A nonlinear torsional absorber,which can overcome the influence of the fluid velocity on the natural frequency,is employed at the boundary to restrain the bending vibration of a pipe for the first time.By using the ro...A nonlinear torsional absorber,which can overcome the influence of the fluid velocity on the natural frequency,is employed at the boundary to restrain the bending vibration of a pipe for the first time.By using the rotating angle at the end of the pipe,the bending vibration energy is pumped to the boundary absorber.The nonlinearly coupled pipe-absorber governing equations are obtained by the generalized Hamilton’s principle.Steady-state responses subjected to a basement excitation are discussed by the modal-correction-harmonic-balance-method.According to this method,the boundaries of the pipe are treated as the generalized governing equations.In this way,those nonlinearities and time-dependent terms in the boundary are involved in the response completely.A direct simulation method,called the differential quadrature element method(DQEM),is used to verify these analytical results.The investigation indicates that the nonlinear boundary absorber owns two outstanding advantages.The first one is that the natural characters remain the same and the absorber can capture the resonance of the pipe automatically.The second one is that the absorber works at all natural modes.Especially,by using the nonlinear damping,the absorber will not worsen the weak vibration in the non-resonance region.The parameters of the absorber are investigated to optimize the efficiency in detail.The result finds that good efficiency can be achieved with a tiny mass.Meanwhile,the efficiency becomes better as the damping increases.With the help of these investigations,the work provides a new strategy to protect pipes conveying fluids from being destroyed by the vibration.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12025204 and 11872159)the Program of Shanghai Municipal Education Commission(Grant No.2019-01-07-00-09-E00018)。
文摘A nonlinear torsional absorber,which can overcome the influence of the fluid velocity on the natural frequency,is employed at the boundary to restrain the bending vibration of a pipe for the first time.By using the rotating angle at the end of the pipe,the bending vibration energy is pumped to the boundary absorber.The nonlinearly coupled pipe-absorber governing equations are obtained by the generalized Hamilton’s principle.Steady-state responses subjected to a basement excitation are discussed by the modal-correction-harmonic-balance-method.According to this method,the boundaries of the pipe are treated as the generalized governing equations.In this way,those nonlinearities and time-dependent terms in the boundary are involved in the response completely.A direct simulation method,called the differential quadrature element method(DQEM),is used to verify these analytical results.The investigation indicates that the nonlinear boundary absorber owns two outstanding advantages.The first one is that the natural characters remain the same and the absorber can capture the resonance of the pipe automatically.The second one is that the absorber works at all natural modes.Especially,by using the nonlinear damping,the absorber will not worsen the weak vibration in the non-resonance region.The parameters of the absorber are investigated to optimize the efficiency in detail.The result finds that good efficiency can be achieved with a tiny mass.Meanwhile,the efficiency becomes better as the damping increases.With the help of these investigations,the work provides a new strategy to protect pipes conveying fluids from being destroyed by the vibration.