With the aid of multi-agent based modeling approach to complex systems, the hierarchy simulation models of carrier-based aircraft catapult launch are developed. Ocean, carrier, aircraft, and atmosphere are treated as ...With the aid of multi-agent based modeling approach to complex systems, the hierarchy simulation models of carrier-based aircraft catapult launch are developed. Ocean, carrier, aircraft, and atmosphere are treated as aggregation agents, the detailed components like catapult, landing gears, and disturbances are considered as meta-agents, which belong to their aggregation agent. Thus, the model with two layers is formed i.e. the aggregation agent layer and the meta-agent layer. The information communication among all agents is described. The meta-agents within one aggregation agent communicate with each other directly by information sharing, but the meta-agents, which belong to different aggregation agents exchange their information through the aggregation layer first, and then perceive it from the sharing environment, that is the aggregation agent. Thus, not only the hierarchy model is built, but also the environment perceived by each agent is specified. Meanwhile, the problem of balancing the independency of agent and the resource consumption brought by real-time communication within multi-agent system (MAS) is resolved. Each agent involved in carrier-based aircraft catapult launch is depicted, with considering the interaction within disturbed atmospheric environment and multiple motion bodies including carrier, aircraft, and landing gears. The models of reactive agents among them are derived based on tensors, and the perceived messages and inner frameworks of each agent are characterized. Finally, some results of a simulation instance are given. The simulation and modeling of dynamic system based on multi-agent system is of benefit to express physical concepts and logical hierarchy clearly and precisely. The system model can easily draw in kinds of other agents to achieve a precise simulation of more complex system. This modeling technique makes the complex integral dynamic equations of multibodies decompose into parallel operations of single agent, and it is convenient to expand, maintain, and reuse the program codes.展开更多
The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this wo...The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this work.The following properties were determined:density,self-diffusion coefficient,excess molar volume,and radial distribution function.The results show that with an increase in the mole fraction of[HPy][BF_(4)],the self-diffusion coefficient decreases.Additionally,the excess molar volume initially decreases,reaches a minimum,and then increases.The rules of radial distribution functions(RDFs)of characteristic atoms are different.With increasing the mole fraction of[HPy][BF_(4)],the first peak of the RDFs of HA1-F decreases,while that of CT6-CT6 rises at first and then decreases.This indicates that the solvent molecules affect the polar and non-polar regions of[HPy][BF_(4)]differently.展开更多
Presents the robot soccer software simulation platform to be firstly used at FIRA Robot World Cup China 2001, introduces the system’s purpose and design plan; discusses the system core server configuration and workin...Presents the robot soccer software simulation platform to be firstly used at FIRA Robot World Cup China 2001, introduces the system’s purpose and design plan; discusses the system core server configuration and working principle; describes the operating method and how to develop competition strategy, and refers to the teams to take part in FIRA Robot World Cup China 2001 and investigators who are interested in the distributed multi agent system.展开更多
Different from the organization structure of complex projects in Western countries, the Liang Zong hierarchical organization structure of complex projects in China has two different chains, the chief-engineer chain an...Different from the organization structure of complex projects in Western countries, the Liang Zong hierarchical organization structure of complex projects in China has two different chains, the chief-engineer chain and the general-director chain,to handle the trade-off between technical and management decisions. However, previous works on organization search have mainly focused on the single-chain hierarchical organization in which all decisions are regarded as homogeneous. The heterogeneity and the interdependency between technical decisions and management decisions have been neglected. A two-chain hierarchical organization structure mapped from a real complex project is constructed. Then, a discrete decision model for a Liang Zong two-chain hierarchical organization in an NK model framework is proposed. This model proves that this kind of organization structure can reduce the search space by a large amount and that the search process should reach a final stable state more quickly. For a more complicated decision mechanism, a multi-agent simulation based on the above NK model is used to explore the effect of the two-chain organization structure on the speed, stability, and performance of the search process. The results provide three insights into how, compared with the single-chain hierarchical organization, the two-chain organization can improve the search process: it can reduce the number of iterations efficiently; the search is more stable because the search space is a smoother hill-like fitness landscape; in general, the search performance can be improved.However, when the organization structure is very complicated, the performance of a two-chain organization is inferior to that of a single-chain organization. These findings about the efficiency of the unique Chinese-style organization structure can be used to guide organization design for complex projects.展开更多
In this study, we develop a mixed reality game system to investigate characteristics ofjudgrnents of individual players in an evacuation process. The characteristics of judgments of the players that are inferred from ...In this study, we develop a mixed reality game system to investigate characteristics ofjudgrnents of individual players in an evacuation process. The characteristics of judgments of the players that are inferred from the performance of the game are then incorporated into a multi-agent simulation as rules. The behavior of evacuees is evaluated in approximations of real situations, by using the agent simulation including different judgments of evacuees. Using the results of the simulation, effective methods are discussed for achieving the escape of the evacuees within a short time.展开更多
The prediction of the behavior of people in a disaster has a useful role to play in the design of urban structures such as department stores, schools, and office buildings. We focus on using emergency exit signs to ef...The prediction of the behavior of people in a disaster has a useful role to play in the design of urban structures such as department stores, schools, and office buildings. We focus on using emergency exit signs to effectively guide the evacuation of people on a floor with a dynamically changing layout. A multi-agent simulation is developed to simulate the behavior of evacuees on a floor. A mathematical model is constructed to obtain optimal sign locations to efficiently assist evacuation under the condition that obstacles are dynamically generated on the floor. The optimal sign locations are calculated by the mathematical model. Then, the developed simulation is performed to evaluate the effectiveness of the emergency exit signs and the behavior of evacuees on simple layout models using the calculated optimal sign locations.展开更多
This paper proposes a prototype system for modeling and simulation of supply chains using a widely accepted agent platform Java agent development platform (JADE). A simple but practical coordination mechanism agent-ba...This paper proposes a prototype system for modeling and simulation of supply chains using a widely accepted agent platform Java agent development platform (JADE). A simple but practical coordination mechanism agent-based dynamic information network for supply chains (ADINS) is employed for the illustration of the suggested system and a simulation experiment is performed using a supply chain model of a Korean LCD manufacturing company. The result shows that the suggested mechanism is successful in reducing bullwhip effects and increasing service rates.展开更多
Regional cities in Japan are at the risk of experiencing big fire accidents or earthquakes every day.However,neither the number nor the capacity of shelters has increased because local governments might not consider t...Regional cities in Japan are at the risk of experiencing big fire accidents or earthquakes every day.However,neither the number nor the capacity of shelters has increased because local governments might not consider them owing to budget shortfall.By contrast,wide-area evacuation simulations can easily provide an antagonizing image of regional urban disasters.After a disaster,the city collapses and the evacuation routes are closed;consequently,evacuees feel anxious and they cannot move as usual.This anxiety behavior has not been considered in previous related studies and simulations.In this study,a wide-area evacuation simulation is developed;this model can not only calculate the possibility of blocking escape routes when the city is broken but also provide safe and more realistic evacuation plans before a disaster occurs by incorporating into the simulation the risk avoidance behaviors of evacuees from road blockage,such as“the route re-seeking behavior”and“the shelter re-selecting behavior”.展开更多
The quality of K-12 education has been a very big concern for years. Previous methods studied only one or two factors, such as school choice, or teacher quality, on school performance. Therefore the results they provi...The quality of K-12 education has been a very big concern for years. Previous methods studied only one or two factors, such as school choice, or teacher quality, on school performance. Therefore the results they provide can be limited. We propose a multi-agent approach to integrate multiple actors in a school system. These actors include teachers, students, supporting staffs and administrators. The interactions among these actors compose a hierarchical school social network. We first detect the hierarchical community structure in this school network by using an agglomerative hierarchical algorithm. Existing agglomerative hierarchical algorithms usually calculate similarity or dissimilarity between two clusters by using some measure of distance between pairs of observations. We, however, develop a method that calculates similarity based on social interactions between interactions is essential in multi-agent systems. Our algorithm is applied to 15 school districts in Bexar County, Texas, and it provides satisfying results on generating the hierarchical structure of all school districts. We then use the detected structure of the social network to evaluate the school system’s organization performance. We design and implement a funding evaluation model to decompose the funding policy task into subtasks and then evaluate these subtasks by using funding distribution policies from past years and looking for possible relationships between student performances and funding policies. Experiments in the 15 school districts in Bexar County show no significant correlation between student performance and the amount of the funding a school district received.展开更多
During this research we spot several key issues concerning WSN design process and how to introduce intelligence in the motes. Due to the nature of these networks, debugging after deployment is unrealistic, thus an eff...During this research we spot several key issues concerning WSN design process and how to introduce intelligence in the motes. Due to the nature of these networks, debugging after deployment is unrealistic, thus an efficient testing method is required. WSN simulators perform the task, but still code implementing mote sensing and RF behaviour consists of layered and/or interacting protocols that for the sake of designing accuracy are tested working as a whole, running on specific hardware. Simulators that provide cross layer simulation and hardware emulation options may be regarded as the last milestone of the WSN design process. Especially mechanisms for introducing intelligence into the WSN decision making process but in the simulation level is an important aspect not tackled so far in the literature at all. The herein proposed multi-agent simulation architecture aims at designing a novel WSN simulation system independent of specific hardware platforms but taking into account all hardware entities and events for testing and analysing the behaviour of a realistic WSN system. Moreover, the design herein outlined involves the basic mechanisms, with regards to memory and data management, towards Prolog interpreter implementation in the simulation level.展开更多
Avatars, as promising digital representations and service assistants of users in Metaverses, can enable drivers and passengers to immerse themselves in 3D virtual services and spaces of UAV-assisted vehicular Metavers...Avatars, as promising digital representations and service assistants of users in Metaverses, can enable drivers and passengers to immerse themselves in 3D virtual services and spaces of UAV-assisted vehicular Metaverses. However, avatar tasks include a multitude of human-to-avatar and avatar-to-avatar interactive applications, e.g., augmented reality navigation,which consumes intensive computing resources. It is inefficient and impractical for vehicles to process avatar tasks locally. Fortunately, migrating avatar tasks to the nearest roadside units(RSU)or unmanned aerial vehicles(UAV) for execution is a promising solution to decrease computation overhead and reduce task processing latency, while the high mobility of vehicles brings challenges for vehicles to independently perform avatar migration decisions depending on current and future vehicle status. To address these challenges, in this paper, we propose a novel avatar task migration system based on multi-agent deep reinforcement learning(MADRL) to execute immersive vehicular avatar tasks dynamically. Specifically, we first formulate the problem of avatar task migration from vehicles to RSUs/UAVs as a partially observable Markov decision process that can be solved by MADRL algorithms. We then design the multi-agent proximal policy optimization(MAPPO) approach as the MADRL algorithm for the avatar task migration problem. To overcome slow convergence resulting from the curse of dimensionality and non-stationary issues caused by shared parameters in MAPPO, we further propose a transformer-based MAPPO approach via sequential decision-making models for the efficient representation of relationships among agents. Finally, to motivate terrestrial or non-terrestrial edge servers(e.g., RSUs or UAVs) to share computation resources and ensure traceability of the sharing records, we apply smart contracts and blockchain technologies to achieve secure sharing management. Numerical results demonstrate that the proposed approach outperforms the MAPPO approach by around 2% and effectively reduces approximately 20% of the latency of avatar task execution in UAV-assisted vehicular Metaverses.展开更多
Monte Carlo simulation techniques have become the quintessence and a pivotal nexus of inquiry in the realm of simulating photon movement within biological fabrics.Through the stochastic sampling of tissue archetypes d...Monte Carlo simulation techniques have become the quintessence and a pivotal nexus of inquiry in the realm of simulating photon movement within biological fabrics.Through the stochastic sampling of tissue archetypes delineated by explicit optical characteristics,Monte Carlo simulations possess the theoretical capacity to render unparalleled accuracy in the depiction of exceedingly intricate phenomena.Nonetheless,the quintessential challenge associated with Monte Carlo simulation methodologies resides in their extended computational duration,which significantly impedes the refinement of their precision.Consequently,this discourse is specifically dedicated to exploring innovations in strategies and technologies aimed at expediting Monte Carlo simulations.It delves into the foundational concepts of various acceleration tactics,evaluates these strategies concerning their speed,accuracy,and practicality,and amalgamates a comprehensive overview and critique of acceleration methodologies for Monte Carlo simulations.Ultimately,the discourse envisages prospective trajectories for the employment of Monte Carlo techniques within the domain of tissue optics.展开更多
This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eli...This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.展开更多
Earth’s magnetopause is a thin boundary separating the shocked solar wind plasma from the magnetospheric plasmas,and it is also the boundary of the solar wind energy transport to the magnetosphere.Soft X-ray imaging ...Earth’s magnetopause is a thin boundary separating the shocked solar wind plasma from the magnetospheric plasmas,and it is also the boundary of the solar wind energy transport to the magnetosphere.Soft X-ray imaging allows investigation of the large-scale magnetopause by providing a two-dimensional(2-D)global view from a satellite.By performing 3-D global hybrid-particle-in-cell(hybrid-PIC)simulations,we obtain soft X-ray images of Earth’s magnetopause under different solar wind conditions,such as different plasma densities and directions of the southward interplanetary magnetic field.In all cases,magnetic reconnection occurs at low latitude magnetopause.The soft X-ray images observed by a hypothetical satellite are shown,with all of the following identified:the boundary of the magnetopause,the cusps,and the magnetosheath.Local X-ray emissivity in the magnetosheath is characterized by large amplitude fluctuations(up to 160%);however,the maximum line-of-sight-integrated X-ray intensity matches the tangent directions of the magnetopause well,indicating that these fluctuations have limited impact on identifying the magnetopause boundary in the X-ray images.Moreover,the magnetopause boundary can be identified using multiple viewing geometries.We also find that solar wind conditions have little effect on the magnetopause identification.The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission will provide X-ray images of the magnetopause for the first time,and our global hybrid-PIC simulation results can help better understand the 2-D X-ray images of the magnetopause from a 3-D perspective,with particle kinetic effects considered.展开更多
基金Aeronautical Science Foundation of China (2006ZA51004)
文摘With the aid of multi-agent based modeling approach to complex systems, the hierarchy simulation models of carrier-based aircraft catapult launch are developed. Ocean, carrier, aircraft, and atmosphere are treated as aggregation agents, the detailed components like catapult, landing gears, and disturbances are considered as meta-agents, which belong to their aggregation agent. Thus, the model with two layers is formed i.e. the aggregation agent layer and the meta-agent layer. The information communication among all agents is described. The meta-agents within one aggregation agent communicate with each other directly by information sharing, but the meta-agents, which belong to different aggregation agents exchange their information through the aggregation layer first, and then perceive it from the sharing environment, that is the aggregation agent. Thus, not only the hierarchy model is built, but also the environment perceived by each agent is specified. Meanwhile, the problem of balancing the independency of agent and the resource consumption brought by real-time communication within multi-agent system (MAS) is resolved. Each agent involved in carrier-based aircraft catapult launch is depicted, with considering the interaction within disturbed atmospheric environment and multiple motion bodies including carrier, aircraft, and landing gears. The models of reactive agents among them are derived based on tensors, and the perceived messages and inner frameworks of each agent are characterized. Finally, some results of a simulation instance are given. The simulation and modeling of dynamic system based on multi-agent system is of benefit to express physical concepts and logical hierarchy clearly and precisely. The system model can easily draw in kinds of other agents to achieve a precise simulation of more complex system. This modeling technique makes the complex integral dynamic equations of multibodies decompose into parallel operations of single agent, and it is convenient to expand, maintain, and reuse the program codes.
文摘The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this work.The following properties were determined:density,self-diffusion coefficient,excess molar volume,and radial distribution function.The results show that with an increase in the mole fraction of[HPy][BF_(4)],the self-diffusion coefficient decreases.Additionally,the excess molar volume initially decreases,reaches a minimum,and then increases.The rules of radial distribution functions(RDFs)of characteristic atoms are different.With increasing the mole fraction of[HPy][BF_(4)],the first peak of the RDFs of HA1-F decreases,while that of CT6-CT6 rises at first and then decreases.This indicates that the solvent molecules affect the polar and non-polar regions of[HPy][BF_(4)]differently.
文摘Presents the robot soccer software simulation platform to be firstly used at FIRA Robot World Cup China 2001, introduces the system’s purpose and design plan; discusses the system core server configuration and working principle; describes the operating method and how to develop competition strategy, and refers to the teams to take part in FIRA Robot World Cup China 2001 and investigators who are interested in the distributed multi agent system.
基金supported by the National Natural Science Foundation of China(7157105771390522)the Key Lab for Public Engineering Audit of Jiangsu Province,Nanjing Audit University(GGSS2016-08)
文摘Different from the organization structure of complex projects in Western countries, the Liang Zong hierarchical organization structure of complex projects in China has two different chains, the chief-engineer chain and the general-director chain,to handle the trade-off between technical and management decisions. However, previous works on organization search have mainly focused on the single-chain hierarchical organization in which all decisions are regarded as homogeneous. The heterogeneity and the interdependency between technical decisions and management decisions have been neglected. A two-chain hierarchical organization structure mapped from a real complex project is constructed. Then, a discrete decision model for a Liang Zong two-chain hierarchical organization in an NK model framework is proposed. This model proves that this kind of organization structure can reduce the search space by a large amount and that the search process should reach a final stable state more quickly. For a more complicated decision mechanism, a multi-agent simulation based on the above NK model is used to explore the effect of the two-chain organization structure on the speed, stability, and performance of the search process. The results provide three insights into how, compared with the single-chain hierarchical organization, the two-chain organization can improve the search process: it can reduce the number of iterations efficiently; the search is more stable because the search space is a smoother hill-like fitness landscape; in general, the search performance can be improved.However, when the organization structure is very complicated, the performance of a two-chain organization is inferior to that of a single-chain organization. These findings about the efficiency of the unique Chinese-style organization structure can be used to guide organization design for complex projects.
文摘In this study, we develop a mixed reality game system to investigate characteristics ofjudgrnents of individual players in an evacuation process. The characteristics of judgments of the players that are inferred from the performance of the game are then incorporated into a multi-agent simulation as rules. The behavior of evacuees is evaluated in approximations of real situations, by using the agent simulation including different judgments of evacuees. Using the results of the simulation, effective methods are discussed for achieving the escape of the evacuees within a short time.
文摘The prediction of the behavior of people in a disaster has a useful role to play in the design of urban structures such as department stores, schools, and office buildings. We focus on using emergency exit signs to effectively guide the evacuation of people on a floor with a dynamically changing layout. A multi-agent simulation is developed to simulate the behavior of evacuees on a floor. A mathematical model is constructed to obtain optimal sign locations to efficiently assist evacuation under the condition that obstacles are dynamically generated on the floor. The optimal sign locations are calculated by the mathematical model. Then, the developed simulation is performed to evaluate the effectiveness of the emergency exit signs and the behavior of evacuees on simple layout models using the calculated optimal sign locations.
文摘This paper proposes a prototype system for modeling and simulation of supply chains using a widely accepted agent platform Java agent development platform (JADE). A simple but practical coordination mechanism agent-based dynamic information network for supply chains (ADINS) is employed for the illustration of the suggested system and a simulation experiment is performed using a supply chain model of a Korean LCD manufacturing company. The result shows that the suggested mechanism is successful in reducing bullwhip effects and increasing service rates.
文摘Regional cities in Japan are at the risk of experiencing big fire accidents or earthquakes every day.However,neither the number nor the capacity of shelters has increased because local governments might not consider them owing to budget shortfall.By contrast,wide-area evacuation simulations can easily provide an antagonizing image of regional urban disasters.After a disaster,the city collapses and the evacuation routes are closed;consequently,evacuees feel anxious and they cannot move as usual.This anxiety behavior has not been considered in previous related studies and simulations.In this study,a wide-area evacuation simulation is developed;this model can not only calculate the possibility of blocking escape routes when the city is broken but also provide safe and more realistic evacuation plans before a disaster occurs by incorporating into the simulation the risk avoidance behaviors of evacuees from road blockage,such as“the route re-seeking behavior”and“the shelter re-selecting behavior”.
文摘The quality of K-12 education has been a very big concern for years. Previous methods studied only one or two factors, such as school choice, or teacher quality, on school performance. Therefore the results they provide can be limited. We propose a multi-agent approach to integrate multiple actors in a school system. These actors include teachers, students, supporting staffs and administrators. The interactions among these actors compose a hierarchical school social network. We first detect the hierarchical community structure in this school network by using an agglomerative hierarchical algorithm. Existing agglomerative hierarchical algorithms usually calculate similarity or dissimilarity between two clusters by using some measure of distance between pairs of observations. We, however, develop a method that calculates similarity based on social interactions between interactions is essential in multi-agent systems. Our algorithm is applied to 15 school districts in Bexar County, Texas, and it provides satisfying results on generating the hierarchical structure of all school districts. We then use the detected structure of the social network to evaluate the school system’s organization performance. We design and implement a funding evaluation model to decompose the funding policy task into subtasks and then evaluate these subtasks by using funding distribution policies from past years and looking for possible relationships between student performances and funding policies. Experiments in the 15 school districts in Bexar County show no significant correlation between student performance and the amount of the funding a school district received.
文摘During this research we spot several key issues concerning WSN design process and how to introduce intelligence in the motes. Due to the nature of these networks, debugging after deployment is unrealistic, thus an efficient testing method is required. WSN simulators perform the task, but still code implementing mote sensing and RF behaviour consists of layered and/or interacting protocols that for the sake of designing accuracy are tested working as a whole, running on specific hardware. Simulators that provide cross layer simulation and hardware emulation options may be regarded as the last milestone of the WSN design process. Especially mechanisms for introducing intelligence into the WSN decision making process but in the simulation level is an important aspect not tackled so far in the literature at all. The herein proposed multi-agent simulation architecture aims at designing a novel WSN simulation system independent of specific hardware platforms but taking into account all hardware entities and events for testing and analysing the behaviour of a realistic WSN system. Moreover, the design herein outlined involves the basic mechanisms, with regards to memory and data management, towards Prolog interpreter implementation in the simulation level.
基金supported in part by NSFC (62102099, U22A2054, 62101594)in part by the Pearl River Talent Recruitment Program (2021QN02S643)+9 种基金Guangzhou Basic Research Program (2023A04J1699)in part by the National Research Foundation, SingaporeInfocomm Media Development Authority under its Future Communications Research Development ProgrammeDSO National Laboratories under the AI Singapore Programme under AISG Award No AISG2-RP-2020-019Energy Research Test-Bed and Industry Partnership Funding Initiative, Energy Grid (EG) 2.0 programmeDesCartes and the Campus for Research Excellence and Technological Enterprise (CREATE) programmeMOE Tier 1 under Grant RG87/22in part by the Singapore University of Technology and Design (SUTD) (SRG-ISTD-2021- 165)in part by the SUTD-ZJU IDEA Grant SUTD-ZJU (VP) 202102in part by the Ministry of Education, Singapore, through its SUTD Kickstarter Initiative (SKI 20210204)。
文摘Avatars, as promising digital representations and service assistants of users in Metaverses, can enable drivers and passengers to immerse themselves in 3D virtual services and spaces of UAV-assisted vehicular Metaverses. However, avatar tasks include a multitude of human-to-avatar and avatar-to-avatar interactive applications, e.g., augmented reality navigation,which consumes intensive computing resources. It is inefficient and impractical for vehicles to process avatar tasks locally. Fortunately, migrating avatar tasks to the nearest roadside units(RSU)or unmanned aerial vehicles(UAV) for execution is a promising solution to decrease computation overhead and reduce task processing latency, while the high mobility of vehicles brings challenges for vehicles to independently perform avatar migration decisions depending on current and future vehicle status. To address these challenges, in this paper, we propose a novel avatar task migration system based on multi-agent deep reinforcement learning(MADRL) to execute immersive vehicular avatar tasks dynamically. Specifically, we first formulate the problem of avatar task migration from vehicles to RSUs/UAVs as a partially observable Markov decision process that can be solved by MADRL algorithms. We then design the multi-agent proximal policy optimization(MAPPO) approach as the MADRL algorithm for the avatar task migration problem. To overcome slow convergence resulting from the curse of dimensionality and non-stationary issues caused by shared parameters in MAPPO, we further propose a transformer-based MAPPO approach via sequential decision-making models for the efficient representation of relationships among agents. Finally, to motivate terrestrial or non-terrestrial edge servers(e.g., RSUs or UAVs) to share computation resources and ensure traceability of the sharing records, we apply smart contracts and blockchain technologies to achieve secure sharing management. Numerical results demonstrate that the proposed approach outperforms the MAPPO approach by around 2% and effectively reduces approximately 20% of the latency of avatar task execution in UAV-assisted vehicular Metaverses.
基金funded by the Chinese Academy of Medical Science health innovation project(grant nos.2021-I2M-1-042,2021-I2M-1-058,and 2022-I2M-C&T-A-005)Tianjin Outstanding Youth Fund Project(grant no.20JCJQIC00230)CAMS Innovation Fund for Medical Sciences(CIFMS)(grant no.2022-I2M-C&T-B-012).
文摘Monte Carlo simulation techniques have become the quintessence and a pivotal nexus of inquiry in the realm of simulating photon movement within biological fabrics.Through the stochastic sampling of tissue archetypes delineated by explicit optical characteristics,Monte Carlo simulations possess the theoretical capacity to render unparalleled accuracy in the depiction of exceedingly intricate phenomena.Nonetheless,the quintessential challenge associated with Monte Carlo simulation methodologies resides in their extended computational duration,which significantly impedes the refinement of their precision.Consequently,this discourse is specifically dedicated to exploring innovations in strategies and technologies aimed at expediting Monte Carlo simulations.It delves into the foundational concepts of various acceleration tactics,evaluates these strategies concerning their speed,accuracy,and practicality,and amalgamates a comprehensive overview and critique of acceleration methodologies for Monte Carlo simulations.Ultimately,the discourse envisages prospective trajectories for the employment of Monte Carlo techniques within the domain of tissue optics.
基金the National Natural Science Foundation of China(62203356)Fundamental Research Funds for the Central Universities of China(31020210502002)。
文摘This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.
基金supported by the National Natural Science Foundation of China(NNSFC)grants 42074202,42274196Strategic Priority Research Program of Chinese Academy of Sciences grant XDB41000000ISSI-BJ International Team Interaction between magnetic reconnection and turbulence:From the Sun to the Earth。
文摘Earth’s magnetopause is a thin boundary separating the shocked solar wind plasma from the magnetospheric plasmas,and it is also the boundary of the solar wind energy transport to the magnetosphere.Soft X-ray imaging allows investigation of the large-scale magnetopause by providing a two-dimensional(2-D)global view from a satellite.By performing 3-D global hybrid-particle-in-cell(hybrid-PIC)simulations,we obtain soft X-ray images of Earth’s magnetopause under different solar wind conditions,such as different plasma densities and directions of the southward interplanetary magnetic field.In all cases,magnetic reconnection occurs at low latitude magnetopause.The soft X-ray images observed by a hypothetical satellite are shown,with all of the following identified:the boundary of the magnetopause,the cusps,and the magnetosheath.Local X-ray emissivity in the magnetosheath is characterized by large amplitude fluctuations(up to 160%);however,the maximum line-of-sight-integrated X-ray intensity matches the tangent directions of the magnetopause well,indicating that these fluctuations have limited impact on identifying the magnetopause boundary in the X-ray images.Moreover,the magnetopause boundary can be identified using multiple viewing geometries.We also find that solar wind conditions have little effect on the magnetopause identification.The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission will provide X-ray images of the magnetopause for the first time,and our global hybrid-PIC simulation results can help better understand the 2-D X-ray images of the magnetopause from a 3-D perspective,with particle kinetic effects considered.