The geological strength index(GSI) system,widely used for the design and practice of mining process,is a unique rock mass classification system related to the rock mass strength and deformation parameters based on the...The geological strength index(GSI) system,widely used for the design and practice of mining process,is a unique rock mass classification system related to the rock mass strength and deformation parameters based on the generalized Hoek-Brown and Mohr-Coulomb failure criteria.The GSI can be estimated using standard chart and field observations of rock mass blockiness and discontinuity surface conditions.The GSI value gives a numerical representation of the overall geotechnical quality of the rock mass.In this study,we propose a method to determine the GSI quantitatively using photographic images of in situ jointed rock mass with image processing technology,fractal theory and artificial neural network(ANN).We employ the GSI system to characterize the jointed rock mass around the working in a coal mine.The relative error between the proposed value and the given value in the GSI chart is less than 3.6%.展开更多
A novel method,referred to as joint multiple subpulses processing,is developed to calibrate the nonideal transfer function of radio frequency front-end and I/Q imbalance in quadrature modulate/demodulate systems simul...A novel method,referred to as joint multiple subpulses processing,is developed to calibrate the nonideal transfer function of radio frequency front-end and I/Q imbalance in quadrature modulate/demodulate systems simultaneously,which frequently occur in wideband Synthetic Aperture Radar(SAR) systems.Based on the time-frequency relation of the chirp signal and the analyses of the channel errors in wideband SAR,joint multiple subpulses processing method is adopted to separate the image frequency component due to the I/Q channel error.Then,the complete description of the channel error is acquired for building the correction function,which is used to correct the radar raw echo in frequency domain.The validity and capability of this method are demonstrated by the experiments of the channel error correction on the high resolution SAR system with the effective bandwidth of 500 MHz.展开更多
Fracture of the lateral process of the talus(FLPT)is uncommon in clinical practice and can be easily missed or misdiagnosed.In recent years,as researchers from all over the world have further deepened their research o...Fracture of the lateral process of the talus(FLPT)is uncommon in clinical practice and can be easily missed or misdiagnosed.In recent years,as researchers from all over the world have further deepened their research on FLPT,there has been a breakthrough in the classification,and the methods and principles of clinical management have changed accordingly;however,there is still no standardized guideline for the diagnosis and management of FLPT,and there have been few relevant literature review articles related to this kind of fracture in the past at least 5 years.In this article,we review the clinical classification,classification-based therapeutic recommendations,and prognosis of FLPT,with the aim of providing a reference for the clinical diagnosis and management of this infrequent fracture.展开更多
The approach of Li and Zhou(2014)is adopted to find the Laplace transform of occupation time over interval(0,a)and joint occupation times over semi-infinite intervals(-∞,a)and(b,∞)for a time-homogeneous diffusion pr...The approach of Li and Zhou(2014)is adopted to find the Laplace transform of occupation time over interval(0,a)and joint occupation times over semi-infinite intervals(-∞,a)and(b,∞)for a time-homogeneous diffusion process up to an independent exponential time e_(q)for 0<a<b.The results are expressed in terms of solutions to the differential equations associated with the diffusion generator.Applying these results,we obtain explicit expressions on the Laplace transform of occupation time and joint occupation time for Brownian motion with drift.展开更多
Understanding the unstable evolution of railway slopes is the premise for preventing slope failure and ensuring the safe operation of trains.However,as two major factors affecting the stability of railway slopes,few s...Understanding the unstable evolution of railway slopes is the premise for preventing slope failure and ensuring the safe operation of trains.However,as two major factors affecting the stability of railway slopes,few scholars have explored the unstable evolution of railway slopes under the joint action of rainfall-vibration.Based on the model test of sandy soil slope,the unstable evolution process of slope under locomotive vibration,rainfall,and rainfall-vibration joint action conditions was simulated in this paper.By comparing and analyzing the variation trends of soil pressure and water content of slope under these conditions,the change laws of pore pressure under the influence of vibration and rainfall were explored.The main control factors affecting the stability of slope structure under the joint action conditions were further defined.Combined with the slope failure phenomena under these three conditions,the causes of slope instability resulting from each leading factor were clarified.Finally,according to the above conclusions,the unstable evolution of the slope under the rainfall-vibration joint action was determined.The test results show that the unstable evolution process of sandy soil slope,under the rainfall-vibration joint action,can be divided into:rainfall erosion cracking,vibration promotion penetrating,and slope instability sliding three stages.In the process of slope unstable evolution,rainfall and vibration play the roles of inducing and promoting slide respectively.In addition,the deep cracks,which are the premise for the formation of the sliding surface,and the violent irregular fluctuation of soil pressure,which reflects the near penetration of the sliding surface,constitute the instability characteristics of the railway slope together.This paper reveals the unstable evolution of sandy soil slopes under the joint action of rainfall-vibration,hoping to provide the theoretical basis for the early warning and prevention technology of railway slopes.展开更多
The scope of this project was to investigate the possibility of application of Image Processing Technique in the field of Shaft Alignment process. Misalignment of shaft using image processing software Visionbuilder wa...The scope of this project was to investigate the possibility of application of Image Processing Technique in the field of Shaft Alignment process. Misalignment of shaft using image processing software Visionbuilder was calculated. The further purpose of this project was to check whether the image processing technique can be used in bone transplant surgery. The model of the hip was used for the experimentation purpose. Image processing software Visionbuilder was used to match the profiles of the bone before implant and bone after implant.展开更多
Effects of friction stir spot processing(FSSP)on the microstructures and microhardness of tungsten inert gas(TIG)welded TA15titanium alloy joints were investigated.The macro/micro structural observation and microhardn...Effects of friction stir spot processing(FSSP)on the microstructures and microhardness of tungsten inert gas(TIG)welded TA15titanium alloy joints were investigated.The macro/micro structural observation and microhardness evaluation of the TA15alloy sheets and TA15TIG welded joints were carried out using optical microscope and microhardness tests.The results show that FSSP effectively improves the microstructure and increases the microhardness of the TA15sheets.As for the TIG welded joints,FSSP also effectively improves the microstructure of joints.And the average microhardness value in weld nugget zone is improved significantly,while a small increase of this value in heat affected zone is observed.The hardness in stirring zone is significantly higher than that in the base metal.Two peak values of hardness appear along the width direction in stirring zone.After FSSP,the average hardness of the weld zone of TA15TIG welded joint is significantly higher than that before FSSP.Under the present process parameters,both the surface oxidation in TA15sheets and in TIG welded joints after FSSP are not evident,while the surface forms the bright white layer,which is composed of a great multitude of fine grains.展开更多
In order to study the application of laser shock processing(LSP) as a post weld treatment technology and a strengthening technology, a series experiments and analysis were taken in this paper. The hardness of the lase...In order to study the application of laser shock processing(LSP) as a post weld treatment technology and a strengthening technology, a series experiments and analysis were taken in this paper. The hardness of the laser shock processed zone of Al-Li alloy was measured, and the microstructure and mechanical properties of the welded joints of the Ni-based superalloy GH30 and the Austenitic stainless steel !Crl8Ni9Ti were compared with those without LSP in this paper. The results showed that the size of strengthened zone was similar to that of laser spot and strengthened layer was about 1mm deep, and the high intense dislocations and twins produced in the shocked zone. Plastic strain also gained surface residual compress stress, which is benefit for the fatigue properties of welded zones. In this test , the surface hardness of welding zone of the superalloy GH30 improved obviously and tensile strength increased by 12%, but the improvement of fatigue life was not obvious; Martensite phase is formed in plasma welding !Crl8Ni9Ti, which reduced the effect of strain deformation martensite induced by laser shock processing, but the surface residual compress stress gained by laser shock processing can obviously improve the fatigue life of !Crl8Ni9Ti welded joints.展开更多
Teleseismic and GPS data were jointly inverted for the rupture process of the 2011 Tohoku earthquake. The inversion results show that it is a bilateral rupture event with an average rupture velocity less than 2.0 km/s...Teleseismic and GPS data were jointly inverted for the rupture process of the 2011 Tohoku earthquake. The inversion results show that it is a bilateral rupture event with an average rupture velocity less than 2.0 km/s along the fault strike direction. The source rupture process consists of three sub-events, the first oc- curred near the hypocenter and the rest two ruptured along the up-dip direction and broke the sea bed, causing a maximum slip of about 30 m. The large-scale sea bed breakage may account for the tremendous tsunami disaster which resulted in most of the death and missing in this mega earthquake.展开更多
BACKGROUND Lumbar facet joint syndrome(LFJS)is a pain condition arising from lumbar facet joint diseases.Treatments of LFJS includes patient education,oral medication,bed rest,physical therapy,and procedural intervent...BACKGROUND Lumbar facet joint syndrome(LFJS)is a pain condition arising from lumbar facet joint diseases.Treatments of LFJS includes patient education,oral medication,bed rest,physical therapy,and procedural interventions.For some refractory cases that fail conservative therapies,dorsal ramus medial brunch radiofrequency ablation is warranted.However,as nerve fibers can regenerate,their efficacy is impermanent,and the recurrence rate is relatively high.Considering synovial impingement is a paramount pathogenesis of LFJS,in this case,we removed the culprit hyperplastic articular capsule and the articular process partially through a spinal endoscope.As the culprit hyperplastic joint capsule was excised,it is supposed to generate more prolonged efficacy and a lower recurrence rate than radiofrequency treatment.CASE SUMMARY A 40-year-old female patient was diagnosed with LFJS.She complained of low back pain and right buttock pain for half a year.The patient was placed in the prone position.After disinfection and draping,a 25-cm 18-gauge needle was inserted into the dorsal surface of the right L5 articular process.Subsequently,a guidewire,dilating tubes,and a working cannula was inserted successively.The spinal endoscope was positioned in the working cannula.Under the endoscope,the microvascular tissue,muscle tissue attached on the L5 inferior articular process and S1 superior articular process,as well as the capsule and minor portion of the inferior articular process were removed.After the joint space was clear and no bleeding points existed,the endoscope and working cannula were shifted,and the incision was sutured.After treatment,the symptoms were completely relieved.The patient was pain-free during the follow-up period of 6 mo.CONCLUSION The endoscopic partial joint capsule and articular process excision is an effective procedure for LFJS,especially for cases caused by synovial impingement.展开更多
We give an extension result of Watanabe’s characterization for 2-dimensional Poisson processes. By using this result, the equivalence of uniqueness in law and joint uniqueness in law is proved for one-dimensional sto...We give an extension result of Watanabe’s characterization for 2-dimensional Poisson processes. By using this result, the equivalence of uniqueness in law and joint uniqueness in law is proved for one-dimensional stochastic differential equations driven by Poisson processes. After that, we give a simplified Engelbert theorem for the stochastic differential equations of this type.展开更多
Joint inversion of teleseismic body-wave data and strong ground motion waveforms was applied to determine the rupture process of the 2010 Mentawai earthquake. To obtain stable solutions, smoothing and non-negative con...Joint inversion of teleseismic body-wave data and strong ground motion waveforms was applied to determine the rupture process of the 2010 Mentawai earthquake. To obtain stable solutions, smoothing and non-negative constraints were introduced. A total of 33 teleseismic stations and 5 strong ground motion stations supplied data. The teleseismic and strong ground motion data were separately windowed for 150 s and 250 s and bandpass filtered with frequencies of 0.001e1.0 Hz and 0.005e0.5 Hz, respectively. The finitefault model was established with length and width of 190 km and 70 km, and the initial seismic source parameters were set by referring to centroid moment tensor(CMT) solutions. Joint inversion results indicate that the focal mechanism of this earthquake is thrust fault type, and the strike, dip, and rake angles are generally in accordance with CMT results. The seismic moment was determined as 5.814 1020Nm(Mw7.8) and source duration was about 102 s, which is greater than those of other earthquakes of similar magnitude. The rupture nucleated near the hypocenter and then propagated along the strike direction to the northwest, with a maximum slip of 3.9 m. Large uncertainties regarding the amount of slip retrieved using different inversion methods still exist; however, the conclusion that the majority of slip occurred far from the islands at very shallow depths was found to be robust. The 2010 Mentawai earthquake was categorized as a tsunami earthquake because of the long rupture duration and the generation of a tsunami much larger than was expected for an earthquake of its magnitude.展开更多
After the occurrence of destructively strong earthquakes, rapid acquisition of the source rupture process can provide important reference information for post-earthquake disaster relief and aftershock trend determinat...After the occurrence of destructively strong earthquakes, rapid acquisition of the source rupture process can provide important reference information for post-earthquake disaster relief and aftershock trend determination.An M 6.9 earthquake occurred in Menyuan County, Qinghai Province on January 8, 2022. The epicenter is located in the seismic gap in the middle section of the Haiyuan fault belt. Such a typical strong earthquake was taken as an example to investigate the rupture process of strong earthquakes. Three days after the earthquake, the InSAR(Interferometric Synthetic Aperture Radar) coseismic deformation field was obtained by Sentinel radar, indicating that the surface ruptured obviously. The southern block of the earthquake faces towards the satellite about 95 cm along the LOS(line of sight) direction, and the northern block is away from the satellite by ~ 74 cm, consistent with the characteristic of left-lateral strike-slip motion. In this study, InSAR coseismic deformation data and farfield waveform data were used to jointly invert the earthquake rupture process, and a four-segment finite fault model was constructed by referring to the surface deformation. The inversion results show that the focal depth of the Menyuan earthquake is about 7 km, and the strike of the seismogenic fault is 89.0°, 104.0°, 119.0°and 131.0°from west to east, respectively. It is a high-dip left-lateral strike-slip earthquake event lasting about 14 s. The rupture propagation mode is a bilateral extension. The maximum slip along the fault is about 380 cm, and the seismic moment magnitude is 6.7. The surface rupture length is about 24 km, which is consistent with that measured in the field survey. The detailed seismic source model can provide basic data for the aftershock trend determination and seismic risk analysis of the adjacent active faults.展开更多
文摘The geological strength index(GSI) system,widely used for the design and practice of mining process,is a unique rock mass classification system related to the rock mass strength and deformation parameters based on the generalized Hoek-Brown and Mohr-Coulomb failure criteria.The GSI can be estimated using standard chart and field observations of rock mass blockiness and discontinuity surface conditions.The GSI value gives a numerical representation of the overall geotechnical quality of the rock mass.In this study,we propose a method to determine the GSI quantitatively using photographic images of in situ jointed rock mass with image processing technology,fractal theory and artificial neural network(ANN).We employ the GSI system to characterize the jointed rock mass around the working in a coal mine.The relative error between the proposed value and the given value in the GSI chart is less than 3.6%.
基金Supported by the National High-Tech Research and Development Plan of China(No.2007AA120302)
文摘A novel method,referred to as joint multiple subpulses processing,is developed to calibrate the nonideal transfer function of radio frequency front-end and I/Q imbalance in quadrature modulate/demodulate systems simultaneously,which frequently occur in wideband Synthetic Aperture Radar(SAR) systems.Based on the time-frequency relation of the chirp signal and the analyses of the channel errors in wideband SAR,joint multiple subpulses processing method is adopted to separate the image frequency component due to the I/Q channel error.Then,the complete description of the channel error is acquired for building the correction function,which is used to correct the radar raw echo in frequency domain.The validity and capability of this method are demonstrated by the experiments of the channel error correction on the high resolution SAR system with the effective bandwidth of 500 MHz.
基金Supported by The China Scholarship Council,No.202308420035.
文摘Fracture of the lateral process of the talus(FLPT)is uncommon in clinical practice and can be easily missed or misdiagnosed.In recent years,as researchers from all over the world have further deepened their research on FLPT,there has been a breakthrough in the classification,and the methods and principles of clinical management have changed accordingly;however,there is still no standardized guideline for the diagnosis and management of FLPT,and there have been few relevant literature review articles related to this kind of fracture in the past at least 5 years.In this article,we review the clinical classification,classification-based therapeutic recommendations,and prognosis of FLPT,with the aim of providing a reference for the clinical diagnosis and management of this infrequent fracture.
基金Supported by the National Natural Science Foundation of China(12271062,11731012)by the Hunan Provincial National Natural Science Foundation of China(2019JJ50405)。
文摘The approach of Li and Zhou(2014)is adopted to find the Laplace transform of occupation time over interval(0,a)and joint occupation times over semi-infinite intervals(-∞,a)and(b,∞)for a time-homogeneous diffusion process up to an independent exponential time e_(q)for 0<a<b.The results are expressed in terms of solutions to the differential equations associated with the diffusion generator.Applying these results,we obtain explicit expressions on the Laplace transform of occupation time and joint occupation time for Brownian motion with drift.
基金supported by the Major Research Plan of the National Natural Science Foundation of China(Grant No.42027806)the Key Programme of the Natural Science Foundation of China(Grant No.41630639)National Natural Science Foundation of China General Program(Grant No.42372324).
文摘Understanding the unstable evolution of railway slopes is the premise for preventing slope failure and ensuring the safe operation of trains.However,as two major factors affecting the stability of railway slopes,few scholars have explored the unstable evolution of railway slopes under the joint action of rainfall-vibration.Based on the model test of sandy soil slope,the unstable evolution process of slope under locomotive vibration,rainfall,and rainfall-vibration joint action conditions was simulated in this paper.By comparing and analyzing the variation trends of soil pressure and water content of slope under these conditions,the change laws of pore pressure under the influence of vibration and rainfall were explored.The main control factors affecting the stability of slope structure under the joint action conditions were further defined.Combined with the slope failure phenomena under these three conditions,the causes of slope instability resulting from each leading factor were clarified.Finally,according to the above conclusions,the unstable evolution of the slope under the rainfall-vibration joint action was determined.The test results show that the unstable evolution process of sandy soil slope,under the rainfall-vibration joint action,can be divided into:rainfall erosion cracking,vibration promotion penetrating,and slope instability sliding three stages.In the process of slope unstable evolution,rainfall and vibration play the roles of inducing and promoting slide respectively.In addition,the deep cracks,which are the premise for the formation of the sliding surface,and the violent irregular fluctuation of soil pressure,which reflects the near penetration of the sliding surface,constitute the instability characteristics of the railway slope together.This paper reveals the unstable evolution of sandy soil slopes under the joint action of rainfall-vibration,hoping to provide the theoretical basis for the early warning and prevention technology of railway slopes.
文摘The scope of this project was to investigate the possibility of application of Image Processing Technique in the field of Shaft Alignment process. Misalignment of shaft using image processing software Visionbuilder was calculated. The further purpose of this project was to check whether the image processing technique can be used in bone transplant surgery. The model of the hip was used for the experimentation purpose. Image processing software Visionbuilder was used to match the profiles of the bone before implant and bone after implant.
基金Project(51405389) supported by the National Natural Science Foundation of ChinaProject(3102015ZY024) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2014003) supported by the Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures,China
文摘Effects of friction stir spot processing(FSSP)on the microstructures and microhardness of tungsten inert gas(TIG)welded TA15titanium alloy joints were investigated.The macro/micro structural observation and microhardness evaluation of the TA15alloy sheets and TA15TIG welded joints were carried out using optical microscope and microhardness tests.The results show that FSSP effectively improves the microstructure and increases the microhardness of the TA15sheets.As for the TIG welded joints,FSSP also effectively improves the microstructure of joints.And the average microhardness value in weld nugget zone is improved significantly,while a small increase of this value in heat affected zone is observed.The hardness in stirring zone is significantly higher than that in the base metal.Two peak values of hardness appear along the width direction in stirring zone.After FSSP,the average hardness of the weld zone of TA15TIG welded joint is significantly higher than that before FSSP.Under the present process parameters,both the surface oxidation in TA15sheets and in TIG welded joints after FSSP are not evident,while the surface forms the bright white layer,which is composed of a great multitude of fine grains.
文摘In order to study the application of laser shock processing(LSP) as a post weld treatment technology and a strengthening technology, a series experiments and analysis were taken in this paper. The hardness of the laser shock processed zone of Al-Li alloy was measured, and the microstructure and mechanical properties of the welded joints of the Ni-based superalloy GH30 and the Austenitic stainless steel !Crl8Ni9Ti were compared with those without LSP in this paper. The results showed that the size of strengthened zone was similar to that of laser spot and strengthened layer was about 1mm deep, and the high intense dislocations and twins produced in the shocked zone. Plastic strain also gained surface residual compress stress, which is benefit for the fatigue properties of welded zones. In this test , the surface hardness of welding zone of the superalloy GH30 improved obviously and tensile strength increased by 12%, but the improvement of fatigue life was not obvious; Martensite phase is formed in plasma welding !Crl8Ni9Ti, which reduced the effect of strain deformation martensite induced by laser shock processing, but the surface residual compress stress gained by laser shock processing can obviously improve the fatigue life of !Crl8Ni9Ti welded joints.
基金financially supported by the National Natural Science Foundation of China (Nos. 90915012 and 41090291)the Research Project in Earthquake Science, CEA (No.201108002)
文摘Teleseismic and GPS data were jointly inverted for the rupture process of the 2011 Tohoku earthquake. The inversion results show that it is a bilateral rupture event with an average rupture velocity less than 2.0 km/s along the fault strike direction. The source rupture process consists of three sub-events, the first oc- curred near the hypocenter and the rest two ruptured along the up-dip direction and broke the sea bed, causing a maximum slip of about 30 m. The large-scale sea bed breakage may account for the tremendous tsunami disaster which resulted in most of the death and missing in this mega earthquake.
文摘BACKGROUND Lumbar facet joint syndrome(LFJS)is a pain condition arising from lumbar facet joint diseases.Treatments of LFJS includes patient education,oral medication,bed rest,physical therapy,and procedural interventions.For some refractory cases that fail conservative therapies,dorsal ramus medial brunch radiofrequency ablation is warranted.However,as nerve fibers can regenerate,their efficacy is impermanent,and the recurrence rate is relatively high.Considering synovial impingement is a paramount pathogenesis of LFJS,in this case,we removed the culprit hyperplastic articular capsule and the articular process partially through a spinal endoscope.As the culprit hyperplastic joint capsule was excised,it is supposed to generate more prolonged efficacy and a lower recurrence rate than radiofrequency treatment.CASE SUMMARY A 40-year-old female patient was diagnosed with LFJS.She complained of low back pain and right buttock pain for half a year.The patient was placed in the prone position.After disinfection and draping,a 25-cm 18-gauge needle was inserted into the dorsal surface of the right L5 articular process.Subsequently,a guidewire,dilating tubes,and a working cannula was inserted successively.The spinal endoscope was positioned in the working cannula.Under the endoscope,the microvascular tissue,muscle tissue attached on the L5 inferior articular process and S1 superior articular process,as well as the capsule and minor portion of the inferior articular process were removed.After the joint space was clear and no bleeding points existed,the endoscope and working cannula were shifted,and the incision was sutured.After treatment,the symptoms were completely relieved.The patient was pain-free during the follow-up period of 6 mo.CONCLUSION The endoscopic partial joint capsule and articular process excision is an effective procedure for LFJS,especially for cases caused by synovial impingement.
文摘We give an extension result of Watanabe’s characterization for 2-dimensional Poisson processes. By using this result, the equivalence of uniqueness in law and joint uniqueness in law is proved for one-dimensional stochastic differential equations driven by Poisson processes. After that, we give a simplified Engelbert theorem for the stochastic differential equations of this type.
基金supported by National Natural Science Foundation of China (41304046)
文摘Joint inversion of teleseismic body-wave data and strong ground motion waveforms was applied to determine the rupture process of the 2010 Mentawai earthquake. To obtain stable solutions, smoothing and non-negative constraints were introduced. A total of 33 teleseismic stations and 5 strong ground motion stations supplied data. The teleseismic and strong ground motion data were separately windowed for 150 s and 250 s and bandpass filtered with frequencies of 0.001e1.0 Hz and 0.005e0.5 Hz, respectively. The finitefault model was established with length and width of 190 km and 70 km, and the initial seismic source parameters were set by referring to centroid moment tensor(CMT) solutions. Joint inversion results indicate that the focal mechanism of this earthquake is thrust fault type, and the strike, dip, and rake angles are generally in accordance with CMT results. The seismic moment was determined as 5.814 1020Nm(Mw7.8) and source duration was about 102 s, which is greater than those of other earthquakes of similar magnitude. The rupture nucleated near the hypocenter and then propagated along the strike direction to the northwest, with a maximum slip of 3.9 m. Large uncertainties regarding the amount of slip retrieved using different inversion methods still exist; however, the conclusion that the majority of slip occurred far from the islands at very shallow depths was found to be robust. The 2010 Mentawai earthquake was categorized as a tsunami earthquake because of the long rupture duration and the generation of a tsunami much larger than was expected for an earthquake of its magnitude.
基金supported by the Project of Basic Scientific Research Foundation of the Institute of Earthquake Forecasting,China Earthquake Administration(CEAIEF2022030202)the 2023 Earthquake Tracking Project of CEA(2023010127)。
文摘After the occurrence of destructively strong earthquakes, rapid acquisition of the source rupture process can provide important reference information for post-earthquake disaster relief and aftershock trend determination.An M 6.9 earthquake occurred in Menyuan County, Qinghai Province on January 8, 2022. The epicenter is located in the seismic gap in the middle section of the Haiyuan fault belt. Such a typical strong earthquake was taken as an example to investigate the rupture process of strong earthquakes. Three days after the earthquake, the InSAR(Interferometric Synthetic Aperture Radar) coseismic deformation field was obtained by Sentinel radar, indicating that the surface ruptured obviously. The southern block of the earthquake faces towards the satellite about 95 cm along the LOS(line of sight) direction, and the northern block is away from the satellite by ~ 74 cm, consistent with the characteristic of left-lateral strike-slip motion. In this study, InSAR coseismic deformation data and farfield waveform data were used to jointly invert the earthquake rupture process, and a four-segment finite fault model was constructed by referring to the surface deformation. The inversion results show that the focal depth of the Menyuan earthquake is about 7 km, and the strike of the seismogenic fault is 89.0°, 104.0°, 119.0°and 131.0°from west to east, respectively. It is a high-dip left-lateral strike-slip earthquake event lasting about 14 s. The rupture propagation mode is a bilateral extension. The maximum slip along the fault is about 380 cm, and the seismic moment magnitude is 6.7. The surface rupture length is about 24 km, which is consistent with that measured in the field survey. The detailed seismic source model can provide basic data for the aftershock trend determination and seismic risk analysis of the adjacent active faults.