,it is difficult to discriminate low-level obstacles wi...This paper presents an obstacle detection approach for blind pedestrians by fusing data from camera and laser sensor.For purely vision-based blind guidance system,it is difficult to discriminate low-level obstacles with cluttered road surface,while for purely laser-based system,it usually requires to scan the forward environment,which turns out to be very inconvenient.To overcome these inherent problems when using camera and laser sensor independently,a sensor-fusion model is proposed to associate range data from laser domain with edges from image domain.Based on this fusion model,obstacle's position,size and shape can be estimated.The proposed method is tested in several indoor scenes,and its efficiency is confirmed.展开更多
In order to improve the ability of a bionic quadruped robot to percept the location of obstacles in a complex and dynamic environment, the information fusion between an ultrasonic sensor and a binocular sensor was stu...In order to improve the ability of a bionic quadruped robot to percept the location of obstacles in a complex and dynamic environment, the information fusion between an ultrasonic sensor and a binocular sensor was studied under the condition that the robot moves in the Walk gait on a structured road. Firstly, the distance information of obstacles from these two sensors was separately processed by the Kalman filter algorithm, which largely reduced the noise interference. After that, we obtained two groups of estimated distance values from the robot to the obstacle and a variance of the estimation value. Additionally, a fusion of the estimation values and the variances was achieved based on the STF fusion algorithm. Finally, a simulation was performed to show that the curve of a real value was tracked well by that of the estimation value, which attributes to the effectiveness of the Kalman filter algorithm. In contrast to statistics before fusion, the fusion variance of the estimation value was sharply decreased. The precision of the position information is 4. 6 cm, which meets the application requirements of the robot.展开更多
An algorithm is presented for fusion of tracks created by radar and IR sensor which have different dimensional measurement data. It’s assumed that these sensors are asynchronous and the measurement data are transmitt...An algorithm is presented for fusion of tracks created by radar and IR sensor which have different dimensional measurement data. It’s assumed that these sensors are asynchronous and the measurement data are transmitted to a central station at different rates. By means of the technique of time matching, two sets of asynchronous data are fused and then the filter is updated according to the fused information. The results show that the accuracy of the filter effect has been improved.展开更多
The autonomous exploration and mapping of an unknown environment is useful in a wide range of applications and thus holds great significance. Existing methods mostly use range sensors to generate twodimensional (2D) g...The autonomous exploration and mapping of an unknown environment is useful in a wide range of applications and thus holds great significance. Existing methods mostly use range sensors to generate twodimensional (2D) grid maps. Red/green/blue-depth (RGB-D) sensors provide both color and depth information on the environment, thereby enabling the generation of a three-dimensional (3D) point cloud map that is intuitive for human perception. In this paper, we present a systematic approach with dual RGB-D sensors to achieve the autonomous exploration and mapping of an unknown indoor environment. With the synchronized and processed RGB-D data, location points were generated and a 3D point cloud map and 2D grid map were incrementally built. Next, the exploration was modeled as a partially observable Markov decision process. Partial map simulation and global frontier search methods were combined for autonomous exploration, and dynamic action constraints were utilized in motion control. In this way, the local optimum can be avoided and the exploration efficacy can be ensured. Experiments with single connected and multi-branched regions demonstrated the high robustness, efficiency, and superiority of the developed system and methods.展开更多
This paper derives a square-root information-type filtering algorithm for nonlinear multi-sensor fusion problems using the cubature Kalman filter theory. The resulting filter is called the square-root cubature Informa...This paper derives a square-root information-type filtering algorithm for nonlinear multi-sensor fusion problems using the cubature Kalman filter theory. The resulting filter is called the square-root cubature Information filter (SCIF). The SCIF propagates the square-root information matrices derived from numerically stable matrix operations and is therefore numerically robust. The SCIF is applied to a highly maneuvering target tracking problem in a distributed sensor network with feedback. The SCIF’s performance is finally compared with the regular cubature information filter and the traditional extended information filter. The results, presented herein, indicate that the SCIF is the most reliable of all three filters and yields a more accurate estimate than the extended information filter.展开更多
In wireless sensor networks, target classification differs from that in centralized sensing systems because of the distributed detection, wireless communication and limited resources. We study the classification probl...In wireless sensor networks, target classification differs from that in centralized sensing systems because of the distributed detection, wireless communication and limited resources. We study the classification problem of moving vehicles in wireless sensor networks using acoustic signals emitted from vehicles. Three algorithms including wavelet decomposition, weighted k-nearest-neighbor and Dempster-Shafer theory are combined in this paper. Finally, we use real world experimental data to validate the classification methods. The result shows that wavelet based feature extraction method can extract stable features from acoustic signals. By fusion with Dempster's rule, the classification performance is improved.展开更多
The multisensor information fusion technology is adopted for real time measuring the four parameters which are connected closely with the weld nugget size(welding current, electrode displacement, dynamic resistance, ...The multisensor information fusion technology is adopted for real time measuring the four parameters which are connected closely with the weld nugget size(welding current, electrode displacement, dynamic resistance, welding time), thus much more original information is obtained. In this way, the difficulty caused by measuring indirectly weld nugget size can be decreased in spot welding quality control, and the stability of spot welding quality can be improved. According to this method, two-dimensional fuzzy controllers are designed with the information fusion result as input and the thyristor control signal as output. The spot welding experimental results indicate that the spot welding quality intelligent control method based on multiscnsor information fusion technology can compensate the influence caused by variable factors in welding process and ensure the stability of welding quality.展开更多
When all the rules of sensor decision are known, the optimal distributeddecision fusion, which relies only on the joint conditional probability densities, can be derivedfor very general decision systems. They include ...When all the rules of sensor decision are known, the optimal distributeddecision fusion, which relies only on the joint conditional probability densities, can be derivedfor very general decision systems. They include those systems with interdependent sensorobservations and any network structure. It is also valid for m-ary Bayesian decision problems andbinary problems under the Neyman-Pearson criterion. Local decision rules of a sensor withcommunication from other sensors that are optimal for the sensor itself are also presented, whichtake the form of a generalized likelihood ratio test. Numerical examples are given to reveal someinteresting phenomena that communication between sensors can improve performance of a senordecision, but cannot guarantee to improve the global fusion performance when sensor rules were givenbefore fusing.展开更多
针对自动驾驶路面上目标漏检和错检的问题,提出一种基于改进Centerfusion的自动驾驶3D目标检测模型。该模型通过将相机信息和雷达特征融合,构成多通道特征数据输入,从而增强目标检测网络的鲁棒性,减少漏检问题;为了能够得到更加准确丰富...针对自动驾驶路面上目标漏检和错检的问题,提出一种基于改进Centerfusion的自动驾驶3D目标检测模型。该模型通过将相机信息和雷达特征融合,构成多通道特征数据输入,从而增强目标检测网络的鲁棒性,减少漏检问题;为了能够得到更加准确丰富的3D目标检测信息,引入了改进的注意力机制,用于增强视锥网格中的雷达点云和视觉信息融合;使用改进的损失函数优化边框预测的准确度。在Nuscenes数据集上进行模型验证和对比,实验结果表明,相较于传统的Centerfusion模型,提出的模型平均检测精度均值(mean Average Precision,mAP)提高了1.3%,Nuscenes检测分数(Nuscenes Detection Scores,NDS)提高了1.2%。展开更多
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2007AA04Z433)Hunan Provincial Natural Science Foundation of China (Grant No. 09JJ8005)Scientific Research Foundation of Graduate School of Beijing University of Chemical and Technology,China (Grant No. 10Me002)
文摘As the differences of sensor's precision and some random factors are difficult to control,the actual measurement signals are far from the target signals that affect the reliability and precision of rotating machinery fault diagnosis.The traditional signal processing methods,such as classical inference and weighted averaging algorithm usually lack dynamic adaptability that is easy for trends to cause the faults to be misjudged or left out.To enhance the measuring veracity and precision of vibration signal in rotary machine multi-sensor vibration signal fault diagnosis,a novel data level fusion approach is presented on the basis of correlation function analysis to fast determine the weighted value of multi-sensor vibration signals.The approach doesn't require knowing the prior information about sensors,and the weighted value of sensors can be confirmed depending on the correlation measure of real-time data tested in the data level fusion process.It gives greater weighted value to the greater correlation measure of sensor signals,and vice versa.The approach can effectively suppress large errors and even can still fuse data in the case of sensor failures because it takes full advantage of sensor's own-information to determine the weighted value.Moreover,it has good performance of anti-jamming due to the correlation measures between noise and effective signals are usually small.Through the simulation of typical signal collected from multi-sensors,the comparative analysis of dynamic adaptability and fault tolerance between the proposed approach and traditional weighted averaging approach is taken.Finally,the rotor dynamics and integrated fault simulator is taken as an example to verify the feasibility and advantages of the proposed approach,it is shown that the multi-sensor data level fusion based on correlation function weighted approach is better than the traditional weighted average approach with respect to fusion precision and dynamic adaptability.Meantime,the approach is adaptable and easy to use,can be applied to other areas of vibration measurement.
基金This project is supported by Provincial Youth Science Foundation of Shanxi China (No.20011020)National Natural Science Foundation of China (No.59975064).
文摘The coal-rock interface recognition method based on multi-sensor data fusiontechnique is put forward because of the localization of single type sensor recognition method. Themeasuring theory based on multi-sensor data fusion technique is analyzed, and hereby the testplatform of recognition system is manufactured. The advantage of data fusion with the fuzzy neuralnetwork (FNN) technique has been probed. The two-level FNN is constructed and data fusion is carriedout. The experiments show that in various conditions the method can always acquire a much higherrecognition rate than normal ones.
基金Natural Science Foundation of Shaanxi Province(No.2019JQ-004)Scientific Research Plan Projects of Shaanxi Education Department(No.18JK0438)Youth Talent Promotion Project of Shaanxi Province(No.20180112)。
文摘In order to effectively reduce the uncertainty error of mobile robot localization with a single sensor and improve the accuracy and robustness of robot localization and mapping,a mobile robot localization algorithm based on multi-sensor information fusion(MSIF)was proposed.In this paper,simultaneous localization and mapping(SLAM)was realized on the basis of laser Rao-Blackwellized particle filter(RBPF)-SLAM algorithm and graph-based optimization theory was used to constrain and optimize the pose estimation results of Monte Carlo localization.The feature point extraction and quadrilateral closed loop matching algorithm based on oriented FAST and rotated BRIEF(ORB)were improved aiming at the problems of generous calculation and low tracking accuracy in visual information processing by means of the three-dimensional(3D)point feature in binocular visual reconstruction environment.Factor graph model was used for the information fusion under the maximum posterior probability criterion for laser RBPF-SLAM localization and binocular visual localization.The results of simulation and experiment indicate that localization accuracy of the above-mentioned method is higher than that of traditional RBPF-SLAM algorithm and general improved algorithms,and the effectiveness and usefulness of the proposed method are verified.
基金This study was supported by National Key Research and Development Project(Project No.2017YFD0301506)National Social Science Foundation(Project No.71774052)+1 种基金Hunan Education Department Scientific Research Project(Project No.17K04417A092).
文摘Data fusion can effectively process multi-sensor information to obtain more accurate and reliable results than a single sensor.The data of water quality in the environment comes from different sensors,thus the data must be fused.In our research,self-adaptive weighted data fusion method is used to respectively integrate the data from the PH value,temperature,oxygen dissolved and NH3 concentration of water quality environment.Based on the fusion,the Grubbs method is used to detect the abnormal data so as to provide data support for estimation,prediction and early warning of the water quality.
基金Supported by National Natural Science Foundation of China (60874063) and Innovation and Scientific Research Foundation of Graduate Student of Heilongjiang Province (YJSCX2012-263HLJ)
文摘For existing indoor localization algorithm has low accuracy, high cost in deployment and maintenance, lack of robustness, and low sensor utilization, this paper proposes a particle filter algorithm based on multi-sensor fusion. The pedestrian’s localization in indoor environment is described as dynamic system state estimation problem. The algorithm combines the smart mobile terminal with indoor localization, and filters the result of localization with the particle filter. In this paper, a dynamic interval particle filter algorithm based on pedestrian dead reckoning (PDR) information and RSSI localization information have been used to improve the filtering precision and the stability. Moreover, the localization results will be uploaded to the server in time, and the location fingerprint database will be built incrementally, which can adapt the dynamic changes of the indoor environment. Experimental results show that the algorithm based on multi-sensor improves the localization accuracy and robustness compared with the location algorithm based on Wi-Fi.
文摘Seamless and reliable navigation for civilian/military application is possible by fusing prominent Global Positioning System (GPS) with Inertial Navigation System (INS). This integrated GPS/INS unit exhibits a continuous navigation solution with increased accuracy and reduced uncertainty or ambiguity. In this paper, we propose a novel approach of dynamically creating a Voronoi based Particle Filter (VPF) for integrating INS and GPS data. This filter is based on redistribution of the proposal distribution such that the redistributed particles lie in high likelihood region;thereby increasing the filter accuracy. The usual limitations like degeneracy, sample impoverishment that are seen in conventional particle filter are overcome using our VPF with minimum feasible particles. The small particle size in our methodology reduces the computational load of the filter and makes real-time implementation feasible. Our field test results clearly indicate that the proposed VPF algorithm effectively compensated and reduced positional inaccuracies when GPS data is available. We also present the preliminary results for cases with short GPS outages that occur for low-cost inertial sensors.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61273150 and 60974046)the Research Fund for the Doctoral Program of Higher Education of China (Grant No.20121101110029)
文摘This paper proposes an adaptive discrete finite-time synergetic control (ADFTSC) scheme based on a multi-rate sensor fusion estimator for flexible-joint mechanical systems in the presence of unmeasured states and dynamic uncertainties. Multi-rate sensors are employed to observe the system states which cannot be directly obtained by encoders due to the existence of joint flexibilities. By using an extended Kalman filter (EKF), the finite-time synergetic controller is designed based on a sensor fusion estimator which estimates states and parameters of the mechanical system with multi-rate measurements. The proposed controller can guarantee the finite-time convergence of tracking errors by the theoretical derivation. Simulation and experimental studies are included to validate the effectiveness of the proposed approach.
文摘For complementarity and redundancy of multi-sensor data fusion (MSDF) system,it is an effective approach for multiple components measurement.In order to measure nutrient solution on-line,a dynamic and complex system under greenhouse environment,sensors should have intelligent properties including self-calibration and self-compensation. Meanwhile,it is necessary for multiple sensors to cooperate and interact for enhancing reliability of multi-sensor system. Because of the properties of multi-agent system (MAS),it is an appropriate tool to study MSDF system.This paper proposed an architecture of MSDF system based on MAS for the multiple components measurement of nutrient solution.The sensor agent's structure and function modules are analyzed and described in detail,the formal definitions are given,too.The relations of the sensors are modeled to implement reliability diagnosis of the multi-sensor system,so that the reliability of nutrient control system is enhanced.This study offers an effective approach for the study of MSDF.
文摘Image fusion has been developing into an important area of research. In remote sensing, the use of the same image sensor in different working modes, or different image sensors, can provide reinforcing or complementary information. Therefore, it is highly valuable to fuse outputs from multiple sensors (or the same sensor in different working modes) to improve the overall performance of the remote images, which are very useful for human visual perception and image processing task. Accordingly, in this paper, we first provide a comprehensive survey of the state of the art of multi-sensor image fusion methods in terms of three aspects: pixel-level fusion, feature-level fusion and decision-level fusion. An overview of existing fusion strategies is then introduced, after which the existing fusion quality measures are summarized. Finally, this review analyzes the development trends in fusion algorithms that may attract researchers to further explore the research in this field.
基金The MSIP(Ministry of Science,ICT&Future Planning),Korea,under the ITRC(Information Technology Research Center) support program(NIPA-2013-H0301-13-2006)supervised by the NIPA(National IT Industry Promotion Agency)
文摘This paper presents an obstacle detection approach for blind pedestrians by fusing data from camera and laser sensor.For purely vision-based blind guidance system,it is difficult to discriminate low-level obstacles with cluttered road surface,while for purely laser-based system,it usually requires to scan the forward environment,which turns out to be very inconvenient.To overcome these inherent problems when using camera and laser sensor independently,a sensor-fusion model is proposed to associate range data from laser domain with edges from image domain.Based on this fusion model,obstacle's position,size and shape can be estimated.The proposed method is tested in several indoor scenes,and its efficiency is confirmed.
基金Supported by the Ministerial Level Advanced Research Foundation(40401060305)
文摘In order to improve the ability of a bionic quadruped robot to percept the location of obstacles in a complex and dynamic environment, the information fusion between an ultrasonic sensor and a binocular sensor was studied under the condition that the robot moves in the Walk gait on a structured road. Firstly, the distance information of obstacles from these two sensors was separately processed by the Kalman filter algorithm, which largely reduced the noise interference. After that, we obtained two groups of estimated distance values from the robot to the obstacle and a variance of the estimation value. Additionally, a fusion of the estimation values and the variances was achieved based on the STF fusion algorithm. Finally, a simulation was performed to show that the curve of a real value was tracked well by that of the estimation value, which attributes to the effectiveness of the Kalman filter algorithm. In contrast to statistics before fusion, the fusion variance of the estimation value was sharply decreased. The precision of the position information is 4. 6 cm, which meets the application requirements of the robot.
基金ScientificResearchFoundationfortheReturnedOverseaChineseScholars State EducationMinistry
文摘An algorithm is presented for fusion of tracks created by radar and IR sensor which have different dimensional measurement data. It’s assumed that these sensors are asynchronous and the measurement data are transmitted to a central station at different rates. By means of the technique of time matching, two sets of asynchronous data are fused and then the filter is updated according to the fused information. The results show that the accuracy of the filter effect has been improved.
基金the National Natural Science Foundation of China (61720106012 and 61403215)the Foundation of State Key Laboratory of Robotics (2006-003)the Fundamental Research Funds for the Central Universities for the financial support of this work.
文摘The autonomous exploration and mapping of an unknown environment is useful in a wide range of applications and thus holds great significance. Existing methods mostly use range sensors to generate twodimensional (2D) grid maps. Red/green/blue-depth (RGB-D) sensors provide both color and depth information on the environment, thereby enabling the generation of a three-dimensional (3D) point cloud map that is intuitive for human perception. In this paper, we present a systematic approach with dual RGB-D sensors to achieve the autonomous exploration and mapping of an unknown indoor environment. With the synchronized and processed RGB-D data, location points were generated and a 3D point cloud map and 2D grid map were incrementally built. Next, the exploration was modeled as a partially observable Markov decision process. Partial map simulation and global frontier search methods were combined for autonomous exploration, and dynamic action constraints were utilized in motion control. In this way, the local optimum can be avoided and the exploration efficacy can be ensured. Experiments with single connected and multi-branched regions demonstrated the high robustness, efficiency, and superiority of the developed system and methods.
文摘This paper derives a square-root information-type filtering algorithm for nonlinear multi-sensor fusion problems using the cubature Kalman filter theory. The resulting filter is called the square-root cubature Information filter (SCIF). The SCIF propagates the square-root information matrices derived from numerically stable matrix operations and is therefore numerically robust. The SCIF is applied to a highly maneuvering target tracking problem in a distributed sensor network with feedback. The SCIF’s performance is finally compared with the regular cubature information filter and the traditional extended information filter. The results, presented herein, indicate that the SCIF is the most reliable of all three filters and yields a more accurate estimate than the extended information filter.
基金Supported in part by Science & Technology Department of Shanghai (05dz15004)
文摘In wireless sensor networks, target classification differs from that in centralized sensing systems because of the distributed detection, wireless communication and limited resources. We study the classification problem of moving vehicles in wireless sensor networks using acoustic signals emitted from vehicles. Three algorithms including wavelet decomposition, weighted k-nearest-neighbor and Dempster-Shafer theory are combined in this paper. Finally, we use real world experimental data to validate the classification methods. The result shows that wavelet based feature extraction method can extract stable features from acoustic signals. By fusion with Dempster's rule, the classification performance is improved.
基金This project is supported by Municipal Key Science Foundation of Shenyang,China(No.1041020-1-04)Provincial Natural Science Foundation of Liaoning,China(No.20031022).
文摘The multisensor information fusion technology is adopted for real time measuring the four parameters which are connected closely with the weld nugget size(welding current, electrode displacement, dynamic resistance, welding time), thus much more original information is obtained. In this way, the difficulty caused by measuring indirectly weld nugget size can be decreased in spot welding quality control, and the stability of spot welding quality can be improved. According to this method, two-dimensional fuzzy controllers are designed with the information fusion result as input and the thyristor control signal as output. The spot welding experimental results indicate that the spot welding quality intelligent control method based on multiscnsor information fusion technology can compensate the influence caused by variable factors in welding process and ensure the stability of welding quality.
文摘When all the rules of sensor decision are known, the optimal distributeddecision fusion, which relies only on the joint conditional probability densities, can be derivedfor very general decision systems. They include those systems with interdependent sensorobservations and any network structure. It is also valid for m-ary Bayesian decision problems andbinary problems under the Neyman-Pearson criterion. Local decision rules of a sensor withcommunication from other sensors that are optimal for the sensor itself are also presented, whichtake the form of a generalized likelihood ratio test. Numerical examples are given to reveal someinteresting phenomena that communication between sensors can improve performance of a senordecision, but cannot guarantee to improve the global fusion performance when sensor rules were givenbefore fusing.
文摘针对自动驾驶路面上目标漏检和错检的问题,提出一种基于改进Centerfusion的自动驾驶3D目标检测模型。该模型通过将相机信息和雷达特征融合,构成多通道特征数据输入,从而增强目标检测网络的鲁棒性,减少漏检问题;为了能够得到更加准确丰富的3D目标检测信息,引入了改进的注意力机制,用于增强视锥网格中的雷达点云和视觉信息融合;使用改进的损失函数优化边框预测的准确度。在Nuscenes数据集上进行模型验证和对比,实验结果表明,相较于传统的Centerfusion模型,提出的模型平均检测精度均值(mean Average Precision,mAP)提高了1.3%,Nuscenes检测分数(Nuscenes Detection Scores,NDS)提高了1.2%。