In order to investigate the microstructure of TiN and TiAlN coatings and their effect on the wear resistance of Mg alloy, TiN and TiAlN coatings were deposited on AZ91 magnesium alloy by multi-arc ion plating technolo...In order to investigate the microstructure of TiN and TiAlN coatings and their effect on the wear resistance of Mg alloy, TiN and TiAlN coatings were deposited on AZ91 magnesium alloy by multi-arc ion plating technology.TiN and Ti70Al30N coatings were prepared on the substrate,respectively,which exhibited dark golden color and compact microstructure.The microstructures of TiN and Ti70Al30N coatings were investigated by X-ray diffractometry(XRD)and scanning electron microscopy(SEM).The micro-hardness and wear resistance of TiN and Ti70Al30N coatings were investigated in comparison with the uncoated AZ91 alloy. The XRD peaks assigned to TiN and TiAlN phases are found.The hardness of TiN coatings is two times as high as that of AZ91 alloy, and Ti70Al30N coating exhibits the highest hardness.The wear resistance of the hard coatings increases obviously as result of their high hardness.展开更多
After 32CrMoV is selected to manufacture nitrided gears coated with TiN by multi-arc ion plating, all of these uncoated gears and coated gears run in the gearbox under the same initial conditions so as to compare thei...After 32CrMoV is selected to manufacture nitrided gears coated with TiN by multi-arc ion plating, all of these uncoated gears and coated gears run in the gearbox under the same initial conditions so as to compare their difference concerning properties and microstructure. Experiment results indicate that tooth surface of the coated-TiN gears does not suffer surface abnormalities in meshed zone. Instead, the gears with nitrided case exhibit an abrasion mark on the meshed zone of tooth surface, which results in more weight loss of nitrided gears. The morphology of the surface suggests TiN film with more than 2 000 HV is so dense and smooth that coated-TiN gears have higher wear resistance compared with the uncoated gears. The microstructure of coated-TiN gears is finer, hardness is higher and its distribution of coated-TiN gears is more reliable than uncoated ones, which makes nitride layer combined with TiN film tightly. Consequently, the wear-resistance of gears has been dramatically promoted.展开更多
CrTiAIN coatings were prepared by using a home-made industrial scale multi-arc ion plating system. The coatings were found to be composites of face-center-cubic CrN and TiN. The surface roughness, microhardness, and t...CrTiAIN coatings were prepared by using a home-made industrial scale multi-arc ion plating system. The coatings were found to be composites of face-center-cubic CrN and TiN. The surface roughness, microhardness, and tribological properties of the films were significantly affected by the nitrogen pressure and dc-pulsed bias voltage applied to the substrate. The CrTiA1N coatings with the smoothest surfaces were obtained at optimum conditions of nitrogen pressure of 5.0 Pa and bias voltage of -200 V. The samples were found to exhibit a hardness of 2900 HV0.05 with an average friction coefficient of 0.16 and wear rate of 1.5× 10^-16 m^3/N.m against cemented carbide.展开更多
The multi-arc ion plating technology was employed to prepare the molybdenum films with thickness of 3 μm on the AISI 1045 steel. The wear and scuffing tests were carried out on the ball-on-disc tester. AFM and SEM eq...The multi-arc ion plating technology was employed to prepare the molybdenum films with thickness of 3 μm on the AISI 1045 steel. The wear and scuffing tests were carried out on the ball-on-disc tester. AFM and SEM equipped with EDS were adopted to observe and analyze the morphologies and element compositions of surface,cross-section and worn scar of the Mo film. The phase structure was studied by XRD and the bonding strength between Mo film and substrate was measured by scratching tester. The tribological experiments show that the Mo film possesses a good wear-resistance and an excellent anti-scuffing property. The failure mechanism of Mo film under extreme condition is flaking off.展开更多
This study developed a new technology for preparing high-chromium cast iron(HCCI)/low-carbon steel(LCS)wear-resistant composite plates by hot rolling at a 1050°C and a rolling speed of 0.2 m/s.The effects of diff...This study developed a new technology for preparing high-chromium cast iron(HCCI)/low-carbon steel(LCS)wear-resistant composite plates by hot rolling at a 1050°C and a rolling speed of 0.2 m/s.The effects of different rolling reductions(30%,45%,and 60%)on the microstructure(interface and HCCI layer)and mechanical properties(bonding strength,hardness,and wear resistance)of the composite plate were studied.SEM images showed that when the reduction was increased,no impurities and interlayers were found between the microscopic interfaces after hot rolling,and the bonding interface exhibited a wave-like shape.EDS analysis showed that the Cr element diffusion between two metals after hot rolling was promoted when the reduction was increased,thereby improving the bonding quality under the same rolling temperature and rolling speed.Experiments showed that due to the stress release effect of the LCS of the cladded layer,the macro-slab shape after hot rolling performed well,and the brittle HCCI layer underwent thermoplastic deformation without cracking.Moreover,the increase of rolling reduction improved the bonding quality.As the rolling reduction was increased,the volume fraction of Cr-carbides in the HCCI layer also increased,resulting in an increase of hardness and wear-resistance.展开更多
This paper presents the formation of Cr-O thin films on an iron substrate by multi-arc ion plating, which are intended to be used as a thermal radiation absorbent in electronic vacuum devices. Only oxygen was used as ...This paper presents the formation of Cr-O thin films on an iron substrate by multi-arc ion plating, which are intended to be used as a thermal radiation absorbent in electronic vacuum devices. Only oxygen was used as a reaction gas during deposition, the Cr-O thin film, must have high adhesion and low outgassing rate. The scratch test shows that the critical load, for an applicable Cr-O thin film deposited in oxygen atmosphere alone at a pressure of 8×10<sup>-1</sup> Pa, was as high as 6kg.展开更多
In this work, electrochemical plating treatments were applied to ASTM A36 steel specimens to study the efficiency and limitations of this method for arresting fatigue crack propagation. Electroplated iron was deposite...In this work, electrochemical plating treatments were applied to ASTM A36 steel specimens to study the efficiency and limitations of this method for arresting fatigue crack propagation. Electroplated iron was deposited onto the crack surfaces using a circuit in which Swedish Iron served as the anode in a solution of Ammonium Iron(II) Sulfate Hexahydrate. The iron ions were driven into fatigue cracks that were formed within ASTM E399 compact tension specimens. This work showed that an iron-plating treatment operated at 20°C can arrest fatigue crack propagation for a significant period of cycles. The propagation re-initiation lives that resulted ranged from 11,000 to 230,000 cycles. As observed in prior work, the propagation re-initiation life correlated strongly to the magnitude of the stress intensity factor range that was applied during cycling. As this stress intensity increased, the propagation re-initiation life decreased. Repeated treatments on the same crack provided extended service lives by as much as 370,000 cycles or 60% of the entire fatigue life of the component. Future work may show that re-application of the treatment, when conducted prior to crack re-initiation, could further extend the service life indefinitely. The Correia crack closure model was modified to provide an empirical expression for predicting the crack re-initiation life of the treated component. Interestingly, highly effective arrest behavior was still observed for cracks that were loaded to stress intensity factors of only 3 - 6 <img src="Edit_f69af9cd-e908-4aef-8ccb-3b1f36e16d08.png" alt="" />during the treatment but then subjected to 20 <img src="Edit_5ddb9cae-23ad-442d-8e6c-63b5e1d99a0f.png" alt="" /> during cyclic loading. Galvanic corrosion of the plated material exposed to simulated seawater was estimated to be 3 mpy. Future work will examine the use of less active plating alloys and the possibility of applying effective treatments into cracks that are in an unloaded state.展开更多
Defibrator is a very important machine in the wood industry for producing fiberboard. The refiner plates are the key parts of defibrator that directly act with the wood, and broken easily. The working life of the refi...Defibrator is a very important machine in the wood industry for producing fiberboard. The refiner plates are the key parts of defibrator that directly act with the wood, and broken easily. The working life of the refiner plates is of significance to the wood industry. It may affect refining quality, production efficiency, and power consumption. In this paper, the abrasion resistance of the refiner plate made of different materials, the stainless steels and high chromium cast irons, were tested and compared. The results showed that abrasion resistance of refiner plate made of high chromium cast irons was better than that of the stainless steel materials. Although the two kinds of materials have the same compositions, their abrasion resistances have ap-parent difference. The main reason is that the material microstructures have very important effects on their performance. The refiner plates made of developed high chromium cast irons don抰 demand the complex heat treatment. This can simplify the producing process, save the cost of production, decrease labor strength, and increase the production efficiency.展开更多
基金Project(1091249-1-00)supported by the Bureau of Science and Technology of Shenyang City,China
文摘In order to investigate the microstructure of TiN and TiAlN coatings and their effect on the wear resistance of Mg alloy, TiN and TiAlN coatings were deposited on AZ91 magnesium alloy by multi-arc ion plating technology.TiN and Ti70Al30N coatings were prepared on the substrate,respectively,which exhibited dark golden color and compact microstructure.The microstructures of TiN and Ti70Al30N coatings were investigated by X-ray diffractometry(XRD)and scanning electron microscopy(SEM).The micro-hardness and wear resistance of TiN and Ti70Al30N coatings were investigated in comparison with the uncoated AZ91 alloy. The XRD peaks assigned to TiN and TiAlN phases are found.The hardness of TiN coatings is two times as high as that of AZ91 alloy, and Ti70Al30N coating exhibits the highest hardness.The wear resistance of the hard coatings increases obviously as result of their high hardness.
基金This project is supported by National Natural Science Foundation of China(No.50375164)Visitor Scholar Project of State Key Laboratory of Mechanical Transmission in Chongqing University,China.
文摘After 32CrMoV is selected to manufacture nitrided gears coated with TiN by multi-arc ion plating, all of these uncoated gears and coated gears run in the gearbox under the same initial conditions so as to compare their difference concerning properties and microstructure. Experiment results indicate that tooth surface of the coated-TiN gears does not suffer surface abnormalities in meshed zone. Instead, the gears with nitrided case exhibit an abrasion mark on the meshed zone of tooth surface, which results in more weight loss of nitrided gears. The morphology of the surface suggests TiN film with more than 2 000 HV is so dense and smooth that coated-TiN gears have higher wear resistance compared with the uncoated gears. The microstructure of coated-TiN gears is finer, hardness is higher and its distribution of coated-TiN gears is more reliable than uncoated ones, which makes nitride layer combined with TiN film tightly. Consequently, the wear-resistance of gears has been dramatically promoted.
基金supported by the China Ministry of Industry and Information Technology (No. 2009ZX04012-032)Basic Research Fund of Central Universities
文摘CrTiAIN coatings were prepared by using a home-made industrial scale multi-arc ion plating system. The coatings were found to be composites of face-center-cubic CrN and TiN. The surface roughness, microhardness, and tribological properties of the films were significantly affected by the nitrogen pressure and dc-pulsed bias voltage applied to the substrate. The CrTiA1N coatings with the smoothest surfaces were obtained at optimum conditions of nitrogen pressure of 5.0 Pa and bias voltage of -200 V. The samples were found to exhibit a hardness of 2900 HV0.05 with an average friction coefficient of 0.16 and wear rate of 1.5× 10^-16 m^3/N.m against cemented carbide.
基金Project(50235030) supported by the National Natural Science Foundation of China Project(G1999065009) supported by the National Basic Research Program of China Project(2003AA331130) supported by the Hi-tech Research and Development Program of China
文摘The multi-arc ion plating technology was employed to prepare the molybdenum films with thickness of 3 μm on the AISI 1045 steel. The wear and scuffing tests were carried out on the ball-on-disc tester. AFM and SEM equipped with EDS were adopted to observe and analyze the morphologies and element compositions of surface,cross-section and worn scar of the Mo film. The phase structure was studied by XRD and the bonding strength between Mo film and substrate was measured by scratching tester. The tribological experiments show that the Mo film possesses a good wear-resistance and an excellent anti-scuffing property. The failure mechanism of Mo film under extreme condition is flaking off.
文摘This study developed a new technology for preparing high-chromium cast iron(HCCI)/low-carbon steel(LCS)wear-resistant composite plates by hot rolling at a 1050°C and a rolling speed of 0.2 m/s.The effects of different rolling reductions(30%,45%,and 60%)on the microstructure(interface and HCCI layer)and mechanical properties(bonding strength,hardness,and wear resistance)of the composite plate were studied.SEM images showed that when the reduction was increased,no impurities and interlayers were found between the microscopic interfaces after hot rolling,and the bonding interface exhibited a wave-like shape.EDS analysis showed that the Cr element diffusion between two metals after hot rolling was promoted when the reduction was increased,thereby improving the bonding quality under the same rolling temperature and rolling speed.Experiments showed that due to the stress release effect of the LCS of the cladded layer,the macro-slab shape after hot rolling performed well,and the brittle HCCI layer underwent thermoplastic deformation without cracking.Moreover,the increase of rolling reduction improved the bonding quality.As the rolling reduction was increased,the volume fraction of Cr-carbides in the HCCI layer also increased,resulting in an increase of hardness and wear-resistance.
文摘This paper presents the formation of Cr-O thin films on an iron substrate by multi-arc ion plating, which are intended to be used as a thermal radiation absorbent in electronic vacuum devices. Only oxygen was used as a reaction gas during deposition, the Cr-O thin film, must have high adhesion and low outgassing rate. The scratch test shows that the critical load, for an applicable Cr-O thin film deposited in oxygen atmosphere alone at a pressure of 8×10<sup>-1</sup> Pa, was as high as 6kg.
文摘In this work, electrochemical plating treatments were applied to ASTM A36 steel specimens to study the efficiency and limitations of this method for arresting fatigue crack propagation. Electroplated iron was deposited onto the crack surfaces using a circuit in which Swedish Iron served as the anode in a solution of Ammonium Iron(II) Sulfate Hexahydrate. The iron ions were driven into fatigue cracks that were formed within ASTM E399 compact tension specimens. This work showed that an iron-plating treatment operated at 20°C can arrest fatigue crack propagation for a significant period of cycles. The propagation re-initiation lives that resulted ranged from 11,000 to 230,000 cycles. As observed in prior work, the propagation re-initiation life correlated strongly to the magnitude of the stress intensity factor range that was applied during cycling. As this stress intensity increased, the propagation re-initiation life decreased. Repeated treatments on the same crack provided extended service lives by as much as 370,000 cycles or 60% of the entire fatigue life of the component. Future work may show that re-application of the treatment, when conducted prior to crack re-initiation, could further extend the service life indefinitely. The Correia crack closure model was modified to provide an empirical expression for predicting the crack re-initiation life of the treated component. Interestingly, highly effective arrest behavior was still observed for cracks that were loaded to stress intensity factors of only 3 - 6 <img src="Edit_f69af9cd-e908-4aef-8ccb-3b1f36e16d08.png" alt="" />during the treatment but then subjected to 20 <img src="Edit_5ddb9cae-23ad-442d-8e6c-63b5e1d99a0f.png" alt="" /> during cyclic loading. Galvanic corrosion of the plated material exposed to simulated seawater was estimated to be 3 mpy. Future work will examine the use of less active plating alloys and the possibility of applying effective treatments into cracks that are in an unloaded state.
文摘Defibrator is a very important machine in the wood industry for producing fiberboard. The refiner plates are the key parts of defibrator that directly act with the wood, and broken easily. The working life of the refiner plates is of significance to the wood industry. It may affect refining quality, production efficiency, and power consumption. In this paper, the abrasion resistance of the refiner plate made of different materials, the stainless steels and high chromium cast irons, were tested and compared. The results showed that abrasion resistance of refiner plate made of high chromium cast irons was better than that of the stainless steel materials. Although the two kinds of materials have the same compositions, their abrasion resistances have ap-parent difference. The main reason is that the material microstructures have very important effects on their performance. The refiner plates made of developed high chromium cast irons don抰 demand the complex heat treatment. This can simplify the producing process, save the cost of production, decrease labor strength, and increase the production efficiency.