Covert communication technology makes wireless communication more secure,but it also provides more opportunities for illegal users to transmit harmful information.In order to detect the illegal covert communication of...Covert communication technology makes wireless communication more secure,but it also provides more opportunities for illegal users to transmit harmful information.In order to detect the illegal covert communication of the lawbreakers in real time for subsequent processing,this paper proposes a Gamma approximation-based detection method for multi-antenna covert communication systems.Specifically,the Gamma approximation property is used to calculate the miss detection rate and false alarm rate of the monitor firstly.Then the optimization problem to minimize the sum of the missed detection rate and the false alarm rate is proposed.The optimal detection threshold and the minimum error detection probability are solved according to the properties of the Lambert W function.Finally,simulation results are given to demonstrate the effectiveness of the proposed method.展开更多
With the gradual popularization of 5G communications,the application of multi-antenna broadcasting technology has become widespread.Therefore,this study aims to investigate the wireless covert communication in the two...With the gradual popularization of 5G communications,the application of multi-antenna broadcasting technology has become widespread.Therefore,this study aims to investigate the wireless covert communication in the two-user cooperative multi-antenna broadcast channel.We focus on the issue that the deteriorated reliability and undetectability are mainly affected by the transmission power.To tackle this issue,we design a scheme based on beamforming to increase the reliability and undetectability of wireless covert communication in the multi-antenna broadcast channel.We first modeled and analyzed the cooperative multi-antenna broadcasting system,and put forward the target question.Then we use the SCA(successive convex approximation)algorithm to transform the target problem into a series of convex subproblems.Then the convex problems are solved and the covert channel capacity is calculated.In order to verify the effectiveness of the scheme,we conducted simulation verification.The simulation results show that the proposed beamforming scheme can effectively improve the reliability and undetectability of covert communication in multi-antenna broadcast channels.展开更多
In this paper,we investigate covert communications in data collected IoT with NOMA,where the paired sensor nodes S_(m) and S_(n) transmit covert messages to a legitimate receiver(Bob)in the presence of a Warden(Willie...In this paper,we investigate covert communications in data collected IoT with NOMA,where the paired sensor nodes S_(m) and S_(n) transmit covert messages to a legitimate receiver(Bob)in the presence of a Warden(Willie).To confuse the detection at Willie,an extra multi-antenna friendly jammer(Jammer)has been employed to transmit artificial noise(AN)with random power.Based on the CSI of Willie is available or not at Jammer,three AN transmission schemes,including null-space artificial noise(NAN),transmit antenna selection(TAS),and zeroforcing beamforming(ZFB),are proposed.Furthermore,the closed-form expressions of expected minimum detection error probability(EMDEP)and joint connection outage probability(JCOP)are derived to measure covertness and reliability,respectively.Finally,the maximum effective covert rate(ECR)is obtained with a given covertness constraint.The numerical results show that ZFB scheme has the best maximum ECR in the case of the number of antennas satisfies N>2,and the same maximum ECR can be achieved in ZFB and NAN schemes with N=2.Moreover,TAS scheme also can improve the maximum ECR compared with the benchmark scheme(i.e.,signal-antenna jammer).In addition,a proper NOMA node pairing can further improve the maximum ECR.展开更多
Non-orthogonal multiple access(NOMA)is viewed as a key technique to improve the spectrum efficiency and solve the issue of massive connectivity.However,for power domain NOMA,the required overall transmit power should ...Non-orthogonal multiple access(NOMA)is viewed as a key technique to improve the spectrum efficiency and solve the issue of massive connectivity.However,for power domain NOMA,the required overall transmit power should be increased rapidly with the increasing number of users in order to ensure that the signal-to-interference-plus-noise ratio reaches a predefined threshold.In addition,since the successive interference cancellation(SIC)is adopted,the error propagation would become more serious as the order of SIC increases.Aiming at minimizing the total transmit power and satisfying each user’s service requirement,this paper proposes a novel framework with group-based SIC for the deep integration between power domain NOMA and multi-antenna technology.Based on the proposed framework,a joint optimization of power control and equalizer design is investigated to minimize transmit power consumption for uplink multi-antenna NOMA system with error propagations.Based on the relationship between the equalizer and the transmit power coefficients,the original problem is transformed to a transmit power optimization problem,which is further addressed by a parallel iteration algorithm.It is shown by simulations that,in terms of the total power consumption,the proposed scheme outperforms the conventional OMA and the existing cluster-based NOMA schemes.展开更多
Unmanned Aerial Vehicle(UAV)communication is a promising technology that provides swift and flexible ondemand wireless connectivity for devices without infrastructure support.With recent developments in UAVs,spectrum ...Unmanned Aerial Vehicle(UAV)communication is a promising technology that provides swift and flexible ondemand wireless connectivity for devices without infrastructure support.With recent developments in UAVs,spectrum and energy efficient green UAV communication has become crucial.To deal with this issue,Spectrum Sharing Policy(SSP)is introduced to support green UAV communication.Spectrum sensing in SSP must be carefully formulated to control interference to the primary users and ground communications.In this paper,we propose spectrum sensing for opportunistic spectrum access in green UAV communication to improve the spectrum utilization efficiency.Different from most existing works,we focus on the problem of spectrum sensing of randomly arriving primary signals in the presence of non-Gaussian noise/interference.We propose a novel and improved p-norm-based spectrum sensing scheme to improve the spectrum utilization efficiency in green UAV communication.Firstly,we construct the p-norm decision statistic based on the assumption that the random arrivals of signals follow a Poisson process.Then,we analyze and derive the approximate analytical expressions of the false-alarm and detection probabilities by utilizing the central limit theorem.Simulation results illustrate the validity and superiority of the proposed scheme when the primary signals are corrupted by additive non-Gaussian noise and arrive randomly during spectrum sensing in the green UAV communication.展开更多
A flame length optimization scheme is proposed for multi-antenna downlink systems to guarantee diverse delay- bound violation probability constraints. Due to the difficulties of extracting the quality of service (QoS...A flame length optimization scheme is proposed for multi-antenna downlink systems to guarantee diverse delay- bound violation probability constraints. Due to the difficulties of extracting the quality of service (QoS) metrics from the conventional physical-layer channel models, the link-layer models named effective bandwidth and effective capacity are applied to statistically characterize the source traffic patterns and the queuing service dynamics. With these link-layer models, the source traffic process and the channel service process are mapped to certain QoS parameters. The packet delay-bound violation probability constraints are converted into minimum data rate constraints and the optimization problem is thus formulated into simultaneous inequalities. With the assumption of ergodic block-fading channels, the optimal frame lengths of single-user and multiuser systems are calculated respectively by numerical iterative methods. Theoretical analyses and simulation results show that the given delay-bound violation probability constraints are well satisfied with the optimal frame length.展开更多
The traditional geometrical depolarization model that single transmitter to single receiver provides a simple method of polarization channel modeling. It can obtain the geometrical depolarization effect of each path i...The traditional geometrical depolarization model that single transmitter to single receiver provides a simple method of polarization channel modeling. It can obtain the geometrical depolarization effect of each path if known the antenna configuration, the polarization field radiation pattern and the spatial distribution of scatters. With the development of communication technology, information transmission spectrum is more and more scarce. The original model provides only a single channel polarization state, so the information will be limited that the polarization state carries in the polarization modulation. The research is so significance that how to carries polarization modulation information by using multi-antenna polarization state. However, the present study shows that have no depolarization effect model for multi-antenna systems. In this paper, we propose a multi-antenna geometrical depolarization model. On the basis of a single antenna to calculate the depolarization effect of the model, and through simulation to analysis the main factors that influence the depolarization effect. This article provides a multi-antenna geometrical depolarization channel modeling that can applied to large-scale array antenna, and to some extent increase the speed of information transmission.展开更多
A study on the zero-forcing beamforming (ZFBF) scheme with antenna selection at user terminals in downlink multi-antenna multi-user systems is presented. Simulation results show that the proposed ZFBF scheme with re...A study on the zero-forcing beamforming (ZFBF) scheme with antenna selection at user terminals in downlink multi-antenna multi-user systems is presented. Simulation results show that the proposed ZFBF scheme with receiver antenna selection (ZFBF-AS) achieves considerable throughput improvement over the ZFBF scheme with single receiver antenna. The results also show that, with multi-user diversity, the ZFBF-AS scheme approaches the throughput performance of the ZFBF scheme using all receiver antennas (ZFBF-WO-AS) when the base station adopts semi-orthogonal user selection (SUS) algorithm, and achieves larger throughput when the base station adopts the Round-robin scheduling algorithm. Compared with ZFBF-WO-AS, the proposed ZFBF-AS scheme can reduce the cost of user equipments and the channel state information requirement at the transmitter (CSIT) as well as the multiuser scheduling complexity at the transmitter.展开更多
The Device-to-Device(D2D)communication underlaying cellular networks is considered in this study.The D2D transmitter in the D2D mode can directly transmit messages to a receiver,but it may interfere with the transmiss...The Device-to-Device(D2D)communication underlaying cellular networks is considered in this study.The D2D transmitter in the D2D mode can directly transmit messages to a receiver,but it may interfere with the transmission of another cellular user who shares the same uplink channel.The transmitter can also operate in a cellular mode in which no interference to another cellular user occurs.We propose a mode selection scheme that aims to minimize the transmission power of the D2D transmitter subject to constraints on the minimum required data rate and maximum interference to other cellular users.The proposed scheme is based on bounds for transmission power and is less complex than the optimal scheme.Furthermore,it requires only a few statistics and does not need a fading channel distribution.The performance of the scheme is close to optimum when the number of Base Station(BS)antennas is large,and the mean absolute deviation of the fading terms is small.We verify this with numerical results of the Rician and Rayleigh fading channels by assuming that the BS antennas are independent.The simulation results for the two correlated BS antennas are presented herein.展开更多
A low-complexity multi-antenna relaying scheme is proposed for Orthogonal Frequency Division Multiplexing (OFDM) in the presence of Class-A Impulsive Noise (IN). One way and two way relaying are considered. The signal...A low-complexity multi-antenna relaying scheme is proposed for Orthogonal Frequency Division Multiplexing (OFDM) in the presence of Class-A Impulsive Noise (IN). One way and two way relaying are considered. The signal is transmitted and received by two terminal nodes, each with a single antenna in two time phases. In the proposed design, the processing at the relay consists of Maximal-Ratio Combining (MRC) or Power-based Selection Combining (PSC) for receive combining, Amplify and Forward (AF) for power scaling, and Space Time Block Coding (STBC) for transmit diversity. Channel State Information (CSI), Discrete Fourier Transform (DFT), and Inverse Discrete Fourier Transform (IDFT) are not needed. The Selective Mapping (SLM) technique is used at the transmitter to reduce the Peak-to-Average Power Ratio (PAPR) of the OFDM signal. Then, at the receiver, the clipping technique is used to reduce the impulses that result from the impulsive noise. The proposed system reduces the complexity of the conventional system, which uses multi-relay with a single antenna. Simulation results show that the Bit Error Rate (BER) of the proposed scheme outperforms that of the conventional scheme due to the diversity inherent in the proposed scheme.展开更多
Energy efficiency(EE) of cellular networks has attracted considerable attention recently. However, EE of relay-assisted cellular networks where the macro base stations(MBSs) are equipped with the multi-antenna has not...Energy efficiency(EE) of cellular networks has attracted considerable attention recently. However, EE of relay-assisted cellular networks where the macro base stations(MBSs) are equipped with the multi-antenna has not been thoroughly addressed. This paper considered the downlink transmission of multi-antenna relay-assisted cellular networks, meanwhile, a strategic sleep scheme was used in relay stations(RSs), which dynamically adjusted the RS working mode according to whether the number of users serviced by the relay exceeds a given threshold. A geometric model was built to derive the coverage probability and mean achievable rate from the MBSs to user(UE), the MBS to RS, the RS to UE links and analyze the system EE. It is shown that the energy efficiency of cellular network with strategic sleep RS is slightly higher than that of cellular network with non-sleeping strategy. Furthermore, the MBS equipped with multi-antenna has better impact on energy efficiency and spectral efficiency than the MBS with single antenna.展开更多
We propose two rate control schemes for multi-antenna multicast in OFDM systems, which aim to maximize the minimum average rate over all users in a multicast group. In our system, we do not require all multicast users...We propose two rate control schemes for multi-antenna multicast in OFDM systems, which aim to maximize the minimum average rate over all users in a multicast group. In our system, we do not require all multicast users to successfully recover the signals received on each subcarrier. In contrast, we allow certain loss for multicast users, such that the multicast transmission rate can be increased. We assume that the loss-repairing can be completed at upper protocol layers via advanced fountain codes. Following this principle, we formulate the rate control problem via beamforming in multi-antenna multicast to optimize the minimum achievable rate for all multicast users. While the computation complexity to solve for the optimal beamformer is prohibitively high, we propose a suboptimal iterative rate control scheme. Moreover, we modify the above optimization problem by selecting a ?xed proportion of users on each subcarrier. The beamformer searching process will then be performed only based on the selected users on each subcarrier, such that the complexity can be further reduced. We also solve this new problem with a low complexity approach. Theoretical analyses and simulation results show that our proposed two rate control schemes can have higher minimum average rate than the baseline scheme without rate control, while achieving low complexity.展开更多
Multiple-input multiple-output(MIMO) and cooperative communications have been attracted great attention for the improvements of communication capacity, power consumption, and transmission coverage. The conventional fi...Multiple-input multiple-output(MIMO) and cooperative communications have been attracted great attention for the improvements of communication capacity, power consumption, and transmission coverage. The conventional fixed relaying protocols, amplify-and-forward(AF) and decode-and-forward(DF), have their own advantages and disadvantages, i.e. AF performs better than DF for low signal-to-noise ratio(SNR) region, while the reverse is true for high SNR region. Therefore, this paper proposes an SNR-adaptive forward(SAF) relaying scheme obtaining the advantages of both AF and DF. Furthermore, the proposed SAF does not need to switch between AF and DF when SNR changes. The main idea is to adaptively derive the soft information at the cooperative relay nodes based on the information of the received signal and the SNR. Besides, based on the theoretical analysis and the simulation results, it is affirmed that the proposed SAF achieves superior performance than both AF and DF for all SNRs. Moreover, the performance gain would be improved with the increasing number of parallel cooperative relay nodes.展开更多
The main purpose of this paper is to present and apply a genetic and simulated annealing combined algorithm to solve an optimization problem of Radio Frequency Identification(RFID)network planning in an emergency depa...The main purpose of this paper is to present and apply a genetic and simulated annealing combined algorithm to solve an optimization problem of Radio Frequency Identification(RFID)network planning in an emergency department of a hospital.Accordingly,though genetic algorithm(GA)and simulated annealing(SA)have advantages and disadvantages,but they are also complementary.Hence,the combined algorithm not only takes advantages of the two methods,but also avoids their disadvantages.The simulation results in an emergency department of a hospital present that the proposed method provides minimum total cost and maximum RFID network coverage in a simultaneous way with the efficient use of multi-antenna RFID readers.Besides,the results of comparison of two scenarios of the model with the results of other existing models in the relevant literature show that the proposed model has better outcomes.展开更多
This paper presents a multi-antenna GPS based system developed for local continuous deformation monitoring. Due to a large number of points that needs to be monitored, the standard approaches of using permanent GPS re...This paper presents a multi-antenna GPS based system developed for local continuous deformation monitoring. Due to a large number of points that needs to be monitored, the standard approaches of using permanent GPS receiver arrays will cause high cost. It eventually becomes the limiting factor for large-scale use of GPS in these application areas. Multi-antenna GPS system allows a number of GPS antennas to be linked to one GPS receiver by a specially designed electronic component, i. e. the so-called GPS multi-antenna switch (GMS), The receiver takes data sequentially from each of the antennas attached to the receiver. A distinctive advantage of the approach is that one GPS receiver can be used to monitor more than one point. The cost per monitored point (i. e. the expenses of hardware) is therefore significantly reduced.展开更多
Performance of cluster-based cooperative spectrum sensing is more greatly improved than that of the traditional cooperative spectrum sensing. However, the style of clusters is not pointed out on traditional cluster-ba...Performance of cluster-based cooperative spectrum sensing is more greatly improved than that of the traditional cooperative spectrum sensing. However, the style of clusters is not pointed out on traditional cluster-based method. In view of all the fading in the cooperative spectrum sensing, space diversity, and selective diversity, a robust cooperative spectrum sensing scheme based on clusters is proposed. Simulation results show that the detection performance of this new scheme is more close to that of the ideal cluster-based cooperative spectrum sensing scheme, and the excellent performance with higher reliability is gained relative to the actual cluster-based cooperative spectrum sensing scheme. Finally, the number of users in a cluster of the proposed scheme is discussed. The two users in a cluster are not the optimal solution to the overall implementation of cognitive radio.展开更多
We discuss the physical layer security scheme in the Full-Duplex(FD)MIMO point-to-point two-way communication system with residual self-interference,in which legitimate nodes send confidential information and null spa...We discuss the physical layer security scheme in the Full-Duplex(FD)MIMO point-to-point two-way communication system with residual self-interference,in which legitimate nodes send confidential information and null space Artificial Noise(AN)while receiving information.Because the Channel State Information(CSI)of the eavesdropper is unavailable,we optimize the covariance matrices of the information signal as well as the allocation of the antenna for transmitting and receiving to minimize the signal power consumption under the target rate constraint.As a result,the power of AN is maximized within the limit of total power,so the interception capability of the eavesdropper is suppressed as much as possible.Since self-interference cannot be completely eliminated,the optimization process of one legitimate node depends on the optimization result of the other.By substituting self-interference power in the secrecy rate formula with its average value,the joint optimization process at the two nodes is transformed into two separate and solvable optimization processes.Then,the Water-Filling Algorithm(WFA)and bisection algorithm are used to get the optimal covariance matrices of the signal.Furthermore,we derive the theoretical lower bound of ergodic achievable secrecy rate under rayleigh channels to evaluate the performance of the scheme.The simulation results show that the theoretical derivation is correct,and the actual achievable rate is very close to the target rate,which means that the approximation in the optimization is feasible.The results also show that secrecy transmission can be realized because a considerable secrecy rate can be achieved.展开更多
In this paper, a simplified approach for implementing QO-STBC is proposed and evaluated with improved performance. It is based on the Hadamard matrix, in which the scheme exploits the Hadamard matrix property to attai...In this paper, a simplified approach for implementing QO-STBC is proposed and evaluated with improved performance. It is based on the Hadamard matrix, in which the scheme exploits the Hadamard matrix property to attain full diversity. Hadamard matrix has the characteristic that diagonalizes a quasi-cyclic matrix and consequently, a decoding matrix so that a diagonal matrix which permits linear decoding is achieved. Using quasicyclic matrices in designing QO-STBC systems requires that the codes should be rotated to reasonably separate one code from another such that error floor in the design can be minimized. It will be shown that, orthogonalizing the secondary codes and then imposing the Hadamard criteria of the scheme can be well diagonalized. The results of this simplified approach demonstrate full diversity and better performance than the interference-free QO-STBC. Results show about 4 dB gain with respect to the interference-free QO-STBC scheme and it performs alike with the earlier Hadamard based QO-STBC designed with rotation. These results achieve the consequent mathematical proposition of the Hadamard matrix and its property is also shown in this study.展开更多
A high-reliability broadband high-linearity down-converter for multi-antenna global navigation satellite system(GNSS)receiver is presented in this paper.Based on direction-of-arrival estimation,the multi-antenna GNSS ...A high-reliability broadband high-linearity down-converter for multi-antenna global navigation satellite system(GNSS)receiver is presented in this paper.Based on direction-of-arrival estimation,the multi-antenna GNSS receiver can separate the GNSS signals from the interfering signals and suppress harmful broadband radio frequency interferences.To drive the off-chip 50Ω2 resistive load and meet the stringent requirements of linearity,a quad-channel down-converter with a broadband common-gate low-noise transcon-ductance amplifier,current-driven passive mixer and novel bridge mode transimpedance driving amplifier have been proposed to contruct the multi-antenna recelver.The operating frequency of this down-converter is from 1.15 to 1.65 GHz,covering all bands for global positioning system(GPS),Beidou navigation satellite system(BDS),global navigation satellite system(GLONASS)and Galileo.The measured results show that the proposed quad-channel down-converter achieves+38 dBm output 3rd order intercept point(OIP3)and+17 dBm OP1dB(output-referred 1 dB compression point),9.5 dB to 12.9 dB noise figure(NF)across the variable gain of 10 dB to 27 dB and approximately 47 dB channel isolation.展开更多
Aiming at the multi-antenna communication systems, a downlink transmit scheme combining adaptive beamforming (ABF) with space-time block coding (STBC) is first presented, which utilizes the maximization of the out...Aiming at the multi-antenna communication systems, a downlink transmit scheme combining adaptive beamforming (ABF) with space-time block coding (STBC) is first presented, which utilizes the maximization of the output mean signal-to-noise ratio (SNR) and the minimization of the symbol error rate (SER) upper bound of the three widely used modulations as the design criteria. Then, based on the moment generating function (MGF) and the Gauss-Chebyshev integration, a simple and accurate numerical method is presented to analyze the SER performance of the system with the new transmit scheme under the three commonly used modulations. Finally, computer simulation results demonstrate the effectiveness and superiority of the proposed strategy.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)(Grant No.62101441)Young Talent fund of University Association for Science and Technology in Shaanxi,China(Grant No.20210111)+4 种基金National Key Research and Development Program of China(Grant No.2021YFC2203503)the Fundamental Research Funds for the Central Universities(Grant No.QTZX23065)the Key Research and Development Program of Shaanxi in Industrial Domain(Grant No.2021GY-103)the National Key Laboratory Foundation 2022-JCJQ-LB-006(Grant No.6142411222203)the graduate innovation fund of Xi’an University of Posts and Electrical University(Grand No.CXJJZL2023002)。
文摘Covert communication technology makes wireless communication more secure,but it also provides more opportunities for illegal users to transmit harmful information.In order to detect the illegal covert communication of the lawbreakers in real time for subsequent processing,this paper proposes a Gamma approximation-based detection method for multi-antenna covert communication systems.Specifically,the Gamma approximation property is used to calculate the miss detection rate and false alarm rate of the monitor firstly.Then the optimization problem to minimize the sum of the missed detection rate and the false alarm rate is proposed.The optimal detection threshold and the minimum error detection probability are solved according to the properties of the Lambert W function.Finally,simulation results are given to demonstrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(Grants No.U1836104,61772281,61702235,61801073,61931004,62072250).
文摘With the gradual popularization of 5G communications,the application of multi-antenna broadcasting technology has become widespread.Therefore,this study aims to investigate the wireless covert communication in the two-user cooperative multi-antenna broadcast channel.We focus on the issue that the deteriorated reliability and undetectability are mainly affected by the transmission power.To tackle this issue,we design a scheme based on beamforming to increase the reliability and undetectability of wireless covert communication in the multi-antenna broadcast channel.We first modeled and analyzed the cooperative multi-antenna broadcasting system,and put forward the target question.Then we use the SCA(successive convex approximation)algorithm to transform the target problem into a series of convex subproblems.Then the convex problems are solved and the covert channel capacity is calculated.In order to verify the effectiveness of the scheme,we conducted simulation verification.The simulation results show that the proposed beamforming scheme can effectively improve the reliability and undetectability of covert communication in multi-antenna broadcast channels.
基金supported by the National Natural Science Foundation of China under Grant(no.62071486,no.61771487,no.62171464).
文摘In this paper,we investigate covert communications in data collected IoT with NOMA,where the paired sensor nodes S_(m) and S_(n) transmit covert messages to a legitimate receiver(Bob)in the presence of a Warden(Willie).To confuse the detection at Willie,an extra multi-antenna friendly jammer(Jammer)has been employed to transmit artificial noise(AN)with random power.Based on the CSI of Willie is available or not at Jammer,three AN transmission schemes,including null-space artificial noise(NAN),transmit antenna selection(TAS),and zeroforcing beamforming(ZFB),are proposed.Furthermore,the closed-form expressions of expected minimum detection error probability(EMDEP)and joint connection outage probability(JCOP)are derived to measure covertness and reliability,respectively.Finally,the maximum effective covert rate(ECR)is obtained with a given covertness constraint.The numerical results show that ZFB scheme has the best maximum ECR in the case of the number of antennas satisfies N>2,and the same maximum ECR can be achieved in ZFB and NAN schemes with N=2.Moreover,TAS scheme also can improve the maximum ECR compared with the benchmark scheme(i.e.,signal-antenna jammer).In addition,a proper NOMA node pairing can further improve the maximum ECR.
基金supported in part by the National Natural Science Foundation of China under Grant 62171235 and Grant 62171237in part by the Qinglan Project of Jiangsu Provincein part by the Open Research Foundation of National Mobile Communications Research Laboratory of Southeast University under Grant 2023D01.
文摘Non-orthogonal multiple access(NOMA)is viewed as a key technique to improve the spectrum efficiency and solve the issue of massive connectivity.However,for power domain NOMA,the required overall transmit power should be increased rapidly with the increasing number of users in order to ensure that the signal-to-interference-plus-noise ratio reaches a predefined threshold.In addition,since the successive interference cancellation(SIC)is adopted,the error propagation would become more serious as the order of SIC increases.Aiming at minimizing the total transmit power and satisfying each user’s service requirement,this paper proposes a novel framework with group-based SIC for the deep integration between power domain NOMA and multi-antenna technology.Based on the proposed framework,a joint optimization of power control and equalizer design is investigated to minimize transmit power consumption for uplink multi-antenna NOMA system with error propagations.Based on the relationship between the equalizer and the transmit power coefficients,the original problem is transformed to a transmit power optimization problem,which is further addressed by a parallel iteration algorithm.It is shown by simulations that,in terms of the total power consumption,the proposed scheme outperforms the conventional OMA and the existing cluster-based NOMA schemes.
基金supported by the National Natural Science Foundation of China under Grant 62071364 and 62231027China Postdoctoral Science Foundation under Grant 2022M722504+1 种基金in part by the Key Research and Development Program of Shaanxi under Grant 2023-YBGY-249in part by the Fundamental Research Funds for the Central Universities under Grant XJSJ23090 and KYFZ23001.
文摘Unmanned Aerial Vehicle(UAV)communication is a promising technology that provides swift and flexible ondemand wireless connectivity for devices without infrastructure support.With recent developments in UAVs,spectrum and energy efficient green UAV communication has become crucial.To deal with this issue,Spectrum Sharing Policy(SSP)is introduced to support green UAV communication.Spectrum sensing in SSP must be carefully formulated to control interference to the primary users and ground communications.In this paper,we propose spectrum sensing for opportunistic spectrum access in green UAV communication to improve the spectrum utilization efficiency.Different from most existing works,we focus on the problem of spectrum sensing of randomly arriving primary signals in the presence of non-Gaussian noise/interference.We propose a novel and improved p-norm-based spectrum sensing scheme to improve the spectrum utilization efficiency in green UAV communication.Firstly,we construct the p-norm decision statistic based on the assumption that the random arrivals of signals follow a Poisson process.Then,we analyze and derive the approximate analytical expressions of the false-alarm and detection probabilities by utilizing the central limit theorem.Simulation results illustrate the validity and superiority of the proposed scheme when the primary signals are corrupted by additive non-Gaussian noise and arrive randomly during spectrum sensing in the green UAV communication.
基金The National Science and Technology M ajor Project(No.2012ZX03004005-003)the National Natural Science Foundation of China(No.61171081,61201175)the Research Fund of National M obile Communications Research Laboratory of Southeast University(No.2014A03)
文摘A flame length optimization scheme is proposed for multi-antenna downlink systems to guarantee diverse delay- bound violation probability constraints. Due to the difficulties of extracting the quality of service (QoS) metrics from the conventional physical-layer channel models, the link-layer models named effective bandwidth and effective capacity are applied to statistically characterize the source traffic patterns and the queuing service dynamics. With these link-layer models, the source traffic process and the channel service process are mapped to certain QoS parameters. The packet delay-bound violation probability constraints are converted into minimum data rate constraints and the optimization problem is thus formulated into simultaneous inequalities. With the assumption of ergodic block-fading channels, the optimal frame lengths of single-user and multiuser systems are calculated respectively by numerical iterative methods. Theoretical analyses and simulation results show that the given delay-bound violation probability constraints are well satisfied with the optimal frame length.
基金supported in part by the National Natural Science Foundation of China(61561039,61461044)the Natural Science Foundation of Ningxia(NZ14045)the Higher School Science and Technology Research Project of Ningxia(NGY2014051)
文摘The traditional geometrical depolarization model that single transmitter to single receiver provides a simple method of polarization channel modeling. It can obtain the geometrical depolarization effect of each path if known the antenna configuration, the polarization field radiation pattern and the spatial distribution of scatters. With the development of communication technology, information transmission spectrum is more and more scarce. The original model provides only a single channel polarization state, so the information will be limited that the polarization state carries in the polarization modulation. The research is so significance that how to carries polarization modulation information by using multi-antenna polarization state. However, the present study shows that have no depolarization effect model for multi-antenna systems. In this paper, we propose a multi-antenna geometrical depolarization model. On the basis of a single antenna to calculate the depolarization effect of the model, and through simulation to analysis the main factors that influence the depolarization effect. This article provides a multi-antenna geometrical depolarization channel modeling that can applied to large-scale array antenna, and to some extent increase the speed of information transmission.
基金supported by the National Natural Science Foundation of China (60496314)the National High Technology Research and Development Program of China (2006AA01Z266).
文摘A study on the zero-forcing beamforming (ZFBF) scheme with antenna selection at user terminals in downlink multi-antenna multi-user systems is presented. Simulation results show that the proposed ZFBF scheme with receiver antenna selection (ZFBF-AS) achieves considerable throughput improvement over the ZFBF scheme with single receiver antenna. The results also show that, with multi-user diversity, the ZFBF-AS scheme approaches the throughput performance of the ZFBF scheme using all receiver antennas (ZFBF-WO-AS) when the base station adopts semi-orthogonal user selection (SUS) algorithm, and achieves larger throughput when the base station adopts the Round-robin scheduling algorithm. Compared with ZFBF-WO-AS, the proposed ZFBF-AS scheme can reduce the cost of user equipments and the channel state information requirement at the transmitter (CSIT) as well as the multiuser scheduling complexity at the transmitter.
基金This work was supported by Kasetsart University Research and Development Institute(KURDI)under the FY2016 Kasetsart University research grant,and the Royal Golden Jubilee Ph.D.program.
文摘The Device-to-Device(D2D)communication underlaying cellular networks is considered in this study.The D2D transmitter in the D2D mode can directly transmit messages to a receiver,but it may interfere with the transmission of another cellular user who shares the same uplink channel.The transmitter can also operate in a cellular mode in which no interference to another cellular user occurs.We propose a mode selection scheme that aims to minimize the transmission power of the D2D transmitter subject to constraints on the minimum required data rate and maximum interference to other cellular users.The proposed scheme is based on bounds for transmission power and is less complex than the optimal scheme.Furthermore,it requires only a few statistics and does not need a fading channel distribution.The performance of the scheme is close to optimum when the number of Base Station(BS)antennas is large,and the mean absolute deviation of the fading terms is small.We verify this with numerical results of the Rician and Rayleigh fading channels by assuming that the BS antennas are independent.The simulation results for the two correlated BS antennas are presented herein.
文摘A low-complexity multi-antenna relaying scheme is proposed for Orthogonal Frequency Division Multiplexing (OFDM) in the presence of Class-A Impulsive Noise (IN). One way and two way relaying are considered. The signal is transmitted and received by two terminal nodes, each with a single antenna in two time phases. In the proposed design, the processing at the relay consists of Maximal-Ratio Combining (MRC) or Power-based Selection Combining (PSC) for receive combining, Amplify and Forward (AF) for power scaling, and Space Time Block Coding (STBC) for transmit diversity. Channel State Information (CSI), Discrete Fourier Transform (DFT), and Inverse Discrete Fourier Transform (IDFT) are not needed. The Selective Mapping (SLM) technique is used at the transmitter to reduce the Peak-to-Average Power Ratio (PAPR) of the OFDM signal. Then, at the receiver, the clipping technique is used to reduce the impulses that result from the impulsive noise. The proposed system reduces the complexity of the conventional system, which uses multi-relay with a single antenna. Simulation results show that the Bit Error Rate (BER) of the proposed scheme outperforms that of the conventional scheme due to the diversity inherent in the proposed scheme.
基金partly supported by the National Natural Science Foundation of China (Grant No. 61371112, No.61701221 )the Jiangsu Natural Science Foundation (No. BK20160781)+2 种基金Jiangsu Higher Education Institutions Natural Science Foundation (No. 16KJB510013, 16KJB510038)the Research Innovation Project for College Graduates of Jiangsu Province (No. KYLX16_0662)the Natural Science Foundation of Nantong University Xinglin College (No. 2016K116)
文摘Energy efficiency(EE) of cellular networks has attracted considerable attention recently. However, EE of relay-assisted cellular networks where the macro base stations(MBSs) are equipped with the multi-antenna has not been thoroughly addressed. This paper considered the downlink transmission of multi-antenna relay-assisted cellular networks, meanwhile, a strategic sleep scheme was used in relay stations(RSs), which dynamically adjusted the RS working mode according to whether the number of users serviced by the relay exceeds a given threshold. A geometric model was built to derive the coverage probability and mean achievable rate from the MBSs to user(UE), the MBS to RS, the RS to UE links and analyze the system EE. It is shown that the energy efficiency of cellular network with strategic sleep RS is slightly higher than that of cellular network with non-sleeping strategy. Furthermore, the MBS equipped with multi-antenna has better impact on energy efficiency and spectral efficiency than the MBS with single antenna.
文摘We propose two rate control schemes for multi-antenna multicast in OFDM systems, which aim to maximize the minimum average rate over all users in a multicast group. In our system, we do not require all multicast users to successfully recover the signals received on each subcarrier. In contrast, we allow certain loss for multicast users, such that the multicast transmission rate can be increased. We assume that the loss-repairing can be completed at upper protocol layers via advanced fountain codes. Following this principle, we formulate the rate control problem via beamforming in multi-antenna multicast to optimize the minimum achievable rate for all multicast users. While the computation complexity to solve for the optimal beamformer is prohibitively high, we propose a suboptimal iterative rate control scheme. Moreover, we modify the above optimization problem by selecting a ?xed proportion of users on each subcarrier. The beamformer searching process will then be performed only based on the selected users on each subcarrier, such that the complexity can be further reduced. We also solve this new problem with a low complexity approach. Theoretical analyses and simulation results show that our proposed two rate control schemes can have higher minimum average rate than the baseline scheme without rate control, while achieving low complexity.
基金supported in part by the National Natural Science Foundation of China 61501461, 61471269, 71232006, and 61533019the Early Career Development Award of SKLMCCS (Y3S9021F34)
文摘Multiple-input multiple-output(MIMO) and cooperative communications have been attracted great attention for the improvements of communication capacity, power consumption, and transmission coverage. The conventional fixed relaying protocols, amplify-and-forward(AF) and decode-and-forward(DF), have their own advantages and disadvantages, i.e. AF performs better than DF for low signal-to-noise ratio(SNR) region, while the reverse is true for high SNR region. Therefore, this paper proposes an SNR-adaptive forward(SAF) relaying scheme obtaining the advantages of both AF and DF. Furthermore, the proposed SAF does not need to switch between AF and DF when SNR changes. The main idea is to adaptively derive the soft information at the cooperative relay nodes based on the information of the received signal and the SNR. Besides, based on the theoretical analysis and the simulation results, it is affirmed that the proposed SAF achieves superior performance than both AF and DF for all SNRs. Moreover, the performance gain would be improved with the increasing number of parallel cooperative relay nodes.
文摘The main purpose of this paper is to present and apply a genetic and simulated annealing combined algorithm to solve an optimization problem of Radio Frequency Identification(RFID)network planning in an emergency department of a hospital.Accordingly,though genetic algorithm(GA)and simulated annealing(SA)have advantages and disadvantages,but they are also complementary.Hence,the combined algorithm not only takes advantages of the two methods,but also avoids their disadvantages.The simulation results in an emergency department of a hospital present that the proposed method provides minimum total cost and maximum RFID network coverage in a simultaneous way with the efficient use of multi-antenna RFID readers.Besides,the results of comparison of two scenarios of the model with the results of other existing models in the relevant literature show that the proposed model has better outcomes.
基金Supported by the National Natural Science Foundation of China(No. 49771062), by a grant forUniversity Key Teacher of China, an
文摘This paper presents a multi-antenna GPS based system developed for local continuous deformation monitoring. Due to a large number of points that needs to be monitored, the standard approaches of using permanent GPS receiver arrays will cause high cost. It eventually becomes the limiting factor for large-scale use of GPS in these application areas. Multi-antenna GPS system allows a number of GPS antennas to be linked to one GPS receiver by a specially designed electronic component, i. e. the so-called GPS multi-antenna switch (GMS), The receiver takes data sequentially from each of the antennas attached to the receiver. A distinctive advantage of the approach is that one GPS receiver can be used to monitor more than one point. The cost per monitored point (i. e. the expenses of hardware) is therefore significantly reduced.
文摘Performance of cluster-based cooperative spectrum sensing is more greatly improved than that of the traditional cooperative spectrum sensing. However, the style of clusters is not pointed out on traditional cluster-based method. In view of all the fading in the cooperative spectrum sensing, space diversity, and selective diversity, a robust cooperative spectrum sensing scheme based on clusters is proposed. Simulation results show that the detection performance of this new scheme is more close to that of the ideal cluster-based cooperative spectrum sensing scheme, and the excellent performance with higher reliability is gained relative to the actual cluster-based cooperative spectrum sensing scheme. Finally, the number of users in a cluster of the proposed scheme is discussed. The two users in a cluster are not the optimal solution to the overall implementation of cognitive radio.
基金This work was supported by the National Nature Science Foundation of China(No.61971080,No.61471076)Chongqing Research Program of Basic Research and Frontier Exploration(No.cstc2018jcyjAX0432)the Key Project of Science and Technology Research of Chongqing Education Commission(No.KJZD-K201800603,No.KJZD-M201900602).
文摘We discuss the physical layer security scheme in the Full-Duplex(FD)MIMO point-to-point two-way communication system with residual self-interference,in which legitimate nodes send confidential information and null space Artificial Noise(AN)while receiving information.Because the Channel State Information(CSI)of the eavesdropper is unavailable,we optimize the covariance matrices of the information signal as well as the allocation of the antenna for transmitting and receiving to minimize the signal power consumption under the target rate constraint.As a result,the power of AN is maximized within the limit of total power,so the interception capability of the eavesdropper is suppressed as much as possible.Since self-interference cannot be completely eliminated,the optimization process of one legitimate node depends on the optimization result of the other.By substituting self-interference power in the secrecy rate formula with its average value,the joint optimization process at the two nodes is transformed into two separate and solvable optimization processes.Then,the Water-Filling Algorithm(WFA)and bisection algorithm are used to get the optimal covariance matrices of the signal.Furthermore,we derive the theoretical lower bound of ergodic achievable secrecy rate under rayleigh channels to evaluate the performance of the scheme.The simulation results show that the theoretical derivation is correct,and the actual achievable rate is very close to the target rate,which means that the approximation in the optimization is feasible.The results also show that secrecy transmission can be realized because a considerable secrecy rate can be achieved.
文摘In this paper, a simplified approach for implementing QO-STBC is proposed and evaluated with improved performance. It is based on the Hadamard matrix, in which the scheme exploits the Hadamard matrix property to attain full diversity. Hadamard matrix has the characteristic that diagonalizes a quasi-cyclic matrix and consequently, a decoding matrix so that a diagonal matrix which permits linear decoding is achieved. Using quasicyclic matrices in designing QO-STBC systems requires that the codes should be rotated to reasonably separate one code from another such that error floor in the design can be minimized. It will be shown that, orthogonalizing the secondary codes and then imposing the Hadamard criteria of the scheme can be well diagonalized. The results of this simplified approach demonstrate full diversity and better performance than the interference-free QO-STBC. Results show about 4 dB gain with respect to the interference-free QO-STBC scheme and it performs alike with the earlier Hadamard based QO-STBC designed with rotation. These results achieve the consequent mathematical proposition of the Hadamard matrix and its property is also shown in this study.
基金supported by the Key-area Research and Development Program,Guangdong Province of China(Grants No.2019B010141002 and 2020B0404030005).
文摘A high-reliability broadband high-linearity down-converter for multi-antenna global navigation satellite system(GNSS)receiver is presented in this paper.Based on direction-of-arrival estimation,the multi-antenna GNSS receiver can separate the GNSS signals from the interfering signals and suppress harmful broadband radio frequency interferences.To drive the off-chip 50Ω2 resistive load and meet the stringent requirements of linearity,a quad-channel down-converter with a broadband common-gate low-noise transcon-ductance amplifier,current-driven passive mixer and novel bridge mode transimpedance driving amplifier have been proposed to contruct the multi-antenna recelver.The operating frequency of this down-converter is from 1.15 to 1.65 GHz,covering all bands for global positioning system(GPS),Beidou navigation satellite system(BDS),global navigation satellite system(GLONASS)and Galileo.The measured results show that the proposed quad-channel down-converter achieves+38 dBm output 3rd order intercept point(OIP3)and+17 dBm OP1dB(output-referred 1 dB compression point),9.5 dB to 12.9 dB noise figure(NF)across the variable gain of 10 dB to 27 dB and approximately 47 dB channel isolation.
基金the National Natural Science Foundation of China (Grant Nos. 60672093 and 60496310)the National Basic Research Program of China (Grant No. 2007CB310603)+1 种基金the National High Technology Project of China (Grant No. 2007AA01Z262)Huawei University Foundation
文摘Aiming at the multi-antenna communication systems, a downlink transmit scheme combining adaptive beamforming (ABF) with space-time block coding (STBC) is first presented, which utilizes the maximization of the output mean signal-to-noise ratio (SNR) and the minimization of the symbol error rate (SER) upper bound of the three widely used modulations as the design criteria. Then, based on the moment generating function (MGF) and the Gauss-Chebyshev integration, a simple and accurate numerical method is presented to analyze the SER performance of the system with the new transmit scheme under the three commonly used modulations. Finally, computer simulation results demonstrate the effectiveness and superiority of the proposed strategy.