期刊文献+
共找到4,357篇文章
< 1 2 218 >
每页显示 20 50 100
Review on the Fabrication of Surface Functional Structures for Enhancing Bioactivity of Titanium and Titanium Alloy Implants
1
作者 Heng Tang Jiaxiang Xu +4 位作者 Bin Guo Yansong Xie Yalong Sun Yanjun Lu Yong Tang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第4期23-49,共27页
Titanium and its alloys have been widely applied in many biomedical fields because of its excellent mechanical properties,corrosion resistance and good biocompatibility.However,problems such as rejection,shedding and ... Titanium and its alloys have been widely applied in many biomedical fields because of its excellent mechanical properties,corrosion resistance and good biocompatibility.However,problems such as rejection,shedding and infection will occur after titanium alloy implantation due to the low biological activity of titanium alloy surface.The structures with specific functions,which can enhance osseointegration and antibacterial properties,are fabricated on the surface of titanium implants to improve the biological activity between the titanium implants and human tissues.This paper presents a comprehensive review of recent developments and applications of surface functional structure in titanium and titanium alloy implants.The applications of surface functional structure on different titanium and titanium alloy implants are introduced,and their manufacturing technologies are summarized and compared.Furthermore,the fabrication of various surface functional structures used for titanium and titanium alloy implants is reviewed and analyzed in detail.Finally,the challenges affecting the development of surface functional structures applied in titanium and titanium alloy implants are outlined,and recommendations for future research are presented. 展开更多
关键词 surface functional structure Titanium implant Manufacturing technology Bioactivity
下载PDF
3D Printing of Tough Hydrogel Scaffolds with Functional Surface Structures for Tissue Regeneration
2
作者 Ke Yao Gaoying Hong +11 位作者 Ximin Yuan Weicheng Kong Pengcheng Xia Yuanrong Li Yuewei Chen Nian Liu Jing He Jue Shi Zihe Hu Yanyan Zhou Zhijian Xie Yong He 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期18-45,共28页
Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and hi... Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries. 展开更多
关键词 3D printing Tough hydrogel scaffold functional surface structure Tissue regeneration BIOMATERIALS
下载PDF
Crustal and uppermost mantle structure of the northeastern Qinghai-Xizang Plateau from joint inversion of surface wave dispersions and receiver functions with P velocity constraints
3
作者 Pei Zhang Xiaodong Song +2 位作者 Jiangtao Li Xingchen Wang Xuezhen Zhang 《Earthquake Science》 2024年第2期93-106,共14页
Lithospheric structure beneath the northeastern Qinghai-Xizang Plateau is of vital significance for studying the geodynamic processes of crustal thickening and expansion of the Qinghai-Xizang Plateau. We conducted a j... Lithospheric structure beneath the northeastern Qinghai-Xizang Plateau is of vital significance for studying the geodynamic processes of crustal thickening and expansion of the Qinghai-Xizang Plateau. We conducted a joint inversion of receiver functions and surface wave dispersions with P-wave velocity constraints using data from the Chin Array Ⅱ temporary stations deployed across the Qinghai-Xizang Plateau. Prior to joint inversion, we applied the H-κ-c method(Li JT et al., 2019) to the receiver function data in order to correct for the back-azimuthal variations in the arrival times of Ps phases and crustal multiples caused by crustal anisotropy and dipping interfaces. High-resolution images of vS, crustal thickness, and vP/vSstructures in the Qinghai-Xizang Plateau were simultaneously derived from the joint inversion. The seismic images reveal that crustal thickness decreases outward from the Qinghai-Xizang Plateau. The stable interiors of the Ordos and Alxa blocks exhibited higher velocities and lower crustal vP/vSratios. While, lower velocities and higher vP/vSratios were observed beneath the Qilian Orogen and Songpan-Ganzi terrane(SPGZ), which are geologically active and mechanically weak, especially in the mid-lower crust.Delamination or thermal erosion of the lithosphere triggered by hot asthenospheric flow contributes to the observed uppermost mantle low-velocity zones(LVZs) in the SPGZ. The crustal thickness, vS, and vP/vSratios suggest that whole lithospheric shortening is a plausible mechanism for crustal thickening in the Qinghai-Xizang Plateau, supporting the idea of coupled lithospheric-scale deformation in this region. 展开更多
关键词 joint inversion receiver functions surface waves crustal thickness vP/vS ratio NE Qinghai-Xizang Plateau
下载PDF
Surface and Content Validity of the Mentoring Function Scale for Novice Nurses
4
作者 Aimi Furukawa Yasuko Hosoda 《Open Journal of Nursing》 2024年第8期401-411,共11页
This study aimed to examine the surface and content validity of the Mentoring Function Scale for Novice Nurses, used to assess the mentoring of entry-level nurses, and to refine the scale items. In Study 1, six nurse ... This study aimed to examine the surface and content validity of the Mentoring Function Scale for Novice Nurses, used to assess the mentoring of entry-level nurses, and to refine the scale items. In Study 1, six nurse education researchers, selected using convenience sampling, with five or more years of nursing experience and experience teaching novice nurses, were invited to an expert meeting in July 2015. A group interview was conducted that lasted approximately 120 minutes. Study 2 examined the content validity index. Between September and November 2015, we distributed a self-administered questionnaire survey to 11 participants selected by convenience sampling. The participants included five nurse education researchers with a minimum of five years of nursing experience and experience teaching novice nurses, as well as six clinical nurses with a master’s degree or higher. Finally, 81 questionnaire items were retained from the initial 125 items. The 81-item Mentoring Function Scale for Novice Nurses had higher content validity than the original scale. To further increase the scale’s applicability, future studies should assess its reliability, construct validity, and criterion-related validity. 展开更多
关键词 Novice Nurses Mentoring function surface and Content Validity Item-Level Content Validity Index
下载PDF
A facile strategy for tuning the density of surface-grafted biomolecules for melt extrusion-based additive manufacturing applications 被引量:1
5
作者 I.A.O.Beeren G.Dos Santos +8 位作者 P.J.Dijkstra C.Mota J.Bauer H.Ferreira Rui L.Reis N.Neves S.Camarero-Espinosa M.B.Baker L.Moroni 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第3期277-291,共15页
Melt extrusion-based additive manufacturing(ME-AM)is a promising technique to fabricate porous scaffolds for tissue engi-neering applications.However,most synthetic semicrystalline polymers do not possess the intrinsi... Melt extrusion-based additive manufacturing(ME-AM)is a promising technique to fabricate porous scaffolds for tissue engi-neering applications.However,most synthetic semicrystalline polymers do not possess the intrinsic biological activity required to control cell fate.Grafting of biomolecules on polymeric surfaces of AM scaffolds enhances the bioactivity of a construct;however,there are limited strategies available to control the surface density.Here,we report a strategy to tune the surface density of bioactive groups by blending a low molecular weight poly(ε-caprolactone)5k(PCL5k)containing orthogonally reactive azide groups with an unfunctionalized high molecular weight PCL75k at different ratios.Stable porous three-dimensional(3D)scaf-folds were then fabricated using a high weight percentage(75 wt.%)of the low molecular weight PCL 5k.As a proof-of-concept test,we prepared films of three different mass ratios of low and high molecular weight polymers with a thermopress and reacted with an alkynated fluorescent model compound on the surface,yielding a density of 201-561 pmol/cm^(2).Subsequently,a bone morphogenetic protein 2(BMP-2)-derived peptide was grafted onto the films comprising different blend compositions,and the effect of peptide surface density on the osteogenic differentiation of human mesenchymal stromal cells(hMSCs)was assessed.After two weeks of culturing in a basic medium,cells expressed higher levels of BMP receptor II(BMPRII)on films with the conjugated peptide.In addition,we found that alkaline phosphatase activity was only significantly enhanced on films contain-ing the highest peptide density(i.e.,561 pmol/cm^(2)),indicating the importance of the surface density.Taken together,these results emphasize that the density of surface peptides on cell differentiation must be considered at the cell-material interface.Moreover,we have presented a viable strategy for ME-AM community that desires to tune the bulk and surface functionality via blending of(modified)polymers.Furthermore,the use of alkyne-azide“click”chemistry enables spatial control over bioconjugation of many tissue-specific moieties,making this approach a versatile strategy for tissue engineering applications. 展开更多
关键词 Additive manufacturing BLENDING surface functionalization surface density Click chemistry HUMAN
下载PDF
Path-Following Control With Obstacle Avoidance of Autonomous Surface Vehicles Subject to Actuator Faults 被引量:1
6
作者 Li-Ying Hao Gege Dong +1 位作者 Tieshan Li Zhouhua Peng 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期956-964,共9页
This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles in... This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles inevitably suffer from actuator faults in complex sea environments,which may cause existing obstacle avoidance strategies to fail.To reduce the influence of actuator faults,an improved artificial potential function is constructed by introducing the lower bound of actuator efficiency factors.The nonlinear state observer,which only depends on measurable position information of the autonomous surface vehicle,is used to address uncertainties and external disturbances.By using a backstepping technique and adaptive mechanism,a path-following control strategy with obstacle avoidance and fault tolerance is designed which can ensure that the tracking errors converge to a small neighborhood of zero.Compared with existing results,the proposed control strategy has the capability of obstacle avoidance and fault tolerance simultaneously.Finally,the comparison results through simulations are given to verify the effectiveness of the proposed method. 展开更多
关键词 Actuator faults autonomous surface vehicle(ASVs) improved artificial potential function nonlinear state observer obstacle avoidance
下载PDF
Nonlinear change of ion-induced secondary electron emission in theκ-Al_(2)O_(3) surface charging from first-principle modelling
7
作者 Zhicheng JIAO Mingrui ZHU +2 位作者 Dong DAI Tao SHAO Buang WANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第9期40-50,共11页
Secondary electron emission(SEE)induced by the positive ion is an essential physical process to influence the dynamics of gas discharge which relies on the specific surface material.Surface charging has a significant ... Secondary electron emission(SEE)induced by the positive ion is an essential physical process to influence the dynamics of gas discharge which relies on the specific surface material.Surface charging has a significant impact on the material properties,thereby affecting the SEE in the plasma-surface interactions.However,it does not attract enough attention in the previous studies.In this paper,SEE dependent on the charged surface of specific materials is described with the computational method combining a density functional theory(DFT)model from the first-principle theory and the theory of Auger neutralization.The effect ofκ-Al2O3 surface charge,as an example,on the ion-induced secondary electron emission coefficient(SEEC)is investigated by analyzing the defect energy level and band structure on the charged surface.Simulation results indicate that,with the surface charge from negative to positive,the SEEC of a part of low ionization energy ions(such as Ei=12.6 eV)increases first and then decreases,exhibiting a nonlinear changing trend.This is quite different from the monotonic decreasing tendency observed in the previous model which simplifies the electronic structure.This irregular increase of the SEEC can be attributed to the lower escaped probability of orbital energy.The results further illustrate that the excessive charge could cause the bottom of the conduction band close to the valence band,thus leading to the decrease of the orbital energy occupied by the excited electrons.The nonlinear change of SEEC demonstrates a more realistic situation of how the electronic structure of material surface influences the SEE process.This work provides an accurate method of calculating SEEC from specific materials,which is urgent in widespread physical scenarios sensitive to surface materials,such as increasingly growing practical applications concerning plasma-surface interactions. 展开更多
关键词 secondary electron emission charged surface density functional theory defect energy level
下载PDF
Potential-dependent insights into the origin of high ammonia yield rate on copper surface via nitrate reduction:A computational and experimental study
8
作者 Yangge Guo Nannan Sun +5 位作者 Liuxuan Luo Xiaojing Cheng Xueying Chen Xiaohui Yan Shuiyun Shen Junliang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期272-281,共10页
Focusing on revealing the origin of high ammonia yield rate on Cu via nitrate reduction(NO3RR),we herein applied constant potential method via grand-canonical density functional theory(GC-DFT)with implicit continuum s... Focusing on revealing the origin of high ammonia yield rate on Cu via nitrate reduction(NO3RR),we herein applied constant potential method via grand-canonical density functional theory(GC-DFT)with implicit continuum solvation model to predict the reaction energetics of NO3RR on pure copper surface in alkaline media.The potential-dependent mechanism on the most prevailing Cu(111)and the minor(100)and(110)facets were established,in consideration of NO_(2)_(−),NO,NH_(3),NH_(2)OH,N_(2),and N_(2)O as the main products.The computational results show that the major Cu(111)is the ideal surface to produce ammonia with the highest onset potential at 0.06 V(until−0.37 V)and the highest optimal potential at−0.31 V for ammonia production without kinetic obstacles in activation energies at critical steps.For other minor facets,the secondary Cu(100)shows activity to ammonia from−0.03 to−0.54 V with the ideal potential at−0.50 V,which requires larger overpotential to overcome kinetic activation energy barriers.The least Cu(110)possesses the longest potential range for ammonia yield from−0.27 to−1.12 V due to the higher adsorption coverage of nitrate,but also with higher tendency to generate di-nitrogen species.Experimental evaluations on commercial Cu/C electrocatalyst validated the accuracy of our proposed mechanism.The most influential(111)surface with highest percentage in electrocatalyst determined the trend of ammonia production.In specific,the onset potential of ammonia production at 0.1 V and emergence of yield rate peak at−0.3 V in experiments precisely located in the predicted potentials on Cu(111).Four critical factors for the high ammonia yield and selectivity on Cu surface via NO3RR are summarized,including high NO3RR activity towards ammonia on the dominant Cu(111)facet,more possibilities to produce ammonia along different pathways on each facet,excellent ability for HER inhibition and suitable surface size to suppress di-nitrogen species formation at high nitrate coverage.Overall,our work provides comprehensive potential-dependent insights into the reaction details of NO3RR to ammonia,which can serve as references for the future development of NO3RR electrocatalysts,achieving higher activity and selectivity by maximizing these characteristics of copper-based materials. 展开更多
关键词 Nitrate reduction to ammonia Copper surface Density functional theory Constant electrode potential method Experimental validation
下载PDF
Monte Carlo method for evaluation of surface emission rate measurement uncertainty
9
作者 Yuan-Qiao Li Min Lin +4 位作者 Li-Jun Xu Rui Luo Yu-He Zhang Qian-Xi Ni Yun-Tao Liu 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第7期126-136,共11页
The aim of this study is to evaluate the uncertainty of 2πα and 2πβ surface emission rates using the windowless multiwire proportional counter method.This study used the Monte Carlo method (MCM) to validate the co... The aim of this study is to evaluate the uncertainty of 2πα and 2πβ surface emission rates using the windowless multiwire proportional counter method.This study used the Monte Carlo method (MCM) to validate the conventional Guide to the Expression of Uncertainty in Measurement (GUM) method.A dead time measurement model for the two-source method was established based on the characteristics of a single-channel measurement system,and the voltage threshold correction factor measurement function was indirectly obtained by fitting the threshold correction curve.The uncertainty in the surface emission rate was calculated using the GUM method and the law of propagation of uncertainty.The MCM provided clear definitions for each input quantity and its uncertainty distribution,and the simulation training was realized with a complete and complex mathematical model.The results of the surface emission rate uncertainty evaluation for four radioactive plane sources using both methods showed the uncertainty’s consistency E_(n)<0.070 for the comparison of each source,and the uncertainty results of the GUM were all lower than those of the MCM.However,the MCM has a more objective evaluation process and can serve as a validation tool for GUM results. 展开更多
关键词 surface emission rate Monte Carlo method METROLOGY Probability distribution function Dead time Low-energy loss correction Least-squares method
下载PDF
Ghost-YOLO v8:An Attention-Guided Enhanced Small Target Detection Algorithm for Floating Litter on Water Surfaces
10
作者 Zhongmin Huangfu Shuqing Li Luoheng Yan 《Computers, Materials & Continua》 SCIE EI 2024年第9期3713-3731,共19页
Addressing the challenges in detecting surface floating litter in artificial lakes,including complex environments,uneven illumination,and susceptibility to noise andweather,this paper proposes an efficient and lightwe... Addressing the challenges in detecting surface floating litter in artificial lakes,including complex environments,uneven illumination,and susceptibility to noise andweather,this paper proposes an efficient and lightweight Ghost-YOLO(You Only Look Once)v8 algorithm.The algorithmintegrates advanced attention mechanisms and a smalltarget detection head to significantly enhance detection performance and efficiency.Firstly,an SE(Squeeze-and-Excitation)mechanism is incorporated into the backbone network to fortify the extraction of resilient features and precise target localization.This mechanism models feature channel dependencies,enabling adaptive adjustment of channel importance,thereby improving recognition of floating litter targets.Secondly,a 160×160 small-target detection layer is designed in the feature fusion neck to mitigate semantic information loss due to varying target scales.This design enhances the fusion of deep and shallow semantic information,improving small target feature representation and enabling better capture and identification of tiny floating litter.Thirdly,to balance performance and efficiency,the GhostConv module replaces part of the conventional convolutions in the feature fusion neck.Additionally,a novel C2fGhost(CSPDarknet53 to 2-Stage Feature Pyramid Networks Ghost)module is introduced to further reduce network parameters.Lastly,to address the challenge of occlusion,a newloss function,WIoU(Wise Intersection over Union)v3 incorporating a flexible and non-monotonic concentration approach,is adopted to improve detection rates for surface floating litter.The outcomes of the experiments demonstrate that the Ghost-YOLO v8 model proposed in this paper performs well in the dataset Marine,significantly enhances precision and recall by 3.3 and 7.6 percentage points,respectively,in contrast with the base model,mAP@0.5 and mAP 0.5:0.95 improve by 5.3 and 4.4 percentage points and reduces the computational volume by 1.88MB,the FPS value hardly decreases,and the efficient real-time identification of floating debris on the water’s surface can be achieved costeffectively. 展开更多
关键词 YOLO v8 surface floating litter target detection attention mechanism small target detection head ghostnet loss function
下载PDF
States of graphene oxide and surface functional groups amid adsorption of dyes and heavy metal ions
11
作者 Zhaoyang Han Ling Sun +6 位作者 Yingying Chu Jing Wang Chenyu Wei Qianlei Jiang Changbao Han Hui Yan Xuemei Song 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第11期197-208,共12页
Water pollution regarding dyes and heavy metal ions is crucial facing the world.How to effectively separate these contaminants from water has been a key issue.Graphene oxide(GO)promises the greenwater world as a long-... Water pollution regarding dyes and heavy metal ions is crucial facing the world.How to effectively separate these contaminants from water has been a key issue.Graphene oxide(GO)promises the greenwater world as a long-lasting spotlight adsorbent material and therefore,harnessing GO has been the research hotspot for over a decade.The state of GO as well as its surface functional groups plays an important role in adsorption.And the way of preparation and structural modification matters to the performance of GO.In this review,the significance of the state of existence of stock GO and surface functional groups is explored in terms of preparation,structural modification,and adsorption.Besides,various adsorbates for GO adsorption are also involved,the discussion of which is rarely established elsewhere. 展开更多
关键词 Stock graphene oxide surface functional groups Existence state ADSORBATES Enhanced adsorption DYES
下载PDF
Synthesis of fractal geometry and CAGD models for multi-scale topography modelling of functional surfaces 被引量:3
12
作者 王清辉 李静蓉 +2 位作者 陈彦政 潘敏强 汤勇 《Journal of Central South University》 SCIE EI CAS 2011年第5期1493-1501,共9页
In order to support the functional design and simulation and the final fabrication processes for functional surfaces,it is necessary to obtain a multi-scale modelling approach representing both macro geometry and micr... In order to support the functional design and simulation and the final fabrication processes for functional surfaces,it is necessary to obtain a multi-scale modelling approach representing both macro geometry and micro details of the surface in one unified model.Based on the fractal geometry theory,a synthesized model is proposed by mathematically combining Weierstrass-Mandelbrot fractal function in micro space and freeform CAGD model in macro space.Key issues of the synthesis,such as algorithms for fractal interpolation of freeform profiles,and visualization optimization for fractal details,are addressed.A prototype of the integration solution is developed based on the platform of AutoCAD's Object ARX,and a few multi-scale modelling examples are used as case studies.With the consistent mathematic model,multi-scale surface geometries can be represented precisely.Moreover,the visualization result of the functional surfaces shows that the visualization optimization strategies developed are efficient. 展开更多
关键词 surface roughness MICROTOPOGRAPHY fractal geometry functional surface
下载PDF
Effect of acidic surface functional groups on Cr(Ⅵ) removal by activated carbon from aqueous solution 被引量:7
13
作者 ZHOU Hualei CHEN Yunfa 《Rare Metals》 SCIE EI CAS CSCD 2010年第3期333-338,共6页
The activated carbon with high surface area was prepared by KOH activation.It was further modified by H2SO4 and HNO3 to introduce more surface functional groups.The pore structure of the activated carbons before and a... The activated carbon with high surface area was prepared by KOH activation.It was further modified by H2SO4 and HNO3 to introduce more surface functional groups.The pore structure of the activated carbons before and after modification was analyzed based on the nitrogen adsorption isotherms.The morphology of those activated carbons was characterized using scanning electronic microscopy (SEM).The surface functional groups were determined by Fourier transform infrared spectroscopy (FTIR).The quantity of those groups was measured by the Boehm titration method.Cr(VI) removal by the activated carbons from aqueous solution was investigated at different pH values.The results show that compared with H2SO4,HNO3 destructs the original pore of the activated carbon more seriously and induces more acidic surface functional groups on the activated carbon.The pH value of the solution plays a key role in the Cr(VI) removal.The ability of reducing Cr(VI) to Cr(III) by the activated carbons is relative to the acidic surface functional groups.At higher pH values,the Cr(VI) removal ratio is improved by increasing the acidic surface functional groups of the activated carbons.At lower pH values,however,the acidic surface functional groups almost have no effect on the Cr(VI) removal by the activated carbon from aqueous solution. 展开更多
关键词 activated carbon surface functional groups REMOVAL MODIFICATION chromium(VI)
下载PDF
A nonlocal strain gradient shell model incorporating surface effects for vibration analysis of functionally graded cylindrical nanoshells 被引量:6
14
作者 Lu LU Li ZHU +2 位作者 Xingming GUO Jianzhong ZHAO Guanzhong LIU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第12期1695-1722,共28页
In this pap er, a novel size-dep endent functionally graded (FG) cylindrical shell model is develop ed based on the nonlocal strain gradient theory in conjunction with the Gurtin-Murdoch surface elasticity theory . Th... In this pap er, a novel size-dep endent functionally graded (FG) cylindrical shell model is develop ed based on the nonlocal strain gradient theory in conjunction with the Gurtin-Murdoch surface elasticity theory . The new model containing a nonlocal parameter, a material length scale parameter, and several surface elastic constants can capture three typical typ es of size e ects simultaneously , which are the nonlocal stress ef- fect, the strain gradient e ect, and the surface energy e ects. With the help of Hamilton’s principle and rst-order shear deformation theory , the non-classical governing equations and related b oundary conditions are derived. By using the prop osed model, the free vibra- tion problem of FG cylindrical nanoshells with material prop erties varying continuously through the thickness according to a p ower-law distribution is analytically solved, and the closed-form solutions for natural frequencies under various b oundary conditions are obtained. After verifying the reliability of the prop osed model and analytical method by comparing the degenerated results with those available in the literature, the in uences of nonlocal parameter, material length scale parameter, p ower-law index, radius-to-thickness ratio, length-to-radius ratio, and surface e ects on the vibration characteristic of func- tionally graded cylindrical nanoshells are examined in detail. 展开更多
关键词 NONLOCAL strain gradient THEORY surface elasticity THEORY rst-order shear deformation THEORY vibration functionally graded (FG) CYLINDRICAL NANOSHELL
下载PDF
Effect of Graphene Surface Functional Groups on the Mechanical Property of PMMA Microcellular Composite Foams 被引量:3
15
作者 LI Meijuan SHEN Qiang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第3期717-722,共6页
The functional groups on graphene sheets surface affect their dispersion and interfacial adhesion in polymer matrix. We compared the mechanical property of polymethymethacrylate(PMMA) microcellular foams reinforced ... The functional groups on graphene sheets surface affect their dispersion and interfacial adhesion in polymer matrix. We compared the mechanical property of polymethymethacrylate(PMMA) microcellular foams reinforced with graphene oxide(GO) and reduced graphene oxide(RGO) to investigate this influence of functional groups. RGO sheets were fabricated by solvent thermal reduction in DMF medium. UV-Vis, FT-IR and XPS analyses indicate the difference of oxygen-containing groups on GO and RGO sheets surface. The observation of SEM illustrates that the addition of a smaller number of GO or RGO sheets causes a fine cellular structure of PMMA foams with a higher cell density(about 1011 cells/cm3) and smaller cell sizes(about 1-2 μm) owing to their remarkable heterogeneous nucleation effect. Compared to GO reinforced foams, the RGO/PMMA foams own lower cell density and bigger cell size in their microstructure, and their compressive strength is lower even when the reinforcement contents are the same and the foam bulk density is higher. These results indicate that the oxygen-containing groups on GO sheets’ surface are beneficial to adhere CO2 to realize a larger nucleation rate, and their strong interaction with PMMA matrix improves the mechanical property of PMMA foams. 展开更多
关键词 GRAPHENE surface functional GROUPS PMMA MICROCELLULAR COMPOSITE FOAMS mechanical property
下载PDF
Engineered Functional Surfaces by Laser Microprocessing for Biomedical Applications 被引量:6
16
作者 Guoqing Hu Kai Guan +3 位作者 Libin Lu Jiaru Zhang Nie Lu Yingchun Guan 《Engineering》 SCIE EI 2018年第6期822-830,共9页
Metallic biomaterials are increasingly being used in various medical applications due to their high strength,fracture resistance,good electrical conductivity,and biocompatibility.However,their practical applications h... Metallic biomaterials are increasingly being used in various medical applications due to their high strength,fracture resistance,good electrical conductivity,and biocompatibility.However,their practical applications have been largely limited due to poor surface performance.Laser microprocessing is an advanced method of enhancing the surface-related properties of biomaterials.This work demonstrates the capability of laser microprocessing for biomedical metallic materials including magnesium and titanium alloys,with potential applications in cell adhesion and liquid biopsy.We investigate laser-material interaction,microstructural evolution,and surface performance,and analyze cell behavior and the surface-enhanced Raman scattering(SERS)effect.Furthermore,we explore a theoretical study on the laser microprocessing of metallic alloys that shows interesting results with potential applications.The results show that cells exhibit good adhesion behavior at the surface of the laser-treated surface,with a preferential direction based on the textured structure.A significant SERS enhancement of 6×10^3 can be obtained at the laser-textured surface during Raman measurement. 展开更多
关键词 LASER microprocessing functionAL surface METALLIC ALLOY Niocompatibility SERS
下载PDF
Laser surface functionalization to achieve extreme surface wetting conditions and resultant surface functionalities 被引量:3
17
作者 WANG Qing-hua WANG Hui-xin 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第10期3217-3247,共31页
Wetting condition of micro/nanostructured surface has received tremendous attention due to the potential applications in commercial,industrial,and military areas.Surfaces with extreme wetting properties,e.g.,superhydr... Wetting condition of micro/nanostructured surface has received tremendous attention due to the potential applications in commercial,industrial,and military areas.Surfaces with extreme wetting properties,e.g.,superhydrophobic or superhydrophilic,are extensively employed due to their superior anti-icing,drag reduction,enhanced boiling heat transfer,self-cleaning,and anti-bacterial properties depending on solid-liquid interfacial interactions.Laser-based techniques have gained popularity in recent years to create micro/nano-structured surface owing to their high flexibility,system precision,and ease for automation.These techniques create laser induced periodic surface structures(LIPSS)or hierarchical structures on substrate material.However,micro/nanostructures alone cannot attain the desired wettability.Subsequent modification of surface chemistry is essentially needed to achieve target extreme wettability.This review paper aims to provide a comprehensive review for both laser texturing techniques and the following chemistry modification methods.Recent research progress and fundamental mechanisms of surface structure generation via different types of lasers and various chemistry modification methods are discussed.The complex combination between the laser texturing and surface chemistry modification methods to decide the final wetting condition is presented.More importantly,surface functionalities of these surfaces with extreme wetting properties are discussed.Lastly,prospects for future research are proposed and discussed. 展开更多
关键词 laser surface modification extreme wettability chemistry modification surface functionality
下载PDF
Bending of functionally graded nanobeams incorporating surface effects based on Timoshenko beam model 被引量:2
18
作者 Lihong Yang Tao Fan +2 位作者 Liping Yang Xiao Han Zongbing Chen 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2017年第3期152-158,共7页
The bending responses of functionally graded (FG) nanobeams with simply supported edges are investigated based on Timoshenko beam theory in this article. The Gurtin-Murdoch surface elasticity theory is adopted to an... The bending responses of functionally graded (FG) nanobeams with simply supported edges are investigated based on Timoshenko beam theory in this article. The Gurtin-Murdoch surface elasticity theory is adopted to analyze the influences of surface stress on bending response of FG nanobeam. The material properties are assumed to vary along the thickness of FG nanobeam in power law. The bending governing equations are derived by using the minimum total potential energy principle and explicit formulas are derived for rotation angle and deflection of nanobeams with surface effects. Illustrative examples are implemented to give the bending deformation of FG nanobeam. The influences of the aspect ratio, gradient index, and surface stress on dimensionless deflection are discussed in detail. 展开更多
关键词 Nanobeam functionally graded materials BENDING surface effect Timoshenko beam theory
下载PDF
Oxygen adsorption on pyrite (100) surface by density functional theory 被引量:6
19
作者 孙伟 胡岳华 +1 位作者 邱冠周 覃文庆 《Journal of Central South University of Technology》 2004年第4期385-390,共6页
Pyrite (FeS2) bulk and (100) surface properties and the oxygen adsorption on the surface were studied by using density functional theory methods. The results show that in the formation of FeS2 (100) surface, the... Pyrite (FeS2) bulk and (100) surface properties and the oxygen adsorption on the surface were studied by using density functional theory methods. The results show that in the formation of FeS2 (100) surface, there exists a process of electron transfer from Fe dangling bond to S dangling bond. In this situation, surface Fe and S atoms have more ionic properties. Both Fe2+ and S2- have high electrochemistry reduction activity, which is the base for oxygen adsorption. From the viewpoint of adsorption energy, the parallel form oxygen adsorption is in preference. The result also shows that the state of oxygen absorbed on FeS2 surface acts as peroxides rather than O2. 展开更多
关键词 density functional theory FeS_2 (100) surface surface relaxation oxygen adsorption sulfide flotation
下载PDF
Symmetry-breaking of LiMn_(6) hexatomic-ring in grain surface of Li_(2)MnO_(3)
20
作者 Lihang Wang Shu Zhao +1 位作者 Boya Wang Haijun Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期110-117,I0004,共9页
LiMn_(6) hexatomic-rings act as functional units in Li-rich layered oxides(LLOs),which determine the capacity,voltage,and structural stability of LLOs.However,the symmetry of the LiMn_(6) hexatomic-ring is always brok... LiMn_(6) hexatomic-rings act as functional units in Li-rich layered oxides(LLOs),which determine the capacity,voltage,and structural stability of LLOs.However,the symmetry of the LiMn_(6) hexatomic-ring is always broken,especially in the grain surface of LLOs,which will greatly affect its electrochemical performance.Herein,the symmetry-breaking of LiMn_(6) hexatomic-ring in the grain surface of Li_(2)MnO_(3) was studied,and their effect on charge compensation mechanism and structure evolution behavior was thoroughly investigated.The results show that the electrochemical activity of the symmetry-broken LiMn_(6) hexatomic-ring is higher than that of the unbroken LiMn_(6),and the former is more favorable for spinelization on the grain surface.Furthermore,the exposure proportion of crystallographic planes with different symmetry-broken LiMn_(6) hexatomic-ring has also been discussed,which can be adjusted by changing the partial pressure of oxygen.The in-depth understanding of the symmetry-breaking of LiMn_(6) hexatomic-ring will provide more targeted strategies for designing high-performance LLOs cathodes for lithium-ion batteries. 展开更多
关键词 Li-rich layered oxides LiMn_(6)functional unit SYMMETRY-BREAKING surface structure Density functional theory
下载PDF
上一页 1 2 218 下一页 到第
使用帮助 返回顶部