This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eli...This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.展开更多
The formation of the manned aerial vehicle/unmanned aerial vehicle(MAV/UAV) task coalition is considered. To reduce the scale of the problem, the formation progress is divided into three phases. For the task clusterin...The formation of the manned aerial vehicle/unmanned aerial vehicle(MAV/UAV) task coalition is considered. To reduce the scale of the problem, the formation progress is divided into three phases. For the task clustering phase, the geographical position of tasks is taken into consideration and a cluster method is proposed. For the UAV allocation phase, the UAV requirement for both constrained and unconstrained resources is introduced, and a multi-objective optimal algorithm is proposed to solve the allocation problem. For the MAV allocation phase, the optimal model is firstly constructed and it is decomposed according to the ideal of greed to reduce the time complexity of the algorithm. Based on the above phases, the MAV/UAV task coalition formation method is proposed and the effectiveness and practicability are demonstrated by simulation examples.展开更多
Consensus tracking control problems for single-integrator dynamics of multi-agent systems with switching topology are investigated. In order to design effective consensus tracking protocols for a more general class of...Consensus tracking control problems for single-integrator dynamics of multi-agent systems with switching topology are investigated. In order to design effective consensus tracking protocols for a more general class of networks, which are aimed at ensuring that the concerned states of agents converge to a constant or time-varying reference state, new consensus tracking protocols with a constant and time-varying reference state are proposed, respectively. Particularly, by contrast with spanning tree, an improved condition of switching interaction topology is presented. And then, convergence analysis of two consensus tracking protocols is provided by Lyapunov stability theory. Moreover, consensus tracking protocol with a time-varying reference state is extended to achieve the fbrmation control. By introducing formation structure set, each agent can gain its individual desired trajectory. Finally, several simulations are worked out to illustrate the effectiveness of theoretical results. The test results show that the states of agents can converge to a desired constant or time-varying reference state. In addition, by selecting appropriate structure set, agents can maintain the expected formation under random switching interaction topologies.展开更多
Two protocols are presented,which can make agents reach consensus while achieving and preserving the desired formation in fixed topology with and without communication timedelay for multi-agent network.First,the proto...Two protocols are presented,which can make agents reach consensus while achieving and preserving the desired formation in fixed topology with and without communication timedelay for multi-agent network.First,the protocol without considering the communication time-delay is presented,and by using Lyapunov stability theory,the sufficient condition of stability for this multi-agent system is presented.Further,considering the communication time-delay,the effectiveness of the protocol based on Lyapunov-Krasovskii function is demonstrated.The main contribution of the proposed protocols is that,as well as the velocity consensus is considered,the formation control is concerned for multi-agent systems described as the second-order equations.Finally,numerical examples are presented to illustrate the effectiveness of the proposed protocols.展开更多
A coalition formation algorithm is presented with limited communication ranges and delays in unknown environment,for the performance of multiple heterogeneous unmanned aerial vehicles(UAVs)in cooperative search and at...A coalition formation algorithm is presented with limited communication ranges and delays in unknown environment,for the performance of multiple heterogeneous unmanned aerial vehicles(UAVs)in cooperative search and attack missions.The mathematic model of coalition formation is built on basis of the minimum attacking time and the minimum coalition size with satisfying resources and simultaneous strikes requirements.A communication protocol based on maximum number of hops is developed to determine the potential coalition members in dynamic network.A multistage sub-optimal coalition formation algorithm(MSOCFA)with polynomial time is established.The performances of MSOCFA and particle swarm optimization(PSO)algorithms are compared in terms of complexity,mission performance and computational time.A complex scenario is deployed to illustrate how the coalitions are formed and validate the feasibility of the MSOCFA.The effect of communication constraints(hop delay and max-hops)on mission performance is studied.The results show that it is beneficial to determine potential coalition members in a wide and deep range over the network in the presence of less delay.However,when the delays are significant,it is more advantageous to determine coalitions from among the immediate neighbors.展开更多
Formation control and obstacle avoidance for multi-agent systems have attracted more and more attention. In this paper, the problems of formation control and obstacle avoidance are investigated by means of a consensus...Formation control and obstacle avoidance for multi-agent systems have attracted more and more attention. In this paper, the problems of formation control and obstacle avoidance are investigated by means of a consensus algorithm. A novel distributed control model is proposed for the multi-agent system to form the anticipated formation as well as achieve obstacle avoidance. Based on the consensus algorithm, a distributed control function consisting of three terms (formation control term, velocity matching term, and obstacle avoidance term) is presented. By establishing a novel formation control matrix, a formation control term is constructed such that the agents can converge to consensus and reach the anticipated formation. A new obstacle avoidance function is developed by using the modified potential field approach to make sure that obstacle avoidance can be achieved whether the obstacle is in a dynamic state or a stationary state. A velocity matching term is also put forward to guarantee that the velocities of all agents converge to the same value. Furthermore, stability of the control model is proven. Simulation results are provided to demonstrate the effectiveness of the proposed control.展开更多
Consensus problems for discrete-time multi-agent systems were focused on. In order to design effective consensus protocols, which were aimed at ensuring that the concerned states of agents converged to a common value,...Consensus problems for discrete-time multi-agent systems were focused on. In order to design effective consensus protocols, which were aimed at ensuring that the concerned states of agents converged to a common value, a new consensus protocol for general discrete-time multi-agent system was proposed based on Lyapunov stability theory. For discrete-time multi-agent systems with desired trajectory, trajectory tracking and formation control problems were studied. The main idea of trajectory tracking problems was to design trajectory controller such that each agent tracked desired trajectory. For a type of formation problem with fixed formation structure, the formation structure set was introduced. According to the formation structure set, each agent can track its individual desired trajectory. Finally, simulations were provided to demonstrate the effectiveness of the theoretical results. The mlmerical results show that the states of agents converge to zero with consensus protocol, which is said to achieve a consensus asymptotically. In addition, through designing appropriate trajectory controllers, the simulation results show that agents converge to the desired trajectory asymptotically and can form different formations.展开更多
To investigate the leader-following formation control, in this paper we present the design problem of control protocols and distributed observers under which the agents can achieve and maintain the desired formation f...To investigate the leader-following formation control, in this paper we present the design problem of control protocols and distributed observers under which the agents can achieve and maintain the desired formation from any initial states, while the velocity converges to that of the virtual leader whose velocity cannot be measured by agents in real time. The two cases of switching topologies without communication delay and fixed topology with time-varying communication delay are both considered for multi-agent networks. By using the Lyapunov stability theory, the issue of stability is analysed for multi-agent systems with switching topologies. Then, by considering the time-varying communication delay, the sufficient condition is proposed for the multi-agent systems with fixed topology. Finally, two numerical examples are given to illustrate the effectiveness of the proposed leader-following formation control protocols.展开更多
Aiming at the problem on cooperative air-defense of surface warship formation, this paper maps the cooperative airdefense system of systems (SoS) for surface warship formation (CASoSSWF) to the biological immune s...Aiming at the problem on cooperative air-defense of surface warship formation, this paper maps the cooperative airdefense system of systems (SoS) for surface warship formation (CASoSSWF) to the biological immune system (BIS) according to the similarity of the defense mechanism and characteristics between the CASoSSWF and the BIS, and then designs the models of components and the architecture for a monitoring agent, a regulating agent, a killer agent, a pre-warning agent and a communicating agent by making use of the theories and methods of the artificial immune system, the multi-agent system (MAS), the vaccine and the danger theory (DT). Moreover a new immune multi-agent model using vaccine based on DT (IMMUVBDT) for the cooperative air-defense SoS is advanced. The immune response and immune mechanism of the CASoSSWF are analyzed. The model has a capability of memory, evolution, commendable dynamic environment adaptability and self-learning, and embodies adequately the cooperative air-defense mechanism for the CASoSSWF. Therefore it shows a novel idea for the CASoSSWF which can provide conception models for a surface warship formation operation simulation system.展开更多
The main goal of this paper is to design a team of agents that can accomplish multi-target pursuit formation using a developed leader-follower strategy. It is supposed that every target can accept a certain number of ...The main goal of this paper is to design a team of agents that can accomplish multi-target pursuit formation using a developed leader-follower strategy. It is supposed that every target can accept a certain number of agents. First, each agent can automatically choose its target based on the distance from the agent to the target and the number of agents accepted by the target. In view of the fact that all agents are randomly dispersed in the workplace at the initial time, we present a numbering strategy for them. During the movement of agents, not every agent can always obtain pertinent state information about the targets. So, a developed leader-follower strategy and a pursuit formation algorithm are proposed. Under the proposed method, agents with the same target can maintain a circle formation. Furthermore, it turns out that the pursuit formation algorithm for agents to the desired formation is convergent. Simulation studies are provided to illustrate the effectiveness of the proposed method.展开更多
In this paper, we introduce a simple coalition formation game in the environment of bidding, which is a special case of the weighted majority game (WMG), and is named the weighted simple-majority game (WSMG). In W...In this paper, we introduce a simple coalition formation game in the environment of bidding, which is a special case of the weighted majority game (WMG), and is named the weighted simple-majority game (WSMG). In WSMG, payoff is allocated to the winners proportional to the players powers, which can be measured in various ways. We define a new kind of stability: the counteraction-stability (C-stability), where any potential deviating players will confront counteractions of the other players. We show that C-stable coalition structures in WSMG always contains a minimal winning coalition of minimum total power. For the variant where powers are measured directly by their weights, we show that it is NP-hard to find a C-stable coalition structure and design a pseudo-polynomial time algorithm. Sensitivity analysis for this variant, which shows many interesting properties, is also done. We also prove that it is NP-hard to compute the Holler-Packel indices in WSMGs, and hence in WMGs as well.展开更多
This paper develops a robust control method for formation maneuvers of a multi-agent system. The multi-agent system is leader-follower-based, where the graph theory is utilized to describe the information exchange amo...This paper develops a robust control method for formation maneuvers of a multi-agent system. The multi-agent system is leader-follower-based, where the graph theory is utilized to describe the information exchange among the agents. The control method is exercised via sliding mode methodology where each agent is subjected to uncertainties. The technique of nonlinear disturbance observer is adopted in order to overcome the adverse effects of the uncertainties. Assuming that the uncertainties have an unknown bound, the formation stability conditions are investigated according to a given communication topology. In the sense of Lyapunov, not only the formation maneuvers of the multi-agent system have guaranteed stability, but the desired formations of the agents are also realized. Compared with other two control approaches, i.e., the basic sliding mode approach and the fuzzy sliding mode approach, some numerical results are presented to illustrate the effectiveness, performance and validity of the robust control method for formation maneuvers in the presence of uncertainties.展开更多
In this study,the bipartite time-varying output formation tracking problem for heterogeneous multi-agent systems(MASs)with multiple leaders and switching commu-nication networks is considered.Note that the switching c...In this study,the bipartite time-varying output formation tracking problem for heterogeneous multi-agent systems(MASs)with multiple leaders and switching commu-nication networks is considered.Note that the switching communication networks may be connected or disconnected.To address this problem,a novel reduced-dimensional observer-based fully distributed asynchronous dynamic edge-event-triggered output feedback control protocol is developed,and the Zeno behavior is ruled out.The theoretical analysis gives the admissible switching frequency and switching width under the proposed control protocol.Different from the existing works,the control protocol reduces the dimension of information to be transmitted between neighboring agents.Moreover,since an additional positive internal dynamic variable is introduced into the triggering functions,the control protocol can guarantee a larger inter-event time interval compared with previous results.Finally,a simulation example is given to verify the effectiveness and performance of the theoretical result.展开更多
In multi-agent systems, autonomous agents may form coalition to increase the efficiency of problem solving. But the current coalition algorithm is very complex, and cannot satisfy the condition of optimality and stabl...In multi-agent systems, autonomous agents may form coalition to increase the efficiency of problem solving. But the current coalition algorithm is very complex, and cannot satisfy the condition of optimality and stableness simultaneously. To solve the problem, an algorithm that uses the mechanism of distribution according to work for coalition formation is presented, which can achieve global optimal and stable solution in subadditive task oriented domains. The validity of the algorithm is demonstrated by both experiments and theory.展开更多
Formation control of discrete-time linear multi-agent systems using directed switching topology is considered in this work via a reduced-order observer, in which a formation control protocol is proposed under the assu...Formation control of discrete-time linear multi-agent systems using directed switching topology is considered in this work via a reduced-order observer, in which a formation control protocol is proposed under the assumption that each directed communication topology has a directed spanning tree. By utilizing the relative outputs of neighboring agents, a reduced-order observer is designed for each following agent. A multi-step control algorithm is established based on the Lyapunov method and the modified discrete-time algebraic Riccati equation. A sufficient condition is given to ensure that the discrete-time linear multi-agent system can achieve the expected leader-following formation.Finally, numerical examples are provided so as to demonstrate the effectiveness of the obtained results.展开更多
In this study, we consider the generation of optimal persistent formations for heterogeneous multi-agent systems, with the leader constraint that only specific agents can act as leaders. We analyze three modes to cont...In this study, we consider the generation of optimal persistent formations for heterogeneous multi-agent systems, with the leader constraint that only specific agents can act as leaders. We analyze three modes to control the optimal persistent formations in two-dimensional space, thereby establishing a model for their constrained generation. Then, we propose an algorithm for generating the optimal persistent formation for heterogeneous multi-agent systems with a leader constraint (LC-HMAS-OPFGA), which is the exact solution algorithm of the model, and we theoretically prove its validity. This algorithm includes two kernel sub-algorithms, which are optimal persistent graph generating algorithm based on a minimum cost arborescence and the shortest path (MCA-SP-OPGGA), and the optimal persistent graph adjusting algorithm based on the shortest path (SP-OPGAA). Under a given agent formation shape and leader constraint, LC-HMAS-OPFGA first generates the network topology and its optimal rigid graph corresponding to this formation shape. Then, LC-HMAS- OPFGA uses MCA-SP-OPGGA to direct the optimal rigid graph to generate the optimal persistent graph. Finally, LC- HMAS-OPFGA uses SP-OPGAA to adjust the optimal persistent graph until it satisfies the leader constraint. We also demonstrate the algorithm, LC-HMAS-OPFGA, with an example and verify its effectiveness.展开更多
This paper consists of two parts. The first part introduces the strict aspiration as a new aspiration solution concept, which is provedto be existent for any cooperative game. The second part deals with theunsolved p...This paper consists of two parts. The first part introduces the strict aspiration as a new aspiration solution concept, which is provedto be existent for any cooperative game. The second part deals with theunsolved problem put forward by Bennett by showing that there is atleast one payoff which is balanced, partnered and equal gains aspiration.The proof is algebraic and constructive, thus providing an algorithm forfinding such aspirations.展开更多
This paper considers the formation tracking problem under a rigidity framework, where the target formation is specified as a minimally and infinitesimally rigid formation and the desired velocity of the group is avail...This paper considers the formation tracking problem under a rigidity framework, where the target formation is specified as a minimally and infinitesimally rigid formation and the desired velocity of the group is available to only a subset of the agents. The following two cases are considered: the desired velocity is constant, and the desired velocity is timevarying. In the first case, a distributed linear estimator is constructed for each agent to estimate the desired velocity. The velocity estimation and a formation acquisition term are employed to design the control inputs for the agents, where the rigidity matrix plays a central role. In the second case, a distributed non-smooth estimator is constructed to estimate the time-varying velocity, which is shown to converge in a finite time. Theoretical analysis shows that the formation tracking problem can be solved under the proposed control algorithms and estimators. Simulation results are also provided to show the validity of the derived results.展开更多
This paper addresses the distance-based formation tracking problem for a double-integrator modeled multi-agent system(MAS) in the presence of a moving leader in d-dimensional space. Under the assumption that the sta...This paper addresses the distance-based formation tracking problem for a double-integrator modeled multi-agent system(MAS) in the presence of a moving leader in d-dimensional space. Under the assumption that the state of leader can be obtained over fixed graphs, a distributed distance-based control protocol is designed for each double-integrator follower agent. The protocol consists of three terms: a gradient function term, a velocity consensus term, and a leader tracking term.Different shape stabilizing functions proposed in the literature can be applied to the gradient function term. The proposed controller allows all agents to both achieve the desired shape and reach the same velocity with moving leader by controlling the distances and velocity. Finally, we analyze the local asymptotic stability of the equilibrium set with center manifold theory. We validate the effectiveness of our approach through two examples.展开更多
基金the National Natural Science Foundation of China(62203356)Fundamental Research Funds for the Central Universities of China(31020210502002)。
文摘This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.
基金supported by the National Natural Science Foundation of China(61573017 61703425)the Aeronautical Science Fund(20175796014)
文摘The formation of the manned aerial vehicle/unmanned aerial vehicle(MAV/UAV) task coalition is considered. To reduce the scale of the problem, the formation progress is divided into three phases. For the task clustering phase, the geographical position of tasks is taken into consideration and a cluster method is proposed. For the UAV allocation phase, the UAV requirement for both constrained and unconstrained resources is introduced, and a multi-objective optimal algorithm is proposed to solve the allocation problem. For the MAV allocation phase, the optimal model is firstly constructed and it is decomposed according to the ideal of greed to reduce the time complexity of the algorithm. Based on the above phases, the MAV/UAV task coalition formation method is proposed and the effectiveness and practicability are demonstrated by simulation examples.
基金Projects(61075065,60774045) supported by the National Natural Science Foundation of ChinaProject supported by the Graduate Degree Thesis Innovation Foundation of Central South University,China
文摘Consensus tracking control problems for single-integrator dynamics of multi-agent systems with switching topology are investigated. In order to design effective consensus tracking protocols for a more general class of networks, which are aimed at ensuring that the concerned states of agents converge to a constant or time-varying reference state, new consensus tracking protocols with a constant and time-varying reference state are proposed, respectively. Particularly, by contrast with spanning tree, an improved condition of switching interaction topology is presented. And then, convergence analysis of two consensus tracking protocols is provided by Lyapunov stability theory. Moreover, consensus tracking protocol with a time-varying reference state is extended to achieve the fbrmation control. By introducing formation structure set, each agent can gain its individual desired trajectory. Finally, several simulations are worked out to illustrate the effectiveness of theoretical results. The test results show that the states of agents can converge to a desired constant or time-varying reference state. In addition, by selecting appropriate structure set, agents can maintain the expected formation under random switching interaction topologies.
基金supported by the National Natural Science Foundation of China (6093400361074065)+1 种基金the National Basic Research Program of China (973 Program) (2010CB731800)the Key Project for Natural Science Research of Hebei Education Department (ZD200908)
文摘Two protocols are presented,which can make agents reach consensus while achieving and preserving the desired formation in fixed topology with and without communication timedelay for multi-agent network.First,the protocol without considering the communication time-delay is presented,and by using Lyapunov stability theory,the sufficient condition of stability for this multi-agent system is presented.Further,considering the communication time-delay,the effectiveness of the protocol based on Lyapunov-Krasovskii function is demonstrated.The main contribution of the proposed protocols is that,as well as the velocity consensus is considered,the formation control is concerned for multi-agent systems described as the second-order equations.Finally,numerical examples are presented to illustrate the effectiveness of the proposed protocols.
基金partially sponsored by the Fundamental Research Funds for the Central Universities(No.3102015ZY092)
文摘A coalition formation algorithm is presented with limited communication ranges and delays in unknown environment,for the performance of multiple heterogeneous unmanned aerial vehicles(UAVs)in cooperative search and attack missions.The mathematic model of coalition formation is built on basis of the minimum attacking time and the minimum coalition size with satisfying resources and simultaneous strikes requirements.A communication protocol based on maximum number of hops is developed to determine the potential coalition members in dynamic network.A multistage sub-optimal coalition formation algorithm(MSOCFA)with polynomial time is established.The performances of MSOCFA and particle swarm optimization(PSO)algorithms are compared in terms of complexity,mission performance and computational time.A complex scenario is deployed to illustrate how the coalitions are formed and validate the feasibility of the MSOCFA.The effect of communication constraints(hop delay and max-hops)on mission performance is studied.The results show that it is beneficial to determine potential coalition members in a wide and deep range over the network in the presence of less delay.However,when the delays are significant,it is more advantageous to determine coalitions from among the immediate neighbors.
基金supported by the National High Technology Research and Development Program of China(Grant No.2011AA040103)the Research Foundationof Shanghai Institute of Technology,China(Grant No.B504)
文摘Formation control and obstacle avoidance for multi-agent systems have attracted more and more attention. In this paper, the problems of formation control and obstacle avoidance are investigated by means of a consensus algorithm. A novel distributed control model is proposed for the multi-agent system to form the anticipated formation as well as achieve obstacle avoidance. Based on the consensus algorithm, a distributed control function consisting of three terms (formation control term, velocity matching term, and obstacle avoidance term) is presented. By establishing a novel formation control matrix, a formation control term is constructed such that the agents can converge to consensus and reach the anticipated formation. A new obstacle avoidance function is developed by using the modified potential field approach to make sure that obstacle avoidance can be achieved whether the obstacle is in a dynamic state or a stationary state. A velocity matching term is also put forward to guarantee that the velocities of all agents converge to the same value. Furthermore, stability of the control model is proven. Simulation results are provided to demonstrate the effectiveness of the proposed control.
基金Projects(60474029,60774045,60604005) supported by the National Natural Science Foundation of ChinaProject supported by the Graduate Degree Thesis Innovation Foundation of Central South University,China
文摘Consensus problems for discrete-time multi-agent systems were focused on. In order to design effective consensus protocols, which were aimed at ensuring that the concerned states of agents converged to a common value, a new consensus protocol for general discrete-time multi-agent system was proposed based on Lyapunov stability theory. For discrete-time multi-agent systems with desired trajectory, trajectory tracking and formation control problems were studied. The main idea of trajectory tracking problems was to design trajectory controller such that each agent tracked desired trajectory. For a type of formation problem with fixed formation structure, the formation structure set was introduced. According to the formation structure set, each agent can track its individual desired trajectory. Finally, simulations were provided to demonstrate the effectiveness of the theoretical results. The mlmerical results show that the states of agents converge to zero with consensus protocol, which is said to achieve a consensus asymptotically. In addition, through designing appropriate trajectory controllers, the simulation results show that agents converge to the desired trajectory asymptotically and can form different formations.
基金Project supported by the National Natural Science Foundation for Distinguished Young Scholars of China (Grant No. 60525303)the National Natural Science Foundation of China (Grant No. 60704009)+1 种基金the Key Project for Natural Science Research of the Hebei Educational Department (Grant No. ZD200908)the Doctorial Fund of Yanshan University (Grant No. B203)
文摘To investigate the leader-following formation control, in this paper we present the design problem of control protocols and distributed observers under which the agents can achieve and maintain the desired formation from any initial states, while the velocity converges to that of the virtual leader whose velocity cannot be measured by agents in real time. The two cases of switching topologies without communication delay and fixed topology with time-varying communication delay are both considered for multi-agent networks. By using the Lyapunov stability theory, the issue of stability is analysed for multi-agent systems with switching topologies. Then, by considering the time-varying communication delay, the sufficient condition is proposed for the multi-agent systems with fixed topology. Finally, two numerical examples are given to illustrate the effectiveness of the proposed leader-following formation control protocols.
文摘Aiming at the problem on cooperative air-defense of surface warship formation, this paper maps the cooperative airdefense system of systems (SoS) for surface warship formation (CASoSSWF) to the biological immune system (BIS) according to the similarity of the defense mechanism and characteristics between the CASoSSWF and the BIS, and then designs the models of components and the architecture for a monitoring agent, a regulating agent, a killer agent, a pre-warning agent and a communicating agent by making use of the theories and methods of the artificial immune system, the multi-agent system (MAS), the vaccine and the danger theory (DT). Moreover a new immune multi-agent model using vaccine based on DT (IMMUVBDT) for the cooperative air-defense SoS is advanced. The immune response and immune mechanism of the CASoSSWF are analyzed. The model has a capability of memory, evolution, commendable dynamic environment adaptability and self-learning, and embodies adequately the cooperative air-defense mechanism for the CASoSSWF. Therefore it shows a novel idea for the CASoSSWF which can provide conception models for a surface warship formation operation simulation system.
基金Project partially supported by the National Basic Research Program of China(Grant No.2010CB731800)the Key Project of Natural Science Foundation of China(Grant No.60934003)+1 种基金the National Natural Science Foundation of China(Grant No.61074065)Key Project for Natural Science Research of Hebei Education Department,China(Grant No.ZD200908)
文摘The main goal of this paper is to design a team of agents that can accomplish multi-target pursuit formation using a developed leader-follower strategy. It is supposed that every target can accept a certain number of agents. First, each agent can automatically choose its target based on the distance from the agent to the target and the number of agents accepted by the target. In view of the fact that all agents are randomly dispersed in the workplace at the initial time, we present a numbering strategy for them. During the movement of agents, not every agent can always obtain pertinent state information about the targets. So, a developed leader-follower strategy and a pursuit formation algorithm are proposed. Under the proposed method, agents with the same target can maintain a circle formation. Furthermore, it turns out that the pursuit formation algorithm for agents to the desired formation is convergent. Simulation studies are provided to illustrate the effectiveness of the proposed method.
基金supported by National Natural Science Foundationof China(No. 70425004)
文摘In this paper, we introduce a simple coalition formation game in the environment of bidding, which is a special case of the weighted majority game (WMG), and is named the weighted simple-majority game (WSMG). In WSMG, payoff is allocated to the winners proportional to the players powers, which can be measured in various ways. We define a new kind of stability: the counteraction-stability (C-stability), where any potential deviating players will confront counteractions of the other players. We show that C-stable coalition structures in WSMG always contains a minimal winning coalition of minimum total power. For the variant where powers are measured directly by their weights, we show that it is NP-hard to find a C-stable coalition structure and design a pseudo-polynomial time algorithm. Sensitivity analysis for this variant, which shows many interesting properties, is also done. We also prove that it is NP-hard to compute the Holler-Packel indices in WSMGs, and hence in WMGs as well.
基金supported by the National Natural Science Foundation of China.(60904008,61473176)the Natural Science Foundation of Shandong Province for Outstanding Young Talents in Provincial Universities(ZR2015JL021)
文摘This paper develops a robust control method for formation maneuvers of a multi-agent system. The multi-agent system is leader-follower-based, where the graph theory is utilized to describe the information exchange among the agents. The control method is exercised via sliding mode methodology where each agent is subjected to uncertainties. The technique of nonlinear disturbance observer is adopted in order to overcome the adverse effects of the uncertainties. Assuming that the uncertainties have an unknown bound, the formation stability conditions are investigated according to a given communication topology. In the sense of Lyapunov, not only the formation maneuvers of the multi-agent system have guaranteed stability, but the desired formations of the agents are also realized. Compared with other two control approaches, i.e., the basic sliding mode approach and the fuzzy sliding mode approach, some numerical results are presented to illustrate the effectiveness, performance and validity of the robust control method for formation maneuvers in the presence of uncertainties.
基金supported by National Key R&D Program of China(2018YFA0702200)the National Natural Science Foundation of China(61627809, 62173080)Liaoning Revitalization Talents Program(XLYC1801005)
文摘In this study,the bipartite time-varying output formation tracking problem for heterogeneous multi-agent systems(MASs)with multiple leaders and switching commu-nication networks is considered.Note that the switching communication networks may be connected or disconnected.To address this problem,a novel reduced-dimensional observer-based fully distributed asynchronous dynamic edge-event-triggered output feedback control protocol is developed,and the Zeno behavior is ruled out.The theoretical analysis gives the admissible switching frequency and switching width under the proposed control protocol.Different from the existing works,the control protocol reduces the dimension of information to be transmitted between neighboring agents.Moreover,since an additional positive internal dynamic variable is introduced into the triggering functions,the control protocol can guarantee a larger inter-event time interval compared with previous results.Finally,a simulation example is given to verify the effectiveness and performance of the theoretical result.
文摘In multi-agent systems, autonomous agents may form coalition to increase the efficiency of problem solving. But the current coalition algorithm is very complex, and cannot satisfy the condition of optimality and stableness simultaneously. To solve the problem, an algorithm that uses the mechanism of distribution according to work for coalition formation is presented, which can achieve global optimal and stable solution in subadditive task oriented domains. The validity of the algorithm is demonstrated by both experiments and theory.
基金Supported by National Natural Science Foundation of China(60474035),National Research Foundation for the Doctoral Program of Higher Education of China(20050359004),Natural Science Foundation of Anhui Province(070412035)
基金supported by National Natural Science Foundation of China(61573200,61973175)the Fundamental Research Funds for the Central Universities,Nankai University(63201196)。
文摘Formation control of discrete-time linear multi-agent systems using directed switching topology is considered in this work via a reduced-order observer, in which a formation control protocol is proposed under the assumption that each directed communication topology has a directed spanning tree. By utilizing the relative outputs of neighboring agents, a reduced-order observer is designed for each following agent. A multi-step control algorithm is established based on the Lyapunov method and the modified discrete-time algebraic Riccati equation. A sufficient condition is given to ensure that the discrete-time linear multi-agent system can achieve the expected leader-following formation.Finally, numerical examples are provided so as to demonstrate the effectiveness of the obtained results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.71671059,71401048,71521001,71690230,71690235,and 71472058)the Anhui Provincial Natural Science Foundation,China(Grant No.1508085MG140)
文摘In this study, we consider the generation of optimal persistent formations for heterogeneous multi-agent systems, with the leader constraint that only specific agents can act as leaders. We analyze three modes to control the optimal persistent formations in two-dimensional space, thereby establishing a model for their constrained generation. Then, we propose an algorithm for generating the optimal persistent formation for heterogeneous multi-agent systems with a leader constraint (LC-HMAS-OPFGA), which is the exact solution algorithm of the model, and we theoretically prove its validity. This algorithm includes two kernel sub-algorithms, which are optimal persistent graph generating algorithm based on a minimum cost arborescence and the shortest path (MCA-SP-OPGGA), and the optimal persistent graph adjusting algorithm based on the shortest path (SP-OPGAA). Under a given agent formation shape and leader constraint, LC-HMAS-OPFGA first generates the network topology and its optimal rigid graph corresponding to this formation shape. Then, LC-HMAS- OPFGA uses MCA-SP-OPGGA to direct the optimal rigid graph to generate the optimal persistent graph. Finally, LC- HMAS-OPFGA uses SP-OPGAA to adjust the optimal persistent graph until it satisfies the leader constraint. We also demonstrate the algorithm, LC-HMAS-OPFGA, with an example and verify its effectiveness.
文摘This paper consists of two parts. The first part introduces the strict aspiration as a new aspiration solution concept, which is provedto be existent for any cooperative game. The second part deals with theunsolved problem put forward by Bennett by showing that there is atleast one payoff which is balanced, partnered and equal gains aspiration.The proof is algebraic and constructive, thus providing an algorithm forfinding such aspirations.
基金Project supported by the National Natural Science Foundation of China(Grant No.61473240)
文摘This paper considers the formation tracking problem under a rigidity framework, where the target formation is specified as a minimally and infinitesimally rigid formation and the desired velocity of the group is available to only a subset of the agents. The following two cases are considered: the desired velocity is constant, and the desired velocity is timevarying. In the first case, a distributed linear estimator is constructed for each agent to estimate the desired velocity. The velocity estimation and a formation acquisition term are employed to design the control inputs for the agents, where the rigidity matrix plays a central role. In the second case, a distributed non-smooth estimator is constructed to estimate the time-varying velocity, which is shown to converge in a finite time. Theoretical analysis shows that the formation tracking problem can be solved under the proposed control algorithms and estimators. Simulation results are also provided to show the validity of the derived results.
基金supported by the National Natural Science Foundation of China(Grant No.61603188)
文摘This paper addresses the distance-based formation tracking problem for a double-integrator modeled multi-agent system(MAS) in the presence of a moving leader in d-dimensional space. Under the assumption that the state of leader can be obtained over fixed graphs, a distributed distance-based control protocol is designed for each double-integrator follower agent. The protocol consists of three terms: a gradient function term, a velocity consensus term, and a leader tracking term.Different shape stabilizing functions proposed in the literature can be applied to the gradient function term. The proposed controller allows all agents to both achieve the desired shape and reach the same velocity with moving leader by controlling the distances and velocity. Finally, we analyze the local asymptotic stability of the equilibrium set with center manifold theory. We validate the effectiveness of our approach through two examples.