A combined arrival and departure scheduling problem is investigated for multi-airport system to alleviate the problem of airspace congestion and flight delay.Firstly,the combined scheduling problem for multi-airport s...A combined arrival and departure scheduling problem is investigated for multi-airport system to alleviate the problem of airspace congestion and flight delay.Firstly,the combined scheduling problem for multi-airport system is defined through in-depth analysis of the characteristics of arrival and departure operations.Then,several constraints are taken into account,such as wake vortex separation,transfer separation,release separation,and separation in different runway operational modes.Furthermore,the scheduling model is constructed and simulated annealing algorithm is proposed by minimizing the total delay.Finally,Shanghai multi-airport system is chosen to conduct the simulation and validation.And the simulation results indicate that the proposed method is able to effectively improve the efficiency of arrival and departure operations for multi-airport system.展开更多
As one of the core modules for air traffic flow management,Air Traffic Flow Prediction(ATFP)in the Multi-Airport System(MAS)is a prerequisite for demand and capacity balance in the complex meteorological environment.D...As one of the core modules for air traffic flow management,Air Traffic Flow Prediction(ATFP)in the Multi-Airport System(MAS)is a prerequisite for demand and capacity balance in the complex meteorological environment.Due to the challenge of implicit interaction mechanism among traffic flow,airspace capacity and weather impact,the Weather-aware ATFP(Wa-ATFP)is still a nontrivial issue.In this paper,a novel Multi-faceted Spatio-Temporal Graph Convolutional Network(MSTGCN)is proposed to address the Wa-ATFP within the complex operations of MAS.Firstly,a spatio-temporal graph is constructed with three different nodes,including airport,route,and fix to describe the topology structure of MAS.Secondly,a weather-aware multi-faceted fusion module is proposed to integrate the feature of air traffic flow and the auxiliary features of capacity and weather,which can effectively address the complex impact of severe weather,e.g.,thunderstorms.Thirdly,to capture the latent connections of nodes,an adaptive graph connection constructor is designed.The experimental results with the real-world operational dataset in Guangdong-Hong Kong-Macao Greater Bay Area,China,validate that the proposed approach outperforms the state-of-the-art machine-learning and deep-learning based baseline approaches in performance.展开更多
本文建立了停机位分配的多商品网络流模型,并以航空器总场面运行时间最小为目标,建立数学模型。将机场场面分为若干区域,建立区域—机位两级分配策略,以降低问题规模。设置机位外等待时间,以省去区域容量相关约束。在传统粒子群算法的...本文建立了停机位分配的多商品网络流模型,并以航空器总场面运行时间最小为目标,建立数学模型。将机场场面分为若干区域,建立区域—机位两级分配策略,以降低问题规模。设置机位外等待时间,以省去区域容量相关约束。在传统粒子群算法的基础上,设计离散粒子群算法,对模型进行求解。选取乌鲁木齐机场某日240架航班和109个机位进行实验,证明了与现有研究中的典型模型相比,多商品网络流模型能使运算时间减少10.1%,并能达到与典型模型相同的精度。全空域和机场模型(total airspace and airport modeller,TAAM)仿真结果表明,和现行机位分配方案相比,多商品网络流模型的机位分配结果能使航空器的场面调配运行时间减少7.49%,延误时间减少8.87%。算例结果进一步表明,提高机场场面运行效率的关键在于均衡航班的进离港滑行距离,同时避免停机位密集分布。展开更多
基金supported by the National Natural Science Foundation of China(No.71401072)the National Natural Science Foundation of Jiangsu Province(No.BK20130814)the Foundation of Jiangsu Innovation Program for Graduate Education(the Fundamental Research Funds for the Central Universities,No.SJLX15_0128)
文摘A combined arrival and departure scheduling problem is investigated for multi-airport system to alleviate the problem of airspace congestion and flight delay.Firstly,the combined scheduling problem for multi-airport system is defined through in-depth analysis of the characteristics of arrival and departure operations.Then,several constraints are taken into account,such as wake vortex separation,transfer separation,release separation,and separation in different runway operational modes.Furthermore,the scheduling model is constructed and simulated annealing algorithm is proposed by minimizing the total delay.Finally,Shanghai multi-airport system is chosen to conduct the simulation and validation.And the simulation results indicate that the proposed method is able to effectively improve the efficiency of arrival and departure operations for multi-airport system.
基金supported by the National Key Research and Development Program of China(No.2022YFB2602402)the National Natural Science Foundation of China(Nos.U2033215 and U2133210).
文摘As one of the core modules for air traffic flow management,Air Traffic Flow Prediction(ATFP)in the Multi-Airport System(MAS)is a prerequisite for demand and capacity balance in the complex meteorological environment.Due to the challenge of implicit interaction mechanism among traffic flow,airspace capacity and weather impact,the Weather-aware ATFP(Wa-ATFP)is still a nontrivial issue.In this paper,a novel Multi-faceted Spatio-Temporal Graph Convolutional Network(MSTGCN)is proposed to address the Wa-ATFP within the complex operations of MAS.Firstly,a spatio-temporal graph is constructed with three different nodes,including airport,route,and fix to describe the topology structure of MAS.Secondly,a weather-aware multi-faceted fusion module is proposed to integrate the feature of air traffic flow and the auxiliary features of capacity and weather,which can effectively address the complex impact of severe weather,e.g.,thunderstorms.Thirdly,to capture the latent connections of nodes,an adaptive graph connection constructor is designed.The experimental results with the real-world operational dataset in Guangdong-Hong Kong-Macao Greater Bay Area,China,validate that the proposed approach outperforms the state-of-the-art machine-learning and deep-learning based baseline approaches in performance.
文摘本文建立了停机位分配的多商品网络流模型,并以航空器总场面运行时间最小为目标,建立数学模型。将机场场面分为若干区域,建立区域—机位两级分配策略,以降低问题规模。设置机位外等待时间,以省去区域容量相关约束。在传统粒子群算法的基础上,设计离散粒子群算法,对模型进行求解。选取乌鲁木齐机场某日240架航班和109个机位进行实验,证明了与现有研究中的典型模型相比,多商品网络流模型能使运算时间减少10.1%,并能达到与典型模型相同的精度。全空域和机场模型(total airspace and airport modeller,TAAM)仿真结果表明,和现行机位分配方案相比,多商品网络流模型的机位分配结果能使航空器的场面调配运行时间减少7.49%,延误时间减少8.87%。算例结果进一步表明,提高机场场面运行效率的关键在于均衡航班的进离港滑行距离,同时避免停机位密集分布。