In a social network analysis the output provided includes many measures and metrics. For each of these measures and metric, the output provides the ability to obtain a rank ordering of the nodes in terms of these meas...In a social network analysis the output provided includes many measures and metrics. For each of these measures and metric, the output provides the ability to obtain a rank ordering of the nodes in terms of these measures. We might use this information in decision making concerning disrupting or deceiving a given network. All is fine when all the measures indicate the same node as the key or influential node. What happens when the measures indicate different key nodes? Our goal in this paper is to explore two methodologies to identify the key players or nodes in a given network. We apply TOPSIS to analyze these outputs to find the most influential nodes as a function of the decision makers' inputs as a process to consider both subjective and objectives inputs through pairwise comparison matrices. We illustrate our results using two common networks from the literature: the Kite network and the Information flow network from Knoke and Wood. We discuss some basic sensitivity analysis can may be applied to the methods. We find the use of TOPSIS as a flexible method to weight the criterion based upon the decision makers' inputs or the topology of the network.展开更多
In the case of unknown weights, theories of multi-attributed decision making based on interval numbers and grey related analysis were used to optimize mining methods. As the representative of independence for the indi...In the case of unknown weights, theories of multi-attributed decision making based on interval numbers and grey related analysis were used to optimize mining methods. As the representative of independence for the indicator, the smaller the correlation of indicators is, the greater the weight is. Hence, the weights of interval numbers of indicators were determined by using correlation coefficient. Relative closeness based on positive and negative ideal methods was calculated by introducing distance between interval numbers, which made decision making more rational and comprehensive. A new method of ranking interval numbers based on normal distribution was proposed for the optimization of mining methods, whose basic properties were discussed. Finally, the feasibility and effectiveness of this method were verified by theories and practice.展开更多
Regarding high drilling costs,an effort should be made to substantially reduce the drilling operation.To achieve this goal,exploration and development stages should be carried out precisely with maximum information ac...Regarding high drilling costs,an effort should be made to substantially reduce the drilling operation.To achieve this goal,exploration and development stages should be carried out precisely with maximum information acquired from the reservoir.The use of multi-attribute matching technology to predict sedimentary system has always been a very important but challenging task.To resolve the challenges,we utilized a quantitative analysis method of seismic attributes based on geological models involving high resolution 3D seismic data for sedimentary facies.We developed a workflow that includes core data,seismic attribute analysis,and well logging to highlight the benefit of understanding the facies distribution in the 3 rd Member of the Lower Jurassic Badaowan Formation,Hongshanzui area,Junggar Basin,China.1)Data preprocessing.2)Cluster analysis.3)RMS attribute based on a normal distribution constrains facies boundary.4)Mapping the sedimentary facies by using MRA(multiple regression analysis)prediction model combined with the lithofacies assemblages and logging facies assemblages.The confident level presented in this research is 0.745,which suggests that the methods and data-mining techniques are practical and efficient,and also be used to map facies in other similar geological settings.展开更多
With the existence of several conventional and advanced building thermal energy demand forecast models to improve the energy efficiency of buildings,it is hard to find an appropriate,convenient,and efficient model.Eva...With the existence of several conventional and advanced building thermal energy demand forecast models to improve the energy efficiency of buildings,it is hard to find an appropriate,convenient,and efficient model.Evaluations based on statistical indexes(MAE,RMSE,MAPE,etc.)that characterize the accuracy of the forecasts do not help in the identification of the efficient building thermal energy demand forecast tool since they do not reflect the efforts entailed in implementation of the forecast model,i.e.,data collection to production/use phase.Hence,this work presents a Gini Index based Measurement of Alternatives and Ranking according to COmpromise Solution(GI-MARCOS),a hybrid Multi Attribute Decision Making(MADM)approach for the identification of the most efficient building energy demand forecast tool.GI-MARCOS employs(i)GI based objective weight method:assigns meaningful objective weights to the attributes in four phases(1:pre-processing,2:implementation,3:post-processing,and 4:use phase)thereby avoiding unnecessary biases in the expert’s opinion on weights and applicable to domains where there is a lack of domain expertise,and(ii)MARCOS:provides a robust and reliable ranking of alternatives in a dynamic environment.A case study with three alternatives evaluated over three to six attributes in four phases of implementation(pre-processing,implementation,post-processing and use)reveals that the use of GI-MARCOS improved the accuracy of alternatives MLR and BM by 6%and 13%,respectively.Moreover,additional validations state that(i)MLR performs best in Phase 1 and 2,while ANN performs best in Phase 3 and 4 with BM providing a mediocre performance in all four phases,(ii)sensitivity analysis:provides robust ranking with interchange of weights across phases and attributes,and(iii)rank correlation:ranks produce by GI-MARCOS has a high correlation with GRA(0.999),COPRAS(0.9786),and ARAS(0.9775).展开更多
Blasting is one of the most important operations in the mining projects that has effective role in the whole operation physically and economically. Unsuitable blasting pattern may lead to unwanted events such as poor ...Blasting is one of the most important operations in the mining projects that has effective role in the whole operation physically and economically. Unsuitable blasting pattern may lead to unwanted events such as poor fragmentation, back break and fly rock. Multi attribute decision making(MADM) can be useful method for selecting the most appropriate blasting pattern among previously performed patterns. In this work, initially, from various already performed patterns, efficient and inefficient patterns are determined using data envelopment analysis(DEA). In the second step, after weighting impressive attributes using experts' opinion, elimination Et choice translating reality(ELECTRE) was used for ranking the efficient patterns and recognizing the most appropriate pattern in the Sungun Copper Mine, Iran. According to the obtained results, blasting pattern with the hole diameter of 15.24 cm, burden of 3 m, spacing of 4 m and stemming of 3.2 m has selected as the best pattern and has selected for future operation.展开更多
A Dark Network is a network that cannot be accessed through tradition means. Once uncovered, to any degree, dark network analysis can be accomplished using the SNA software. The output of SNA software includes many me...A Dark Network is a network that cannot be accessed through tradition means. Once uncovered, to any degree, dark network analysis can be accomplished using the SNA software. The output of SNA software includes many measures and metrics. For each of these measures and metric, the output in ORA additionally provides the ability to obtain a rank ordering of the nodes in terms of these measures. We might use this information in decision making concerning best methods to disrupt or deceive a given dark network. In the Noordin Dark network, different nodes were identified as key nodes based upon the metric used. Our goal in this paper is to use methodologies to identify the key players or nodes in a Dark Network in a similar manner as we previously proposed in social networks. We apply two multi-attribute decision making methods, a hybrid AHP & TOPSIS and an average weighted ranks scheme, to analyze these outputs to find the most influential nodes as a function of the decision makers’ inputs. We compare these methods by illustration using the Noordin Dark Network with seventy-nine nodes. We discuss sensitivity analysis that is applied to the criteria weights in order to measure the change in the ranking of the nodes.展开更多
For domestic consumers in the rural areas of northern Kenya, as in other developing countries, the typical source of electrical supply is diesel generators. However, diesel generators are associated with both CO2 emis...For domestic consumers in the rural areas of northern Kenya, as in other developing countries, the typical source of electrical supply is diesel generators. However, diesel generators are associated with both CO2 emissions, which adversely affect the environment and increase diesel fuel prices, which inflate the prices of consumer goods. The Kenya government has taken steps towards addressing this issue by proposing The Hybrid Mini-Grid Project, which involves the installation of 3 MW of wind and solar energy systems in facilities with existing diesel generators. However, this project has not yet been implemented. As a contribution to this effort, this study proposes, simulates and analyzes five different configurations of hybrid energy systems incorporating wind energy, solar energy and battery storage to replace the stand-alone diesel power systems servicing six remote villages in northern Kenya. If implemented, the systems proposed here would reduce Kenya’s dependency on diesel fuel, leading to reductions in its carbon footprint. This analysis confirms the feasibility of these hybrid systems with many configurations being profitable. A Multi-Attribute Trade-Off Analysis is employed to determine the best hybrid system configuration option that would reduce diesel fuel consumption and jointly minimize CO2 emissions and net present cost. This analysis determined that a wind-diesel-battery configuration consisting of two 500 kW turbines, 1200 kW diesel capacity and 95,040 Ah battery capacity is the best option to replace a 3200 kW stand-alone diesel system providing electricity to a village with a peak demand of 839 kW. It has the potential to reduce diesel fuel consumption and CO2 emissions by up to 98.8%.展开更多
To assess the operational safety risk of long-term evolution for the metro(LTE-M)communication system more accurately,the guide maintenance strategy,the improved evidence theory and the multi-attribute ideal reality c...To assess the operational safety risk of long-term evolution for the metro(LTE-M)communication system more accurately,the guide maintenance strategy,the improved evidence theory and the multi-attribute ideal reality comparative analysis(MAIRCA)approaches are proposed.According to the features of LTE-M system,the risk evaluation system is established.The enhanced structural entropy weight method is used to obtain the weight.Furthermore,it is combined with nine-element fuzzy mathematics to transform the degree of membership,modifying the conflict and fusion rules to solve the confidence degree clashed problem of evidence theory.Then,the system risk grade assessment result is obtained.For the purpose of forming the ranking of indicator importance,the MAIRCA is introduced and the ranking is three-dimensional.The operational state of the metro line is used as the data source in various ways the obtained risk grade increased by 7.12%.It is verified that MAIRCA can be applied to the field of urban rail transit because it has based on the test and calculation.The results show that the method is effective;compared with others,the confidence degree of excellent stability and the ranking result of risk factors is reasonable.The influencing indicator with the highest importance is the'equipment failure rate".展开更多
Security testing is a key technology for software security.The testing results can reflect the relationship between software testing and software security,and they can help program designers for evaluating and improvi...Security testing is a key technology for software security.The testing results can reflect the relationship between software testing and software security,and they can help program designers for evaluating and improving software security.However,it is difficult to describe by mathematics the relationship between the results of software functional testing and software nonfunctional security indexes.In this paper,we propose a mathematics model(MSMAM) based on principal component analysis and multiattribute utility theory.This model can get nonfunctional security indexes by analyzing quantized results of functional tests.It can also evaluate software security and guide the effective allocation of testing resources in the process of software testing.The feasibility and effectiveness of MSMAM is verified by experiments.展开更多
文摘In a social network analysis the output provided includes many measures and metrics. For each of these measures and metric, the output provides the ability to obtain a rank ordering of the nodes in terms of these measures. We might use this information in decision making concerning disrupting or deceiving a given network. All is fine when all the measures indicate the same node as the key or influential node. What happens when the measures indicate different key nodes? Our goal in this paper is to explore two methodologies to identify the key players or nodes in a given network. We apply TOPSIS to analyze these outputs to find the most influential nodes as a function of the decision makers' inputs as a process to consider both subjective and objectives inputs through pairwise comparison matrices. We illustrate our results using two common networks from the literature: the Kite network and the Information flow network from Knoke and Wood. We discuss some basic sensitivity analysis can may be applied to the methods. We find the use of TOPSIS as a flexible method to weight the criterion based upon the decision makers' inputs or the topology of the network.
基金Project(50774095) supported by the National Natural Science Foundation of ChinaProject(200449) supported by the National Outstanding Doctoral Dissertations Special Funds of China
文摘In the case of unknown weights, theories of multi-attributed decision making based on interval numbers and grey related analysis were used to optimize mining methods. As the representative of independence for the indicator, the smaller the correlation of indicators is, the greater the weight is. Hence, the weights of interval numbers of indicators were determined by using correlation coefficient. Relative closeness based on positive and negative ideal methods was calculated by introducing distance between interval numbers, which made decision making more rational and comprehensive. A new method of ranking interval numbers based on normal distribution was proposed for the optimization of mining methods, whose basic properties were discussed. Finally, the feasibility and effectiveness of this method were verified by theories and practice.
基金supported by the National Natural Science Foundation of China(41902109)Tianshan Youth Program(2020Q064)+1 种基金National Major Projects(2017ZX05001004)Tianshan Innovation Team Program(2020D14023)。
文摘Regarding high drilling costs,an effort should be made to substantially reduce the drilling operation.To achieve this goal,exploration and development stages should be carried out precisely with maximum information acquired from the reservoir.The use of multi-attribute matching technology to predict sedimentary system has always been a very important but challenging task.To resolve the challenges,we utilized a quantitative analysis method of seismic attributes based on geological models involving high resolution 3D seismic data for sedimentary facies.We developed a workflow that includes core data,seismic attribute analysis,and well logging to highlight the benefit of understanding the facies distribution in the 3 rd Member of the Lower Jurassic Badaowan Formation,Hongshanzui area,Junggar Basin,China.1)Data preprocessing.2)Cluster analysis.3)RMS attribute based on a normal distribution constrains facies boundary.4)Mapping the sedimentary facies by using MRA(multiple regression analysis)prediction model combined with the lithofacies assemblages and logging facies assemblages.The confident level presented in this research is 0.745,which suggests that the methods and data-mining techniques are practical and efficient,and also be used to map facies in other similar geological settings.
基金supported by The Indian Institute of Technology-Bombay(Institute Postdoctoral Fellowship-AO/Admin-1/Rect/33/2019).
文摘With the existence of several conventional and advanced building thermal energy demand forecast models to improve the energy efficiency of buildings,it is hard to find an appropriate,convenient,and efficient model.Evaluations based on statistical indexes(MAE,RMSE,MAPE,etc.)that characterize the accuracy of the forecasts do not help in the identification of the efficient building thermal energy demand forecast tool since they do not reflect the efforts entailed in implementation of the forecast model,i.e.,data collection to production/use phase.Hence,this work presents a Gini Index based Measurement of Alternatives and Ranking according to COmpromise Solution(GI-MARCOS),a hybrid Multi Attribute Decision Making(MADM)approach for the identification of the most efficient building energy demand forecast tool.GI-MARCOS employs(i)GI based objective weight method:assigns meaningful objective weights to the attributes in four phases(1:pre-processing,2:implementation,3:post-processing,and 4:use phase)thereby avoiding unnecessary biases in the expert’s opinion on weights and applicable to domains where there is a lack of domain expertise,and(ii)MARCOS:provides a robust and reliable ranking of alternatives in a dynamic environment.A case study with three alternatives evaluated over three to six attributes in four phases of implementation(pre-processing,implementation,post-processing and use)reveals that the use of GI-MARCOS improved the accuracy of alternatives MLR and BM by 6%and 13%,respectively.Moreover,additional validations state that(i)MLR performs best in Phase 1 and 2,while ANN performs best in Phase 3 and 4 with BM providing a mediocre performance in all four phases,(ii)sensitivity analysis:provides robust ranking with interchange of weights across phases and attributes,and(iii)rank correlation:ranks produce by GI-MARCOS has a high correlation with GRA(0.999),COPRAS(0.9786),and ARAS(0.9775).
文摘Blasting is one of the most important operations in the mining projects that has effective role in the whole operation physically and economically. Unsuitable blasting pattern may lead to unwanted events such as poor fragmentation, back break and fly rock. Multi attribute decision making(MADM) can be useful method for selecting the most appropriate blasting pattern among previously performed patterns. In this work, initially, from various already performed patterns, efficient and inefficient patterns are determined using data envelopment analysis(DEA). In the second step, after weighting impressive attributes using experts' opinion, elimination Et choice translating reality(ELECTRE) was used for ranking the efficient patterns and recognizing the most appropriate pattern in the Sungun Copper Mine, Iran. According to the obtained results, blasting pattern with the hole diameter of 15.24 cm, burden of 3 m, spacing of 4 m and stemming of 3.2 m has selected as the best pattern and has selected for future operation.
文摘A Dark Network is a network that cannot be accessed through tradition means. Once uncovered, to any degree, dark network analysis can be accomplished using the SNA software. The output of SNA software includes many measures and metrics. For each of these measures and metric, the output in ORA additionally provides the ability to obtain a rank ordering of the nodes in terms of these measures. We might use this information in decision making concerning best methods to disrupt or deceive a given dark network. In the Noordin Dark network, different nodes were identified as key nodes based upon the metric used. Our goal in this paper is to use methodologies to identify the key players or nodes in a Dark Network in a similar manner as we previously proposed in social networks. We apply two multi-attribute decision making methods, a hybrid AHP & TOPSIS and an average weighted ranks scheme, to analyze these outputs to find the most influential nodes as a function of the decision makers’ inputs. We compare these methods by illustration using the Noordin Dark Network with seventy-nine nodes. We discuss sensitivity analysis that is applied to the criteria weights in order to measure the change in the ranking of the nodes.
文摘For domestic consumers in the rural areas of northern Kenya, as in other developing countries, the typical source of electrical supply is diesel generators. However, diesel generators are associated with both CO2 emissions, which adversely affect the environment and increase diesel fuel prices, which inflate the prices of consumer goods. The Kenya government has taken steps towards addressing this issue by proposing The Hybrid Mini-Grid Project, which involves the installation of 3 MW of wind and solar energy systems in facilities with existing diesel generators. However, this project has not yet been implemented. As a contribution to this effort, this study proposes, simulates and analyzes five different configurations of hybrid energy systems incorporating wind energy, solar energy and battery storage to replace the stand-alone diesel power systems servicing six remote villages in northern Kenya. If implemented, the systems proposed here would reduce Kenya’s dependency on diesel fuel, leading to reductions in its carbon footprint. This analysis confirms the feasibility of these hybrid systems with many configurations being profitable. A Multi-Attribute Trade-Off Analysis is employed to determine the best hybrid system configuration option that would reduce diesel fuel consumption and jointly minimize CO2 emissions and net present cost. This analysis determined that a wind-diesel-battery configuration consisting of two 500 kW turbines, 1200 kW diesel capacity and 95,040 Ah battery capacity is the best option to replace a 3200 kW stand-alone diesel system providing electricity to a village with a peak demand of 839 kW. It has the potential to reduce diesel fuel consumption and CO2 emissions by up to 98.8%.
基金supported by grants from the National Natural Science Foundation of China(Grant No.61661027)the Gansu Provincial Department of Education:Excellent Postgraduate‘Innovation Star’Project(Grant No.2022CXZX-619).
文摘To assess the operational safety risk of long-term evolution for the metro(LTE-M)communication system more accurately,the guide maintenance strategy,the improved evidence theory and the multi-attribute ideal reality comparative analysis(MAIRCA)approaches are proposed.According to the features of LTE-M system,the risk evaluation system is established.The enhanced structural entropy weight method is used to obtain the weight.Furthermore,it is combined with nine-element fuzzy mathematics to transform the degree of membership,modifying the conflict and fusion rules to solve the confidence degree clashed problem of evidence theory.Then,the system risk grade assessment result is obtained.For the purpose of forming the ranking of indicator importance,the MAIRCA is introduced and the ranking is three-dimensional.The operational state of the metro line is used as the data source in various ways the obtained risk grade increased by 7.12%.It is verified that MAIRCA can be applied to the field of urban rail transit because it has based on the test and calculation.The results show that the method is effective;compared with others,the confidence degree of excellent stability and the ranking result of risk factors is reasonable.The influencing indicator with the highest importance is the'equipment failure rate".
基金Supported by the National Natural Science Foundation of China (91018008,61003268,61103220,91118003)the National Natural Science Foundation of Hubei Province (2010cdb08601)the Fundamental Research Funds for the Central Universities (3101038)
文摘Security testing is a key technology for software security.The testing results can reflect the relationship between software testing and software security,and they can help program designers for evaluating and improving software security.However,it is difficult to describe by mathematics the relationship between the results of software functional testing and software nonfunctional security indexes.In this paper,we propose a mathematics model(MSMAM) based on principal component analysis and multiattribute utility theory.This model can get nonfunctional security indexes by analyzing quantized results of functional tests.It can also evaluate software security and guide the effective allocation of testing resources in the process of software testing.The feasibility and effectiveness of MSMAM is verified by experiments.