This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eli...This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.展开更多
This article investigates the problem of robust adaptive leaderless consensus for heterogeneous uncertain nonminimumphase linear multi-agent systems over directed communication graphs. Each agent is assumed tobe of un...This article investigates the problem of robust adaptive leaderless consensus for heterogeneous uncertain nonminimumphase linear multi-agent systems over directed communication graphs. Each agent is assumed tobe of unknown nominal dynamics and also subject to external disturbances and/or unmodeled dynamics. Anovel distributed robust adaptive control strategy is proposed. It is shown that the robust adaptive leaderlessconsensus problem is solved with the proposed control strategy under some sufficient conditions. Two examplesare provided to demonstrate the efficacy of the proposed control strategy.展开更多
This paper is concerned with consensus of a secondorder linear time-invariant multi-agent system in the situation that there exists a communication delay among the agents in the network.A proportional-integral consens...This paper is concerned with consensus of a secondorder linear time-invariant multi-agent system in the situation that there exists a communication delay among the agents in the network.A proportional-integral consensus protocol is designed by using delayed and memorized state information.Under the proportional-integral consensus protocol,the consensus problem of the multi-agent system is transformed into the problem of asymptotic stability of the corresponding linear time-invariant time-delay system.Note that the location of the eigenvalues of the corresponding characteristic function of the linear time-invariant time-delay system not only determines the stability of the system,but also plays a critical role in the dynamic performance of the system.In this paper,based on recent results on the distribution of roots of quasi-polynomials,several necessary conditions for Hurwitz stability for a class of quasi-polynomials are first derived.Then allowable regions of consensus protocol parameters are estimated.Some necessary and sufficient conditions for determining effective protocol parameters are provided.The designed protocol can achieve consensus and improve the dynamic performance of the second-order multi-agent system.Moreover,the effects of delays on consensus of systems of harmonic oscillators/double integrators under proportional-integral consensus protocols are investigated.Furthermore,some results on proportional-integral consensus are derived for a class of high-order linear time-invariant multi-agent systems.展开更多
This paper examines the bipartite consensus problems for the nonlinear multi-agent systems in Lurie dynamics form with cooperative and competitive communication between different agents. Based on the contraction theor...This paper examines the bipartite consensus problems for the nonlinear multi-agent systems in Lurie dynamics form with cooperative and competitive communication between different agents. Based on the contraction theory, some new conditions for the nonlinear Lurie multi-agent systems reaching bipartite leaderless consensus and bipartite tracking consensus are presented. Compared with the traditional methods, this approach degrades the dimensions of the conditions, eliminates some restrictions of the system matrix, and extends the range of the nonlinear function. Finally, two numerical examples are provided to illustrate the efficiency of our results.展开更多
Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as s...Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as safety and liveness,there is still a lack of quantitative and uncertain property verifications for these systems.In uncertain environments,agents must make judicious decisions based on subjective epistemic.To verify epistemic and measurable properties in multi-agent systems,this paper extends fuzzy computation tree logic by introducing epistemic modalities and proposing a new Fuzzy Computation Tree Logic of Knowledge(FCTLK).We represent fuzzy multi-agent systems as distributed knowledge bases with fuzzy epistemic interpreted systems.In addition,we provide a transformation algorithm from fuzzy epistemic interpreted systems to fuzzy Kripke structures,as well as transformation rules from FCTLK formulas to Fuzzy Computation Tree Logic(FCTL)formulas.Accordingly,we transform the FCTLK model checking problem into the FCTL model checking.This enables the verification of FCTLK formulas by using the fuzzy model checking algorithm of FCTL without additional computational overheads.Finally,we present correctness proofs and complexity analyses of the proposed algorithms.Additionally,we further illustrate the practical application of our approach through an example of a train control system.展开更多
This paper investigates the problem of global/semi-global finite-time consensus for integrator-type multi-agent sys-tems.New hyperbolic tangent function-based protocols are pro-posed to achieve global and semi-global ...This paper investigates the problem of global/semi-global finite-time consensus for integrator-type multi-agent sys-tems.New hyperbolic tangent function-based protocols are pro-posed to achieve global and semi-global finite-time consensus for both single-integrator and double-integrator multi-agent systems with leaderless undirected and leader-following directed commu-nication topologies.These new protocols not only provide an explicit upper-bound estimate for the settling time,but also have a user-prescribed bounded control level.In addition,compared to some existing results based on the saturation function,the pro-posed approach considerably simplifies the protocol design and the stability analysis.Illustrative examples and an application demonstrate the effectiveness of the proposed protocols.展开更多
This paper investigates the robust cooperative output regulation problem for a class of heterogeneousuncertain linear multi-agent systems with an unknown exosystem via event-triggered control (ETC). By utilizingthe in...This paper investigates the robust cooperative output regulation problem for a class of heterogeneousuncertain linear multi-agent systems with an unknown exosystem via event-triggered control (ETC). By utilizingthe internal model approach and the adaptive control technique, a distributed adaptive internal model isconstructed for each agent. Then, based on this internal model, a fully distributed ETC strategy composed ofa distributed event-triggered adaptive output feedback control law and a distributed dynamic event-triggeringmechanism is proposed, in which each agent updates its control input at its own triggering time instants. It isshown that under the proposed ETC strategy, the robust cooperative output regulation problem can be solvedwithout requiring either the global information associated with the communication topology or the bounds ofthe uncertain or unknown parameters in each agent and the exosystem. A numerical example is provided toillustrate the effectiveness of the proposed control strategy.展开更多
This paper addresses the problem of containment control for heterogeneous multi-agent systems subject to Markovian randomly switching topologies and unbounded communication delays.The objective is to design a distribu...This paper addresses the problem of containment control for heterogeneous multi-agent systems subject to Markovian randomly switching topologies and unbounded communication delays.The objective is to design a distributed control strategy that ensures the output of each follower converges to the convex hull formed by the outputs of a group of leaders in mean square sense.A novel distributed observer is proposed by tackling both Markovian randomly switching topologies and unbounded delays.Then,a distributed state feedback controller and a distributed output feedback controller are developed based on the distributed observer,respectively.Finally,simulation results are provided to demonstrate the effectiveness of the proposed controllers.展开更多
In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained f...In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method.展开更多
Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emp...Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry.展开更多
Distributed adaptive predefined-time bipartite containment for a class of second-order nonlinear multi-agent systems are studied with actuator faults.The communication topology of multi-agent systems is fixed and dire...Distributed adaptive predefined-time bipartite containment for a class of second-order nonlinear multi-agent systems are studied with actuator faults.The communication topology of multi-agent systems is fixed and directed.To ensure that followers can reach the convex hull spanned by leaders under the conditions of actuator faults,the sliding mode method is introduced.Control protocol for multi-agent systems demonstrates its effectiveness.Finally,simulations are provided to verify the effectiveness of the proposed algorithm.展开更多
Background:Diabetic cardiomyopathy(DCM)is a type of cardiomyopathy caused by long-term diabetes,characterized by abnormal myocardial structure and function,which can lead to heart failure.Berberine(BBR),a quaternary a...Background:Diabetic cardiomyopathy(DCM)is a type of cardiomyopathy caused by long-term diabetes,characterized by abnormal myocardial structure and function,which can lead to heart failure.Berberine(BBR),a quaternary ammonium alkaloid isolated from Coptidis Rhizoma,a traditional Chinese medicine,has superior anti-diabetic and heart-protective properties.The purpose of this study is to assess the impact of BBR on DCM.Methods:This study used a systems pharmacology approach to evaluate the related proteins and signalling pathways between BBR and DCM targets,combined with experimental validation using diabetic mouse heart sections.Microstructural and pathological changes were observed using Hematoxylin-eosin,Masson’s trichrome stain and wheat germ agglutinin staining.Immunofluorescence and western blot were used to determine protein expression.Results:The results indicate that BBR and DCM share 21 core relevant targets,with cross-targets predominantly located in mitochondrial,endoplasmic reticulum,and plasma membrane components.BBR exerts its main effects in improving DCM by maintaining mitochondrial integrity,particularly involving the PI3K-AKT-GSK3βand apoptosis signalling pathways.In addition,post-treatment changes in the key targets of BBR,including cysteine aspartate specific protease(Caspase)-3,phosphoinositide 3-kinase(PI3K)and mitochondria-related proteins,are suggestive of its efficacy.Conclusion:BBR crucially improves DCM by maintaining mitochondrial integrity,inhibiting apoptosis,and modulating PI3K-AKT-GSK3βsignaling.Further studies must address animal model limitations and validate clinical efficacy to understand BBR’s mechanisms fully and its potential clinical use.展开更多
Organic electrochemical transistors have emerged as a solution for artificial synapses that mimic the neural functions of the brain structure,holding great potentials to break the bottleneck of von Neumann architectur...Organic electrochemical transistors have emerged as a solution for artificial synapses that mimic the neural functions of the brain structure,holding great potentials to break the bottleneck of von Neumann architectures.However,current artificial synapses rely primarily on electrical signals,and little attention has been paid to the vital role of neurotransmitter-mediated artificial synapses.Dopamine is a key neurotransmitter associated with emotion regulation and cognitive processes that needs to be monitored in real time to advance the development of disease diagnostics and neuroscience.To provide insights into the development of artificial synapses with neurotransmitter involvement,this review proposes three steps towards future biomimic and bioinspired neuromorphic systems.We first summarize OECT-based dopamine detection devices,and then review advances in neurotransmitter-mediated artificial synapses and resultant advanced neuromorphic systems.Finally,by exploring the challenges and opportunities related to such neuromorphic systems,we provide a perspective on the future development of biomimetic and bioinspired neuromorphic systems.展开更多
As the power system transitions to a new green and low-carbon paradigm,the penetration of renewable energy in China’s power system is gradually increasing.However,the variability and uncertainty of renewable energy o...As the power system transitions to a new green and low-carbon paradigm,the penetration of renewable energy in China’s power system is gradually increasing.However,the variability and uncertainty of renewable energy output limit its profitability in the electricity market and hinder its market-based integration.This paper first constructs a wind-solar-thermalmulti-energy complementary system,analyzes its external game relationships,and develops a bi-level market optimization model.Then,it considers the contribution levels of internal participants to establish a comprehensive internal distribution evaluation index system.Finally,simulation studies using the IEEE 30-bus system demonstrate that the multi-energy complementary system stabilizes nodal outputs,enhances the profitability of market participants,and promotes the market-based integration of renewable energy.展开更多
In the rapidly evolving landscape of today’s digital economy,Financial Technology(Fintech)emerges as a trans-formative force,propelled by the dynamic synergy between Artificial Intelligence(AI)and Algorithmic Trading...In the rapidly evolving landscape of today’s digital economy,Financial Technology(Fintech)emerges as a trans-formative force,propelled by the dynamic synergy between Artificial Intelligence(AI)and Algorithmic Trading.Our in-depth investigation delves into the intricacies of merging Multi-Agent Reinforcement Learning(MARL)and Explainable AI(XAI)within Fintech,aiming to refine Algorithmic Trading strategies.Through meticulous examination,we uncover the nuanced interactions of AI-driven agents as they collaborate and compete within the financial realm,employing sophisticated deep learning techniques to enhance the clarity and adaptability of trading decisions.These AI-infused Fintech platforms harness collective intelligence to unearth trends,mitigate risks,and provide tailored financial guidance,fostering benefits for individuals and enterprises navigating the digital landscape.Our research holds the potential to revolutionize finance,opening doors to fresh avenues for investment and asset management in the digital age.Additionally,our statistical evaluation yields encouraging results,with metrics such as Accuracy=0.85,Precision=0.88,and F1 Score=0.86,reaffirming the efficacy of our approach within Fintech and emphasizing its reliability and innovative prowess.展开更多
Battery energy storage systems(BESSs)are widely used in smart grids.However,power consumed by inner impedance and the capacity degradation of each battery unit become particularly severe,which has resulted in an incre...Battery energy storage systems(BESSs)are widely used in smart grids.However,power consumed by inner impedance and the capacity degradation of each battery unit become particularly severe,which has resulted in an increase in operating costs.The general economic dispatch(ED)algorithm based on marginal cost(MC)consensus is usually a proportional(P)controller,which encounters the defects of slow convergence speed and low control accuracy.In order to solve the distributed ED problem of the isolated BESS network with excellent dynamic and steady-state performance,we attempt to design a proportional integral(PI)controller with a reset mechanism(PI+R)to asymptotically promote MC consensus and total power mismatch towards 0 in this paper.To be frank,the integral term in the PI controller is reset to 0 at an appropriate time when the proportional term undergoes a zero crossing,which accelerates convergence,improves control accuracy,and avoids overshoot.The eigenvalues of the system under a PI+R controller is well analyzed,ensuring the regularity of the system and enabling the reset mechanism.To ensure supply and demand balance within the isolated BESSs,a centralized reset mechanism is introduced,so that the controller is distributed in a flow set and centralized in a jump set.To cope with Zeno behavior and input delay,a dwell time that the system resides in a flow set is given.Based on this,the system with input delays can be reduced to a time-delay free system.Considering the capacity limitation of the battery,a modified MC scheme with PI+R controller is designed.The correctness of the designed scheme is verified through relevant simulations.展开更多
In the past few decades,ion engines have been widely used in deep-space propulsion and satellite station-keeping.The aim of extending the thruster lifetime is still one of the most important parts during the design st...In the past few decades,ion engines have been widely used in deep-space propulsion and satellite station-keeping.The aim of extending the thruster lifetime is still one of the most important parts during the design stage of ion engine.As one of the core components of ion engine,the grid assembly of ion optic systems may experience long-term ion sputtering in extreme electro-thermal environments,which will eventually lead to its structural and electron-backstreaming failures.In this paper,the current studies of the grid assembly erosion process are systematically analyzed from the aspects of sputtering damage process of grid materials,numerical simulations,and measurements of erosion characteristics of grid assembly.The advantages and disadvantages of various erosion prediction models are highlighted,and the key factors and processes affecting the prediction accuracy of grid assembly erosion patterns are analyzed.Three different types of experimental methods of grid assembly erosion patterns are compared.The analysis in this paper is of great importance for selecting the sputter-resistant grid materials,as well as establishing the erosion models and measurement methods to accurately determine the erosion rate and failure modes of grid assembly.Consequently,the working conditions and structure parameters of ion optic systems could be optimized based on erosion models to promote the ion engine lifetime.展开更多
Shen et al’s retrospective study aims to compare the utility of two separate scoring systems for predicting mortality attributable to gastrointestinal(GI)injury in critically ill patients[the GI Dysfunction Score(GID...Shen et al’s retrospective study aims to compare the utility of two separate scoring systems for predicting mortality attributable to gastrointestinal(GI)injury in critically ill patients[the GI Dysfunction Score(GIDS)and the Acute Gastroin-testinal Injury(AGI)grade].The authors note that this study is the first proposal that suggests an equivalence between the ability of both scores to predict mor-tality at 28 days from intensive care unit(ICU)admission.Shen et al retrospec-tively analysed an ICU cohort of patients utilising two physicians administering both the AGI grade and GIDS score,using electronic healthcare records and ICU flowsheets.Where these physicians disagreed about the scores,the final decision as to the scores was made by an associate chief physician,or chief physician.We note that the primary reason for the development of GIDS was to create a clear score for GI dysfunction,with minimal subjectivity or inter-operator variability.The subjectivity inherent to the older AGI grading system is what ultimately led to the development of GIDS in 2021.By ensuring consensus between physicians administering the AGI,Shen et al have controlled for one of this grading systems biggest issues.We have concerns,however,that this does not represent the real-world challenges associated with applying the AGI compared to the newer GIDS,and wonder if this arbitration process had not been instituted,would the two scoring systems remain equivalent in terms of predicted mortality?展开更多
Consider C^(2)Anosov systems on a compact manifold driven by a quasi-periodic force.We study their dynamical complexity on various levels from the perspectives of both path-wise dynamics and stochastic processes.Assum...Consider C^(2)Anosov systems on a compact manifold driven by a quasi-periodic force.We study their dynamical complexity on various levels from the perspectives of both path-wise dynamics and stochastic processes.Assuming that these systems are non-wandering(i.e.,every point in the phase space is nonwandering),we prove a set of results:(1)the existence of abundance of random periodic points;(2)a random Livsic theorem;(3)a random Mañé-Bousch-Conze-Guivarc'h lemma;(4)the existence of strong random horseshoes.Additionally,a concrete example constructed on a 2-dimensional torus is also given to uncover some interesting phenomena of the systems.展开更多
基金the National Natural Science Foundation of China(62203356)Fundamental Research Funds for the Central Universities of China(31020210502002)。
文摘This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.
基金Research Grants Council of Hong Kong under Grant CityU-11205221.
文摘This article investigates the problem of robust adaptive leaderless consensus for heterogeneous uncertain nonminimumphase linear multi-agent systems over directed communication graphs. Each agent is assumed tobe of unknown nominal dynamics and also subject to external disturbances and/or unmodeled dynamics. Anovel distributed robust adaptive control strategy is proposed. It is shown that the robust adaptive leaderlessconsensus problem is solved with the proposed control strategy under some sufficient conditions. Two examplesare provided to demonstrate the efficacy of the proposed control strategy.
基金supported in part by the National Natural Science Foundation of China (NSFC)(61703086, 61773106)the IAPI Fundamental Research Funds (2018ZCX27)
文摘This paper is concerned with consensus of a secondorder linear time-invariant multi-agent system in the situation that there exists a communication delay among the agents in the network.A proportional-integral consensus protocol is designed by using delayed and memorized state information.Under the proportional-integral consensus protocol,the consensus problem of the multi-agent system is transformed into the problem of asymptotic stability of the corresponding linear time-invariant time-delay system.Note that the location of the eigenvalues of the corresponding characteristic function of the linear time-invariant time-delay system not only determines the stability of the system,but also plays a critical role in the dynamic performance of the system.In this paper,based on recent results on the distribution of roots of quasi-polynomials,several necessary conditions for Hurwitz stability for a class of quasi-polynomials are first derived.Then allowable regions of consensus protocol parameters are estimated.Some necessary and sufficient conditions for determining effective protocol parameters are provided.The designed protocol can achieve consensus and improve the dynamic performance of the second-order multi-agent system.Moreover,the effects of delays on consensus of systems of harmonic oscillators/double integrators under proportional-integral consensus protocols are investigated.Furthermore,some results on proportional-integral consensus are derived for a class of high-order linear time-invariant multi-agent systems.
基金Project supported by the National Natural Science Foundation of China(Grant No.62363005)the Jiangxi Provincial Natural Science Foundation(Grant Nos.20161BAB212032 and 20232BAB202034)the Science and Technology Research Project of Jiangxi Provincial Department of Education(Grant Nos.GJJ202602 and GJJ202601)。
文摘This paper examines the bipartite consensus problems for the nonlinear multi-agent systems in Lurie dynamics form with cooperative and competitive communication between different agents. Based on the contraction theory, some new conditions for the nonlinear Lurie multi-agent systems reaching bipartite leaderless consensus and bipartite tracking consensus are presented. Compared with the traditional methods, this approach degrades the dimensions of the conditions, eliminates some restrictions of the system matrix, and extends the range of the nonlinear function. Finally, two numerical examples are provided to illustrate the efficiency of our results.
基金The work is partially supported by Natural Science Foundation of Ningxia(Grant No.AAC03300)National Natural Science Foundation of China(Grant No.61962001)Graduate Innovation Project of North Minzu University(Grant No.YCX23152).
文摘Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as safety and liveness,there is still a lack of quantitative and uncertain property verifications for these systems.In uncertain environments,agents must make judicious decisions based on subjective epistemic.To verify epistemic and measurable properties in multi-agent systems,this paper extends fuzzy computation tree logic by introducing epistemic modalities and proposing a new Fuzzy Computation Tree Logic of Knowledge(FCTLK).We represent fuzzy multi-agent systems as distributed knowledge bases with fuzzy epistemic interpreted systems.In addition,we provide a transformation algorithm from fuzzy epistemic interpreted systems to fuzzy Kripke structures,as well as transformation rules from FCTLK formulas to Fuzzy Computation Tree Logic(FCTL)formulas.Accordingly,we transform the FCTLK model checking problem into the FCTL model checking.This enables the verification of FCTLK formulas by using the fuzzy model checking algorithm of FCTL without additional computational overheads.Finally,we present correctness proofs and complexity analyses of the proposed algorithms.Additionally,we further illustrate the practical application of our approach through an example of a train control system.
基金supported by the National Natural Science Foundation of China(62073019)。
文摘This paper investigates the problem of global/semi-global finite-time consensus for integrator-type multi-agent sys-tems.New hyperbolic tangent function-based protocols are pro-posed to achieve global and semi-global finite-time consensus for both single-integrator and double-integrator multi-agent systems with leaderless undirected and leader-following directed commu-nication topologies.These new protocols not only provide an explicit upper-bound estimate for the settling time,but also have a user-prescribed bounded control level.In addition,compared to some existing results based on the saturation function,the pro-posed approach considerably simplifies the protocol design and the stability analysis.Illustrative examples and an application demonstrate the effectiveness of the proposed protocols.
基金the National Natural Science Foundation of China(NSFC)-Excellent Young Scientists Fund(Hong Kong and Macao)under Grant 62222318.
文摘This paper investigates the robust cooperative output regulation problem for a class of heterogeneousuncertain linear multi-agent systems with an unknown exosystem via event-triggered control (ETC). By utilizingthe internal model approach and the adaptive control technique, a distributed adaptive internal model isconstructed for each agent. Then, based on this internal model, a fully distributed ETC strategy composed ofa distributed event-triggered adaptive output feedback control law and a distributed dynamic event-triggeringmechanism is proposed, in which each agent updates its control input at its own triggering time instants. It isshown that under the proposed ETC strategy, the robust cooperative output regulation problem can be solvedwithout requiring either the global information associated with the communication topology or the bounds ofthe uncertain or unknown parameters in each agent and the exosystem. A numerical example is provided toillustrate the effectiveness of the proposed control strategy.
文摘This paper addresses the problem of containment control for heterogeneous multi-agent systems subject to Markovian randomly switching topologies and unbounded communication delays.The objective is to design a distributed control strategy that ensures the output of each follower converges to the convex hull formed by the outputs of a group of leaders in mean square sense.A novel distributed observer is proposed by tackling both Markovian randomly switching topologies and unbounded delays.Then,a distributed state feedback controller and a distributed output feedback controller are developed based on the distributed observer,respectively.Finally,simulation results are provided to demonstrate the effectiveness of the proposed controllers.
基金Supported by the National Natural Science Foundation of China(11971458,11471310)。
文摘In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method.
文摘Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry.
基金2024 Jiangsu Province Youth Science and Technology Talent Support Project(funded by Yancheng Science and Technology Association)The 2024 Yancheng Key Research and Development Plan(Social Development)projects include“Research and Application of Multi-Agent Offline Distributed Trust Perception Virtual Wireless Sensor Network Algorithm”and“Research and Application of a New Type of Fishery Ship Safety Production Monitoring Equipment.”。
文摘Distributed adaptive predefined-time bipartite containment for a class of second-order nonlinear multi-agent systems are studied with actuator faults.The communication topology of multi-agent systems is fixed and directed.To ensure that followers can reach the convex hull spanned by leaders under the conditions of actuator faults,the sliding mode method is introduced.Control protocol for multi-agent systems demonstrates its effectiveness.Finally,simulations are provided to verify the effectiveness of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(Grant No.82270892)Natural Science Foundation of Hubei Province(Grant No.2022CFB287)+2 种基金Xianning City Science and Technology Plan Project(Grant No.2022ZRKX052)School projects of Hubei University of Science and Technology(Grant No.2022T01,2021WG05,2021TNB01)Hubei University of Science and Technology School-level Fund(Grant No.BK202122).
文摘Background:Diabetic cardiomyopathy(DCM)is a type of cardiomyopathy caused by long-term diabetes,characterized by abnormal myocardial structure and function,which can lead to heart failure.Berberine(BBR),a quaternary ammonium alkaloid isolated from Coptidis Rhizoma,a traditional Chinese medicine,has superior anti-diabetic and heart-protective properties.The purpose of this study is to assess the impact of BBR on DCM.Methods:This study used a systems pharmacology approach to evaluate the related proteins and signalling pathways between BBR and DCM targets,combined with experimental validation using diabetic mouse heart sections.Microstructural and pathological changes were observed using Hematoxylin-eosin,Masson’s trichrome stain and wheat germ agglutinin staining.Immunofluorescence and western blot were used to determine protein expression.Results:The results indicate that BBR and DCM share 21 core relevant targets,with cross-targets predominantly located in mitochondrial,endoplasmic reticulum,and plasma membrane components.BBR exerts its main effects in improving DCM by maintaining mitochondrial integrity,particularly involving the PI3K-AKT-GSK3βand apoptosis signalling pathways.In addition,post-treatment changes in the key targets of BBR,including cysteine aspartate specific protease(Caspase)-3,phosphoinositide 3-kinase(PI3K)and mitochondria-related proteins,are suggestive of its efficacy.Conclusion:BBR crucially improves DCM by maintaining mitochondrial integrity,inhibiting apoptosis,and modulating PI3K-AKT-GSK3βsignaling.Further studies must address animal model limitations and validate clinical efficacy to understand BBR’s mechanisms fully and its potential clinical use.
基金supported by the National Natural Science Foundation of China(Grant No.62074163)Beijing Natural Science Foundation(Grant No.JQ24030).
文摘Organic electrochemical transistors have emerged as a solution for artificial synapses that mimic the neural functions of the brain structure,holding great potentials to break the bottleneck of von Neumann architectures.However,current artificial synapses rely primarily on electrical signals,and little attention has been paid to the vital role of neurotransmitter-mediated artificial synapses.Dopamine is a key neurotransmitter associated with emotion regulation and cognitive processes that needs to be monitored in real time to advance the development of disease diagnostics and neuroscience.To provide insights into the development of artificial synapses with neurotransmitter involvement,this review proposes three steps towards future biomimic and bioinspired neuromorphic systems.We first summarize OECT-based dopamine detection devices,and then review advances in neurotransmitter-mediated artificial synapses and resultant advanced neuromorphic systems.Finally,by exploring the challenges and opportunities related to such neuromorphic systems,we provide a perspective on the future development of biomimetic and bioinspired neuromorphic systems.
基金funded by the National Key R&D Program of China,grant number 2019YFB1505400.
文摘As the power system transitions to a new green and low-carbon paradigm,the penetration of renewable energy in China’s power system is gradually increasing.However,the variability and uncertainty of renewable energy output limit its profitability in the electricity market and hinder its market-based integration.This paper first constructs a wind-solar-thermalmulti-energy complementary system,analyzes its external game relationships,and develops a bi-level market optimization model.Then,it considers the contribution levels of internal participants to establish a comprehensive internal distribution evaluation index system.Finally,simulation studies using the IEEE 30-bus system demonstrate that the multi-energy complementary system stabilizes nodal outputs,enhances the profitability of market participants,and promotes the market-based integration of renewable energy.
基金This project was funded by Deanship of Scientific Research(DSR)at King Abdulaziz University,Jeddah underGrant No.(IFPIP-1127-611-1443)the authors,therefore,acknowledge with thanks DSR technical and financial support.
文摘In the rapidly evolving landscape of today’s digital economy,Financial Technology(Fintech)emerges as a trans-formative force,propelled by the dynamic synergy between Artificial Intelligence(AI)and Algorithmic Trading.Our in-depth investigation delves into the intricacies of merging Multi-Agent Reinforcement Learning(MARL)and Explainable AI(XAI)within Fintech,aiming to refine Algorithmic Trading strategies.Through meticulous examination,we uncover the nuanced interactions of AI-driven agents as they collaborate and compete within the financial realm,employing sophisticated deep learning techniques to enhance the clarity and adaptability of trading decisions.These AI-infused Fintech platforms harness collective intelligence to unearth trends,mitigate risks,and provide tailored financial guidance,fostering benefits for individuals and enterprises navigating the digital landscape.Our research holds the potential to revolutionize finance,opening doors to fresh avenues for investment and asset management in the digital age.Additionally,our statistical evaluation yields encouraging results,with metrics such as Accuracy=0.85,Precision=0.88,and F1 Score=0.86,reaffirming the efficacy of our approach within Fintech and emphasizing its reliability and innovative prowess.
基金supported by the National Natural Science Foundation of China(62103203)the General Terminal IC Interdisciplinary Science Center of Nankai University.
文摘Battery energy storage systems(BESSs)are widely used in smart grids.However,power consumed by inner impedance and the capacity degradation of each battery unit become particularly severe,which has resulted in an increase in operating costs.The general economic dispatch(ED)algorithm based on marginal cost(MC)consensus is usually a proportional(P)controller,which encounters the defects of slow convergence speed and low control accuracy.In order to solve the distributed ED problem of the isolated BESS network with excellent dynamic and steady-state performance,we attempt to design a proportional integral(PI)controller with a reset mechanism(PI+R)to asymptotically promote MC consensus and total power mismatch towards 0 in this paper.To be frank,the integral term in the PI controller is reset to 0 at an appropriate time when the proportional term undergoes a zero crossing,which accelerates convergence,improves control accuracy,and avoids overshoot.The eigenvalues of the system under a PI+R controller is well analyzed,ensuring the regularity of the system and enabling the reset mechanism.To ensure supply and demand balance within the isolated BESSs,a centralized reset mechanism is introduced,so that the controller is distributed in a flow set and centralized in a jump set.To cope with Zeno behavior and input delay,a dwell time that the system resides in a flow set is given.Based on this,the system with input delays can be reduced to a time-delay free system.Considering the capacity limitation of the battery,a modified MC scheme with PI+R controller is designed.The correctness of the designed scheme is verified through relevant simulations.
基金co-supported by the National Key R&D Program of China(No.2022YFB3403500)the National Natural Science Foundation of China(No.NSFC52202460)the China Postdoctoral Science Foundation(Nos.2021M690392,2021TQ0036,and 2023TQ0031)。
文摘In the past few decades,ion engines have been widely used in deep-space propulsion and satellite station-keeping.The aim of extending the thruster lifetime is still one of the most important parts during the design stage of ion engine.As one of the core components of ion engine,the grid assembly of ion optic systems may experience long-term ion sputtering in extreme electro-thermal environments,which will eventually lead to its structural and electron-backstreaming failures.In this paper,the current studies of the grid assembly erosion process are systematically analyzed from the aspects of sputtering damage process of grid materials,numerical simulations,and measurements of erosion characteristics of grid assembly.The advantages and disadvantages of various erosion prediction models are highlighted,and the key factors and processes affecting the prediction accuracy of grid assembly erosion patterns are analyzed.Three different types of experimental methods of grid assembly erosion patterns are compared.The analysis in this paper is of great importance for selecting the sputter-resistant grid materials,as well as establishing the erosion models and measurement methods to accurately determine the erosion rate and failure modes of grid assembly.Consequently,the working conditions and structure parameters of ion optic systems could be optimized based on erosion models to promote the ion engine lifetime.
文摘Shen et al’s retrospective study aims to compare the utility of two separate scoring systems for predicting mortality attributable to gastrointestinal(GI)injury in critically ill patients[the GI Dysfunction Score(GIDS)and the Acute Gastroin-testinal Injury(AGI)grade].The authors note that this study is the first proposal that suggests an equivalence between the ability of both scores to predict mor-tality at 28 days from intensive care unit(ICU)admission.Shen et al retrospec-tively analysed an ICU cohort of patients utilising two physicians administering both the AGI grade and GIDS score,using electronic healthcare records and ICU flowsheets.Where these physicians disagreed about the scores,the final decision as to the scores was made by an associate chief physician,or chief physician.We note that the primary reason for the development of GIDS was to create a clear score for GI dysfunction,with minimal subjectivity or inter-operator variability.The subjectivity inherent to the older AGI grading system is what ultimately led to the development of GIDS in 2021.By ensuring consensus between physicians administering the AGI,Shen et al have controlled for one of this grading systems biggest issues.We have concerns,however,that this does not represent the real-world challenges associated with applying the AGI compared to the newer GIDS,and wonder if this arbitration process had not been instituted,would the two scoring systems remain equivalent in terms of predicted mortality?
基金supported by National Natural Science Foundation of China(Grant Nos.12090010,12090013,11971330,12090012,12031019,11725105,and 12226102).
文摘Consider C^(2)Anosov systems on a compact manifold driven by a quasi-periodic force.We study their dynamical complexity on various levels from the perspectives of both path-wise dynamics and stochastic processes.Assuming that these systems are non-wandering(i.e.,every point in the phase space is nonwandering),we prove a set of results:(1)the existence of abundance of random periodic points;(2)a random Livsic theorem;(3)a random Mañé-Bousch-Conze-Guivarc'h lemma;(4)the existence of strong random horseshoes.Additionally,a concrete example constructed on a 2-dimensional torus is also given to uncover some interesting phenomena of the systems.