Process discovery, as one of the most challenging process analysis techniques, aims to uncover business process models from event logs. Many process discovery approaches were invented in the past twenty years;however,...Process discovery, as one of the most challenging process analysis techniques, aims to uncover business process models from event logs. Many process discovery approaches were invented in the past twenty years;however, most of them have difficulties in handling multi-instance sub-processes. To address this challenge, we first introduce a multi-instance business process model(MBPM) to support the modeling of processes with multiple sub-process instantiations. Formal semantics of MBPMs are precisely defined by using multi-instance Petri nets(MPNs)that are an extension of Petri nets with distinguishable tokens.Then, a novel process discovery technique is developed to support the discovery of MBPMs from event logs with sub-process multi-instantiation information. In addition, we propose to measure the quality of the discovered MBPMs against the input event logs by transforming an MBPM to a classical Petri net such that existing quality metrics, e.g., fitness and precision, can be used.The proposed discovery approach is properly implemented as plugins in the Pro M toolkit. Based on a cloud resource management case study, we compare our approach with the state-of-theart process discovery techniques. The results demonstrate that our approach outperforms existing approaches to discover process models with multi-instance sub-processes.展开更多
In the manufacturing grid's architecture, Resources Management System (RMS) is the central component responsible for disseminating resource information across the grid, accepting requests for resources, discovering...In the manufacturing grid's architecture, Resources Management System (RMS) is the central component responsible for disseminating resource information across the grid, accepting requests for resources, discovering and scheduling the suitable resources that match the requests for the global grid resource, and executing the requests on scheduled resources. In order to resolve the problem of resources publication and discovery in Manufacturing Grid (MGrid), the classification of manufacturing resources is first researched after which the resources encapsulation class modes are put forward. Then, a scalable two-level resource management architecture is constructed on the model, which includes root nodes, domain nodes and leaf nodes. And then an RIMS is proposed, and the resources publication and discovery mechanism are detailedly described. At last, an application prototype is developed to show the validity and the practicability of the proved theory and method.展开更多
A basis for automatic discovery of information resources on the World Wide Web is characterized by three underlying equations. With these equations, the information universe on the Web is divided into three associated...A basis for automatic discovery of information resources on the World Wide Web is characterized by three underlying equations. With these equations, the information universe on the Web is divided into three associated spaces. This model differs from the hypertext employed by the Web, in that the former supports the notion of automatic resource discovery. A private library, which is able to gather automatically from the Web the information useful to the library owner, is envisaged to illustrate that the basic equations and their derivations can be applied to Web automation, including crawling and classifying.展开更多
Reducing cost of service is an important goal for resource discovery and interaction technologies. The shortcomings of transhipment-method and hibernation-method are to increase holistic cost of service and to slower ...Reducing cost of service is an important goal for resource discovery and interaction technologies. The shortcomings of transhipment-method and hibernation-method are to increase holistic cost of service and to slower resource discovery respectively. To overcome these shortcomings, a context-aware computing-based method is developed. This method, firstly, analyzes the courses of devices using resource discovery and interaction technologies to identify some types of context related to reducing cost of service, then, chooses effective methods such as stopping broadcast and hibernation to reduce cost of service according to information supplied by the context but not the transhipment-method’s simple hibernations. The results of experiments indicate that under the worst condition this method overcomes the shortcomings of transhipment-method, makes the “poor” devices hibernate longer than hibernation-method to reduce cost of service more effectively, and discovers resources faster than hibernation-method; under the best condition it is far better than hibernation-method in all aspects.展开更多
Water resource allocation was defined as an input-output question in this paper, and a preliminary input-output index system was set up. Then GEM (group eigenvalue method)-MAUE (multi-attribute utility theory) mod...Water resource allocation was defined as an input-output question in this paper, and a preliminary input-output index system was set up. Then GEM (group eigenvalue method)-MAUE (multi-attribute utility theory) model was applied to evaluate relative efficiency of water resource allocation plans. This model determined weights of indicators by GEM, and assessed the allocation schemes by MAUE. Compared with DEA (Data Envelopment Analysis) or ANN (Artificial Neural Networks), the mode was more applicable in some cases where decision-makers had preference for certain indicators展开更多
One of the key challenges in ad-hoc networks is the resource discovery problem.How efciently&quickly the queried resource/object can be resolved in such a highly dynamic self-evolving network is the underlying que...One of the key challenges in ad-hoc networks is the resource discovery problem.How efciently&quickly the queried resource/object can be resolved in such a highly dynamic self-evolving network is the underlying question?Broadcasting is a basic technique in the Mobile Ad-hoc Networks(MANETs),and it refers to sending a packet from one node to every other node within the transmission range.Flooding is a type of broadcast where the received packet is retransmitted once by every node.The naive ooding technique oods the network with query messages,while the random walk scheme operates by contacting subsets of each node’s neighbors at every step,thereby restricting the search space.Many earlier works have mainly focused on the simulation-based analysis of ooding technique,and its variants,in a wired network scenario.Although,there have been some empirical studies in peer-to-peer(P2P)networks,the analytical results are still lacking,especially in the context of mobile P2P networks.In this article,we mathematically model different widely used existing search techniques,and compare with the proposed improved random walk method,a simple lightweight approach suitable for the non-DHT architecture.We provide analytical expressions to measure the performance of the different ooding-based search techniques,and our proposed technique.We analytically derive 3 relevant key performance measures,i.e.,the avg.number of steps needed to nd a resource,the probability of locating a resource,and the avg.number of messages generated during the entire search process.展开更多
Device to Device (D2D) communication is expected to be anessential part of 5G cellular networks. D2D communication enables closeproximitydevices to establish a direct communication session. D2D communicationoffers man...Device to Device (D2D) communication is expected to be anessential part of 5G cellular networks. D2D communication enables closeproximitydevices to establish a direct communication session. D2D communicationoffers many advantages, such as reduced latency, high data rates,range extension, and cellular offloading. The first step to establishing a D2Dsession is device discovery;an efficient device discovery will lead to efficientD2D communication. D2D device further needs to manage its mode of communication,perform resource allocation, manage its interference and mostimportantly control its power to improve the battery life of the device. Thiswork has developed six distinct scenarios in which D2D communication canbe initiated, considering their merits, demerits, limitations, and optimizationparameters. D2D communication procedures for the considered scenarioshave been formulated, based upon the signal flow, containing device discovery,resource allocation, and session teardown. Finally, latency for each scenariohas been evaluated, based on propagation and processing delays.展开更多
This paper proposes an integrative framework for network-structured analytic network process (ANP) modeling. The underlying rationales include: 1) creating the measuring items for the complex decision problems;2) appl...This paper proposes an integrative framework for network-structured analytic network process (ANP) modeling. The underlying rationales include: 1) creating the measuring items for the complex decision problems;2) applying factor analysis to reduce the complex measuring items into fewer constructs;3) employing Bayesian network classifier technique to discover the causal directions among constructs;4) using partial least squares path modeling to test the causal relationships among the items-constructs. The proposed framework is implemented for knowledge discovery to a case of high-tech companies’ enterprise resource planning (ERP) benefits and satisfaction in Hsinchu Science Park,Taiwan. The results show that the proposed framework for ANP modeling can reach a satisfactory level of convergent reliability and validity. Based on the findings, pragmatic implications to the ERP venders are discussed. This study has shed new light on the long neglected, yet critical, issue on decision structures and knowledge discovery for ANP modeling.展开更多
It is common in industrial construction projects for data to be collected and discarded without being analyzed to extract useful knowledge. A proposed integrated methodology based on a five-step Knowledge Discovery in...It is common in industrial construction projects for data to be collected and discarded without being analyzed to extract useful knowledge. A proposed integrated methodology based on a five-step Knowledge Discovery in Data (KDD) model was developed to address this issue. The framework transfers existing multidimensional historical data from completed projects into useful knowledge for future projects. The model starts by understanding the problem domain, industrial construction projects. The second step is analyzing the problem data and its multiple dimensions. The target dataset is the labour resources data generated while managing industrial construction projects. The next step is developing the data collection model and prototype data ware-house. The data warehouse stores collected data in a ready-for-mining format and produces dynamic On Line Analytical Processing (OLAP) reports and graphs. Data was collected from a large western-Canadian structural steel fabricator to prove the applicability of the developed methodology. The proposed framework was applied to three different case studies to validate the applicability of the developed framework to real projects data.展开更多
基金supported by the National Natural Science Foundation of China(61902222)the Taishan Scholars Program of Shandong Province(tsqn201909109)+1 种基金the Natural Science Excellent Youth Foundation of Shandong Province(ZR2021YQ45)the Youth Innovation Science and Technology Team Foundation of Shandong Higher School(2021KJ031)。
文摘Process discovery, as one of the most challenging process analysis techniques, aims to uncover business process models from event logs. Many process discovery approaches were invented in the past twenty years;however, most of them have difficulties in handling multi-instance sub-processes. To address this challenge, we first introduce a multi-instance business process model(MBPM) to support the modeling of processes with multiple sub-process instantiations. Formal semantics of MBPMs are precisely defined by using multi-instance Petri nets(MPNs)that are an extension of Petri nets with distinguishable tokens.Then, a novel process discovery technique is developed to support the discovery of MBPMs from event logs with sub-process multi-instantiation information. In addition, we propose to measure the quality of the discovered MBPMs against the input event logs by transforming an MBPM to a classical Petri net such that existing quality metrics, e.g., fitness and precision, can be used.The proposed discovery approach is properly implemented as plugins in the Pro M toolkit. Based on a cloud resource management case study, we compare our approach with the state-of-theart process discovery techniques. The results demonstrate that our approach outperforms existing approaches to discover process models with multi-instance sub-processes.
基金Project supported by the National Natural Science Foundation of China (No. 50335020) and the Opening Foundation of Hubei Digital Manufacturing Key Lab (No. SZ0406), China
文摘In the manufacturing grid's architecture, Resources Management System (RMS) is the central component responsible for disseminating resource information across the grid, accepting requests for resources, discovering and scheduling the suitable resources that match the requests for the global grid resource, and executing the requests on scheduled resources. In order to resolve the problem of resources publication and discovery in Manufacturing Grid (MGrid), the classification of manufacturing resources is first researched after which the resources encapsulation class modes are put forward. Then, a scalable two-level resource management architecture is constructed on the model, which includes root nodes, domain nodes and leaf nodes. And then an RIMS is proposed, and the resources publication and discovery mechanism are detailedly described. At last, an application prototype is developed to show the validity and the practicability of the proved theory and method.
文摘A basis for automatic discovery of information resources on the World Wide Web is characterized by three underlying equations. With these equations, the information universe on the Web is divided into three associated spaces. This model differs from the hypertext employed by the Web, in that the former supports the notion of automatic resource discovery. A private library, which is able to gather automatically from the Web the information useful to the library owner, is envisaged to illustrate that the basic equations and their derivations can be applied to Web automation, including crawling and classifying.
文摘Reducing cost of service is an important goal for resource discovery and interaction technologies. The shortcomings of transhipment-method and hibernation-method are to increase holistic cost of service and to slower resource discovery respectively. To overcome these shortcomings, a context-aware computing-based method is developed. This method, firstly, analyzes the courses of devices using resource discovery and interaction technologies to identify some types of context related to reducing cost of service, then, chooses effective methods such as stopping broadcast and hibernation to reduce cost of service according to information supplied by the context but not the transhipment-method’s simple hibernations. The results of experiments indicate that under the worst condition this method overcomes the shortcomings of transhipment-method, makes the “poor” devices hibernate longer than hibernation-method to reduce cost of service more effectively, and discovers resources faster than hibernation-method; under the best condition it is far better than hibernation-method in all aspects.
文摘Water resource allocation was defined as an input-output question in this paper, and a preliminary input-output index system was set up. Then GEM (group eigenvalue method)-MAUE (multi-attribute utility theory) model was applied to evaluate relative efficiency of water resource allocation plans. This model determined weights of indicators by GEM, and assessed the allocation schemes by MAUE. Compared with DEA (Data Envelopment Analysis) or ANN (Artificial Neural Networks), the mode was more applicable in some cases where decision-makers had preference for certain indicators
文摘One of the key challenges in ad-hoc networks is the resource discovery problem.How efciently&quickly the queried resource/object can be resolved in such a highly dynamic self-evolving network is the underlying question?Broadcasting is a basic technique in the Mobile Ad-hoc Networks(MANETs),and it refers to sending a packet from one node to every other node within the transmission range.Flooding is a type of broadcast where the received packet is retransmitted once by every node.The naive ooding technique oods the network with query messages,while the random walk scheme operates by contacting subsets of each node’s neighbors at every step,thereby restricting the search space.Many earlier works have mainly focused on the simulation-based analysis of ooding technique,and its variants,in a wired network scenario.Although,there have been some empirical studies in peer-to-peer(P2P)networks,the analytical results are still lacking,especially in the context of mobile P2P networks.In this article,we mathematically model different widely used existing search techniques,and compare with the proposed improved random walk method,a simple lightweight approach suitable for the non-DHT architecture.We provide analytical expressions to measure the performance of the different ooding-based search techniques,and our proposed technique.We analytically derive 3 relevant key performance measures,i.e.,the avg.number of steps needed to nd a resource,the probability of locating a resource,and the avg.number of messages generated during the entire search process.
基金supported in part by Basic Science Research Program through the National Research Foundation of Korea (NRF)funded by the Ministry of Education (NRF-2021R1A6A1A03039493)in part by the NRF grant funded by the Korea government (MSIT) (NRF-2022R1A2C1004401).
文摘Device to Device (D2D) communication is expected to be anessential part of 5G cellular networks. D2D communication enables closeproximitydevices to establish a direct communication session. D2D communicationoffers many advantages, such as reduced latency, high data rates,range extension, and cellular offloading. The first step to establishing a D2Dsession is device discovery;an efficient device discovery will lead to efficientD2D communication. D2D device further needs to manage its mode of communication,perform resource allocation, manage its interference and mostimportantly control its power to improve the battery life of the device. Thiswork has developed six distinct scenarios in which D2D communication canbe initiated, considering their merits, demerits, limitations, and optimizationparameters. D2D communication procedures for the considered scenarioshave been formulated, based upon the signal flow, containing device discovery,resource allocation, and session teardown. Finally, latency for each scenariohas been evaluated, based on propagation and processing delays.
文摘This paper proposes an integrative framework for network-structured analytic network process (ANP) modeling. The underlying rationales include: 1) creating the measuring items for the complex decision problems;2) applying factor analysis to reduce the complex measuring items into fewer constructs;3) employing Bayesian network classifier technique to discover the causal directions among constructs;4) using partial least squares path modeling to test the causal relationships among the items-constructs. The proposed framework is implemented for knowledge discovery to a case of high-tech companies’ enterprise resource planning (ERP) benefits and satisfaction in Hsinchu Science Park,Taiwan. The results show that the proposed framework for ANP modeling can reach a satisfactory level of convergent reliability and validity. Based on the findings, pragmatic implications to the ERP venders are discussed. This study has shed new light on the long neglected, yet critical, issue on decision structures and knowledge discovery for ANP modeling.
文摘It is common in industrial construction projects for data to be collected and discarded without being analyzed to extract useful knowledge. A proposed integrated methodology based on a five-step Knowledge Discovery in Data (KDD) model was developed to address this issue. The framework transfers existing multidimensional historical data from completed projects into useful knowledge for future projects. The model starts by understanding the problem domain, industrial construction projects. The second step is analyzing the problem data and its multiple dimensions. The target dataset is the labour resources data generated while managing industrial construction projects. The next step is developing the data collection model and prototype data ware-house. The data warehouse stores collected data in a ready-for-mining format and produces dynamic On Line Analytical Processing (OLAP) reports and graphs. Data was collected from a large western-Canadian structural steel fabricator to prove the applicability of the developed methodology. The proposed framework was applied to three different case studies to validate the applicability of the developed framework to real projects data.