Deep metal mines are often mined using the high-level pillars with subsequent cementation backfilling(HLSCB)mining method.At the design stage,it is therefore important to have a reasonable method for determining the s...Deep metal mines are often mined using the high-level pillars with subsequent cementation backfilling(HLSCB)mining method.At the design stage,it is therefore important to have a reasonable method for determining the shear strength of the high-level pillars(i.e.cohesion and internal friction angle)when they are supported by cemented backfilling.In this study,a formula was derived for the upper limit of the confining pressure σ3max on a high-level pillar supported by cemented backfilling in a deep metal mine.A new method of estimating the shear strength of such pillars was then proposed based on the Hoek eBrown failure criterion.Our analysis indicates that the horizontal stress σhh acting on the cemented backfill pillar can be simplified by expressing it as a constant value.A reasonable and effective value for σ3max can then be determined.The value of s3max predicted using the proposed method is generally less than 3 MPa.Within this range,the shear strength of the high-level pillar is accurately calculated using the equivalent MohreCoulomb theory.The proposed method can effectively avoid the calculation of inaccurate shear strength values for the high-level pillars when the original HoekeBrown criterion is used in the presence of large confining pressures,i.e.the situation in which the cohesion value is too large and the friction angle is too small can effectively be avoided.The proposed method is applied to a deep metal mine in China that is being excavated using the HLSCB method.The shear strength parameters of the high-level pillars obtained using the proposed method were input in the numerical simulations.The numerical results show that the recommended level heights and sizes of the high-level pillars and rooms in the mine are rational.展开更多
The macroscopic mechanical properties of rocks are significantly influenced by their microstructure.As a material bonded by mineral grains,the grain morphology of crystalline rock is the primary factor influencing the...The macroscopic mechanical properties of rocks are significantly influenced by their microstructure.As a material bonded by mineral grains,the grain morphology of crystalline rock is the primary factor influencing the strength.However,most strength criteria neglect the strength variations caused by different grain characteristics in rocks.Furthermore,the traditional linear criteria tend to overestimate tensile strength and exhibit apex singularity.To address these shortcomings,a piecewise strength criterion that considers the grain size effect has been proposed.A part of an ellipse was employed to construct the envelope of the tensive-shear region on the meridian plane,to accurately reproduce the low tensile-compressive strength ratio.Based on the analysis of experimental data,both linear and exponential modification functions that account for grain size effects were integrated into the proposed criterion.The corresponding finite element algorithm has been implemented.The accuracy and applicability of the proposed criterion were validated by comparing with the experimental data.展开更多
The face stability problem is a major concern for tunnels excavated in rock masses governed by the Hoek-Brown strength criterion.To provide an accurate prediction for the theoretical solution of the critical face pres...The face stability problem is a major concern for tunnels excavated in rock masses governed by the Hoek-Brown strength criterion.To provide an accurate prediction for the theoretical solution of the critical face pressure,this study adopts the piecewise linear method(PLM)to account for the nonlinearity of the strength envelope and proposes a new multi-horn rotational mechanism based on the Hoek-Brown strength criterion and the associative flow rule.The analytical solution of critical support pressure is derived from the energy-work balance equation in the framework of the plastic limit theorem;it is formulated as a multivariable nonlinear optimization problem relying on 2m dependent variables(m is the number of segments).Meanwhile,two classic linearized measures,the generalized tangential technique(GTT)and equivalent Mohr-Coulomb parameters method(EMM),are incorporated into the analysis for comparison.Surprisingly,the parametric study indicates a significant improvement in support pressure by up to 13%compared with the GTT,and as expected,the stability of the tunnel face is greatly influenced by the rock strength parameters.The stress distribution on the rupture surface is calculated to gain an intuitive understanding of the failure at the limit state.Although the limit analysis is incapable of calculating the true stress distribution in rock masses,a rough approximation of the stress vector on the rupture surface is permitted.In the end,sets of normalized face pressure are provided in the form of charts for a quick assessment of face stability in rock masses.展开更多
Dynamic tensile failure is a common phenomenon in deep rock practices,and thus accurately evaluating the dynamic tensile responses of rocks under triaxial pressures is of great significance.The Brazilian disc(BD)test ...Dynamic tensile failure is a common phenomenon in deep rock practices,and thus accurately evaluating the dynamic tensile responses of rocks under triaxial pressures is of great significance.The Brazilian disc(BD)test is the suggested method by the International Society for Rock Mechanics and Rock Engineering(ISRM)for measuring both the static and dynamic tensile strengths of rock-like materials.However,due to the overload phenomenon and the complex preloading conditions,the dynamic tensile strengths of rocks measured by the BD tests tend to be overestimated.To address this issue,the dynamic BD tensile strength(BTS)of Fangshan marble(FM)under different preloading conditions were measured through a triaxial split Hopkinson pressure bar(SHPB).The fracture onset in BD specimen was captured through a strain gage around the disc center.The discrepancy between the traditional tensile strength(TTS,determined by the peak load P_(f) of the BD specimen)and the nominal tensile strength(NTS,obtained from the load P_(i) when the diametral fracture commences in the tested BD specimen)was applied to quantitatively evaluating the overload phenomenon.The Griffith criterion was used to rectify the calculation of the tensile stress at the disc center under triaxial stress states.The results demonstrate that the overload ratio(s)increases with the loading rate(σ)and decreases with the hydrostatic pressure(σ_(s)).The TTS corrected by the Griffith criterion is independent of theσ_(s)due to the overload phenomenon,while the NTS corrected by the Griffith criterion is sensitive to both the andσ.Therefore,it is essential to modify the tensile stress in dynamic confined BD tests using both the overload correction and the Griffith criterion rectification to obtain the accurate dynamic BTS of rocks.展开更多
Layered rock mass is a type of engineering rock mass with sound mechanical anisotropy,which is generally unfavorable to the stability of underground works.To investigate the strength anisotropy of layered rock,the Moh...Layered rock mass is a type of engineering rock mass with sound mechanical anisotropy,which is generally unfavorable to the stability of underground works.To investigate the strength anisotropy of layered rock,the Mohr-Coulomb and Hoek-Brown criteria are introduced to establish the two transverse isotropic strength criteria based on Jaeger's single weak plane theory and maximum axial strain theory,and parameter determination methods.Furthermore,the sensitivity of strength parameters(K 1,K 2,and K 3)that are used to characterize the anisotropy strength of non-sliding failure involved in the strength criteria and confining pressure are investigated.The results demonstrate that strength parameters K 1 and K 2 affect the strength of layered rock samples at all bedding angles except for the bedding angle of 90°and the angle range that can cause the shear sliding failure along the bedding plane.The strength of samples at any bedding angle decreases with increasing K 1,whereas the opposite is for K 2.Except for bedding angles of 0°and 90°and the bedding angle range that can cause the shear sliding along the bedding plane,K 3 has an impact on the strength of rock samples with other bedding angles that the specimens'strength increases with increase of K 3.In addition,the strength of the rock sample increases as confining pressure rises.Furthermore,the uniaxial and triaxial tests of chlorite schist samples were carried out to verify and evaluate the strength criteria proposed in the paper.It shows that the predicted strength is in good agreement with the experimental results.To test the applicability of the strength criterion,the strength data of several types of rock in the literature are compared.Finally,a comparison is made between the fitting effects of the two strength criteria and other available criteria for layered rocks.展开更多
Strength theory is the basic theory for calculating and designing the strength of engineering materials in civil,hydraulic,mechanical,aerospace,military,and other engineering disciplines.Therefore,the comprehensive st...Strength theory is the basic theory for calculating and designing the strength of engineering materials in civil,hydraulic,mechanical,aerospace,military,and other engineering disciplines.Therefore,the comprehensive study of the generalized nonlinear strength theory(GNST)of geomaterials has significance for the construction of engineering rock strength.This paper reviews the GNST of geomaterials to demonstrate the research status of nonlinear strength characteristics of geomaterials under complex stress paths.First,it systematically summarizes the research progress of GNST(classical and empirical criteria).Then,the latest research the authors conducted over the past five years on the GNST is introduced,and a generalized three-dimensional(3D)nonlinear Hoek‒Brown(HB)criterion(NGHB criterion)is proposed for practical applications.This criterion can be degenerated into the existing three modified HB criteria and has a better prediction performance.The strength prediction errors for six rocks and two in-situ rock masses are 2.0724%-3.5091%and 1.0144%-3.2321%,respectively.Finally,the development and outlook of the GNST are expounded,and a new topic about the building strength index of rock mass and determining the strength of in-situ engineering rock mass is proposed.The summarization of the GNST provides theoretical traceability and optimization for constructing in-situ engineering rock mass strength.展开更多
Experimental investigations on dynamic in-plane compressive behavior of a plain weave composite were performed using the split Hopkinson pressure bar. A quantitative criterion for calculating the constant strain rate ...Experimental investigations on dynamic in-plane compressive behavior of a plain weave composite were performed using the split Hopkinson pressure bar. A quantitative criterion for calculating the constant strain rate of composites was established. Then the upper limit of strain rate, restricted by stress equilibrium and constant loading rate, was rationally estimated and confirmed by tests. Within the achievable range of 0.001/s-895/s, it was found that the strength increased first and subsequently decreased as the strain rate increased. This feature was also reflected by the turning point(579/s) of the bilinear model for strength prediction. The transition in failure mechanism, from local opening damage to completely splitting destruction, was mainly responsible for such strain rate effects. And three major failure modes were summarized under microscopic observations: fiber fracture, inter-fiber fracture, and interface delamination. Finally, by introducing a nonlinear damage variable, a simplified ZWT model was developed to characterize the dynamic mechanical response. Excellent agreement was shown between the experimental and simulated results.展开更多
Underground constructions often encounter water environments,where water–rock interaction can increase porosity,thereby weakening engineering rocks.Correspondingly,the failure criterion for chemically corroded rocks ...Underground constructions often encounter water environments,where water–rock interaction can increase porosity,thereby weakening engineering rocks.Correspondingly,the failure criterion for chemically corroded rocks becomes essential in the stability analysis and design of such structures.This study enhances the applicability of the Hoek-Brown(H-B)criterion for engineering structures operating in chemically corrosive conditions by introducing a kinetic porosity-dependent instantaneous mi(KPIM).A multiscale experimental investigation,including nuclear magnetic resonance(NMR),X-ray diffraction(XRD),scanning electron microscopy(SEM),pH and ion chromatography analysis,and triaxial compression tests,is employed to quantify pore structural changes and their linkage with the strength responses of limestone under coupled chemical-mechanical(C-M)conditions.By employing ion chromatography and NMR analysis,along with incorporating the principles of free-face dissolution theory accounting for both congruent and incongruent dissolution,a kinetic chemical corrosion model is developed.This model aims to calculate the kinetic porosity alterations within rocks exposed to varying H+concentrations and durations.Subsequently,utilizing the generalized mixture rule(GMR),the kinetic porositydependent mi is formulated.Evaluation of the KPIM-enhanced H-B criterion using compression test data from 5 types of rocks demonstrated a high level of consistency between the criterion and the experimental results,with a coefficient of determination greater than 0.96,a mean absolute percentage error less than 4.84%,and a root-mean-square deviation less than 5.95 MPa.Finally,the physical significance of the porosity-dependent instantaneous mi is clarified:it serves as an indicator of a rock’s capacity to leverage the confining pressure effect.展开更多
Biaxial compression tests are performed on 100 mm × 100 mm × 100 mm cubic specimens of plain high-strength highperformance concrete (HSHPC) at seven kinds of stress ratios, σ2:σ3 =0 : - 1, -0.20 : - 1...Biaxial compression tests are performed on 100 mm × 100 mm × 100 mm cubic specimens of plain high-strength highperformance concrete (HSHPC) at seven kinds of stress ratios, σ2:σ3 =0 : - 1, -0.20 : - 1, -0.30 : - 1, -0.40 : - 1, -0.50 : -1, -0. 75 : - 1, and - 1.00 : - 1 after exposure to normal and high temperatures of 20, 200, 300, 400, 500 and 600 ℃, using a large static-dynamic true triaxial machine. Frictionreducing pads are three layers of plastic membranes with glycerine in-between for the compressive loading plane. Failure modes of the specimens are described. The two principally static compressive strengths are measured. The influences of the temperatures and stress ratios on the biaxial strengths of HSHPC after exposure to high temperatures are also analyzed. The experimental results show that the uniaxial compressive strength of plain HSHPC after exposure to high temperatures does not decrease completely with the increase in temperature; the ratios of the biaxial to its uniaxial compressive strengths depend on the stress ratios and brittleness-stiffness of HSHPC after exposure to different high temperatures. The formula of the Kupfer-Gerstle failure criterion modified with the temperature and stress ratio parameters for plain HSHPC is proposed.展开更多
Based on the dynamic loading(1-100 s^(-1)) experiments under different temperatures(223-298 K) and stress states, uniaxial and biaxial strength criterion of a Hydroxyl-terminated polybutadiene(HTPB)based composite sol...Based on the dynamic loading(1-100 s^(-1)) experiments under different temperatures(223-298 K) and stress states, uniaxial and biaxial strength criterion of a Hydroxyl-terminated polybutadiene(HTPB)based composite solid propellant were further investigated. These experiments were conducted through the use of a new uniaxial INSTRON testing machine, different new designed gripping apparatus and samples with different configurations. According to the test results, dynamic uniaxial tensile strength criterion of the propellant was directly constructed with the master curve of the uniaxial maximum tensile stress. Whereas, a new method was proposed to determine the dynamic uniaxial compressive strength of the propellant in this study. Then uniaxial compressive strength criterion of the propellant was constructed based on the related master curve. Moreover, it found that the uniaxial tensilecompressive strength ratio of the propellant is more sensitive to loading temperature under the test conditions. The value of this parameter is about 0.4 at room temperature, and it reduces to 0.2-0.3 at low temperatures. Finally, the theoretical biaxial strength criterion of HTPB propellant under dynamic loading was constructed with the unified strength theory, the uniaxial strength and the typical biaxial tensile strength. In addition, the theoretical limit lines of the principal stress plane for the propellant under dynamic loading at different temperatures were further plotted, and the scope of the limit line increases with decreasing temperature.展开更多
The Hoek-Brown (HB) strength criterion has been widely applied to the estimation of strength of intact rock and rock mass, while evolving ever since. However, negligence of the effect of the intermediate principal s...The Hoek-Brown (HB) strength criterion has been widely applied to the estimation of strength of intact rock and rock mass, while evolving ever since. However, negligence of the effect of the intermediate principal stress still remains in the criterion's latest version. At the same time, several three-dimensional (3D) HB strength, which can takes into account the influence of the intermediate principal stress, have already been proposed, among which the 3D HB criterion proposed by Zhang and Zhu seems to be the most reasonable one. However, the Zhang 3D HB criterion may have problems with some stress path close to triaxial extension state because of the non-convexity characteristic of its failure surface. In this paper, a new 3D HB strength criterion is presented based on a generalized form of the HB criterion, which also considers the effect of the intermediate principal stress and inherits all the merits of the original version of the HB criterion. In addition, this new criterion can remedy to some extent the shortcomings observed in the Zhang 3D HB criterion. Polyaxial tests for five different rocks from pub- lished literatures are used for evaluating this new criterion and comparing it with the Zhang 3D HB criterion. The re- sults show that this new criterion may over-predict or under- predict the polyaxial strength of rocks but the errors are rela- tively small, and similar results are also found for the Zhang 3D HB criterion, which one is better depends on the type of the rock under estimation.展开更多
A new unified strength criterion in the principal stress space has been proposed for use with normal strength concrete (NC) and high strength concrete (HSC) in compressioncompression-tension, compression-tension-t...A new unified strength criterion in the principal stress space has been proposed for use with normal strength concrete (NC) and high strength concrete (HSC) in compressioncompression-tension, compression-tension-tension, triaxial tension, and biaxial stress states. The study covers concrete with strengths ranging from 20 to 130 MPa. The conception of damage Poisson's ratio is defined and the expression for damage Poisson's ratio is determined basically. The failure mechanism of concrete is illustrated, which points out that damage Poisson's ratio is the key to determining the failure of concrete. Furthermore, for the concrete under biaxial stress conditions, the unified strength criterion is simplified and a simplified strength criterion in the form of curves is also proposed. The strength criterion is physically meaningful and easy to calculate, which can be applied to analytic solution and numerical solution of concrete structures.展开更多
The failure criterion of rocks is a critical factor involved in reliability design and stability analysis of geotechnical engineering.In order to accurately evaluate the triaxial compressive strength of rocks under di...The failure criterion of rocks is a critical factor involved in reliability design and stability analysis of geotechnical engineering.In order to accurately evaluate the triaxial compressive strength of rocks under different confining pressures,a nonlinear empirical strength criterion based on Mohr-Coulomb criterion was proposed in this paper.Through the analysis of triaxial test strength of 11 types of rock materials,the feasibility and validity of proposed criterion was discussed.For a further verification,six typical strength criteria were selected,and the prediction results of each criterion and test results were statistically analyzed.The comparative comparison results show that the prediction results obtained by applying this new criterion to 97 conventional triaxial compression tests of 11 different rock materials are highly consistent with the experimental data.Statistical analysis was executed to assess the application of the new criterion and other classical criteria in predicting the failure behavior of rock.This proposed empirical criterion provides a new reference and method for the determination of triaxial compressive strength of rock materials.展开更多
Based on the upper bound limit analysis theorem and the shear strength reduction technique, the equation for expressing critical limit-equilibrium state was employed to define the safety factor of a given slope and it...Based on the upper bound limit analysis theorem and the shear strength reduction technique, the equation for expressing critical limit-equilibrium state was employed to define the safety factor of a given slope and its corresponding critical failure mechanism by means of the kinematical approach of limit analysis theory. The nonlinear shear strength parameters were treated as variable parameters and a kinematically admissible failure mechanism was considered for calculation schemes. The iterative optimization method was adopted to obtain the safety factors. Case study and comparative analysis show that solutions presented here agree with available predictions when nonlinear criterion reduces to linear criterion, and the validity of present method could be illuminated. From the numerical results, it can also be seen that nonlinear parameter rn, slope foot gradient ,β, height of slope H, slope top gradient a and soil bulk density γ have significant effects on the safety factor of the slope.展开更多
The Hoek-Brown(HB)strength criterion has been applied widely in a large number of projects around the world.However,this criterion ignores the intermediate principal stress s2.Many evidences have demonstrated that the...The Hoek-Brown(HB)strength criterion has been applied widely in a large number of projects around the world.However,this criterion ignores the intermediate principal stress s2.Many evidences have demonstrated that the rock strength is dependent on s2.Thus it is necessary to extend the HB criterion into a three-dimensional(3D)form.In this study,the effect of s2 on the strength of rocks is identified by reviewing the true triaxial tests of various rock types reported in the literature.A simple 3D strength criterion is developed.The modified criterion is verified by the true triaxial tests of 13 rock types.The results indicate that the modified criterion can achieve a good fit to most of rock types.It can represent a series of criteria as b varies.For comparisons,several existing 3D versions of the HB criterion are selected to predict the strengths of these rock types.It is indicated that the proposed criterion works better than other criteria.A substantial relationship between parameter b and the unconfined compressive strength is established,which guarantees that the proposed criterion can still work well even in the absence of true triaxial test data.展开更多
Coal seam destabilization inflicts damage to equipment, causes property loss and personnel casualties,and severely threatens mining safety and efficient production. To further understand this destabilization based on ...Coal seam destabilization inflicts damage to equipment, causes property loss and personnel casualties,and severely threatens mining safety and efficient production. To further understand this destabilization based on the basic theory of Lippmann seam destabilization, a mathematical model was introduced for gas pressure distribution by considering intermediate principal stress and support resistance.Subsequently, we established a translation model suitable for the entire roadway coal seam with rocky roof and floor by applying the unified form of yield criterion in the state of plane strain. We also obtained the analytic expressions of coal seam stress distribution on both sides of the roadway and the widths of plastic and disturbance zones. Afterward, we analyzed several typical cases with different material yield criteria, obtained the plastic zone widths of the coal seam under different gas pressures, and assessed the effects of support resistance, roadway size, and coal strength on coal seam destabilization. Results showed that: the results obtained on the basis of Wilson and Mohr–Coulomb criteria are considerably conservative, and the use of Druker–Prager criteria to evaluate the rockburst-induced coal seam destabilization is safer than the use of the two other criteria; coal seam stability is correlated with gas pressure;and high-pressure gas accelerates the coal seam destabilization.展开更多
With the increase of mining depth of mineral resources,the rock mass stress state is being more and more complex.The rock mass show different features,namely,with the increase of hydrostatic pressure,rock mass failure...With the increase of mining depth of mineral resources,the rock mass stress state is being more and more complex.The rock mass show different features,namely,with the increase of hydrostatic pressure,rock mass failure mode turns from brittle tension failure to structure ductile failure and its limit strength also increases.The restriction of minimal principal stress on the initiation and development of microcrack and the change of micro-unit stress state by the intermediate principal stress play a decisive role in the increase of rock mass limit strength.Based on the rock mass failure behavior law under complex stress state and the σ2-dependence on the rock mass strength,we proposed a Modified Mohr-Coulomb(M-MC) strength criterion which is smooth and convex.Finally,the M-MC criterion is validated by multiaxial test data of eight kinds of rock mass.We also compared the fitting results with Mohr-Coulomb criterion(MC).It shows that the new criterion fits the test data better than the Mohr-Coulomb criterion.So the M-MC strength criterion well reveals the rock mass bearing behavior and can be widely used in the rock mass strength analysis.The results can provide theoretical foundations for stability analysis and reinforcement design of complex underground engineering.展开更多
In this paper, the Mohr-Coulomb shear strength criterion is modified by mobilising the cohesion and internal friction angle with normal stress, in order to capture the nonlinearity and critical state concept for intac...In this paper, the Mohr-Coulomb shear strength criterion is modified by mobilising the cohesion and internal friction angle with normal stress, in order to capture the nonlinearity and critical state concept for intact rocks reported in the literature. The mathematical expression for the strength is the same as the classical form, but the terms of cohesion and internal friction angle depend on the normal stress now,leading to a nonlinear relationship between the strength and normal stress. It covers both the tension and compression regions with different expressions for cohesion and internal friction angle. The strengths from the two regions join continuously at the transition of zero normal stress. The part in the compression region approximately satisfies the conditions of critical state, where the maximum shear strength is reached. Due to the nonlinearity, the classical simple relationship between the parameters of cohesion, internal friction angle and uniaxial compressive strength from the linear Mohr-Coulomb criterion does not hold anymore. The equation for determining one of the three parameters in terms of the other two is supplied. This equation is nonlinear and thus a nonlinear equation solver is needed. For simplicity, the classical linear relationship is used as a local approximation. The approximate modified Mohr-Coulomb criterion has been implemented in a fracture mechanics based numerical code FRACOD,and an example case of deep tunnel failure is presented to demonstrate the difference between the original and modified Mohr-Coulomb criteria. It is shown that the nonlinear modified Mohr-Coulomb criterion predicts somewhat deeper and more intensive fracturing regions in the surrounding rock mass than the original linear Mohr-Coulomb criterion. A more comprehensive piecewise nonlinear shear strength criterion is also included in Appendix B for those readers who are interested. It covers the tensile, compressive, brittle-ductile behaviour transition and the critical state, and gives smooth transitions.展开更多
Fibre-reinforced polymer(FRP)has the advantages of high strength,light weight,corrosion resistance and convenient construction and is widely used in repairing and strengthening damaged concrete columns.Most of the exi...Fibre-reinforced polymer(FRP)has the advantages of high strength,light weight,corrosion resistance and convenient construction and is widely used in repairing and strengthening damaged concrete columns.Most of the existing strength models were built by regression analysis of experimental data;however,in this article,a new unified strength model is proposed using the Hoek-Brown failure criterion.To study the strength of FRP-confined damaged and undamaged concrete columns,900 test data were collected from the published literature and a large database that contains the cross-sectional shape of each specimen,the damage type,the damage level and the FRP-confined stiffness was established.A new strength model using the Hoek-Brown failure criterion was established and is suitable for both circular and square columns that are undamaged,load-damaged and fire-damaged.Based on the database,most of the existing strength models from the published literature and the model proposed in this paper were evaluated.The evaluation shows that the proposed model can predict the compressive strength for FRP-confined pre-damaged and undamaged concrete columns with good accuracy.展开更多
As known, there is a large number of dentin tubules in dentin. These tubules have varying radii and are shaped into radially parallel pattern. The anisotropy of microstructure of dentin shows that dentin should be tre...As known, there is a large number of dentin tubules in dentin. These tubules have varying radii and are shaped into radially parallel pattern. The anisotropy of microstructure of dentin shows that dentin should be treated as a ma- terial of varying transverse isotropy. In this Part, the elastic stress-strain relations and the quadratic strength criterion are established in the form of having varying transverse isotropy, in the framework of micromechanics to take into account of the effect of the microstructures-dentin tubules. Simplified forms for isotropic and ho- mogeneous cases, as well as the corresponding plane stress form of the stress-strain relations are also given. These theoretical models are very well supported by the experiments shown later in the continued paper (Part Ⅱ).展开更多
基金Financial support for this work was provided by the General Program and Youth Fund Program of the National Natural Science Foundation of China(Grant Nos.42377175 and 42002292).
文摘Deep metal mines are often mined using the high-level pillars with subsequent cementation backfilling(HLSCB)mining method.At the design stage,it is therefore important to have a reasonable method for determining the shear strength of the high-level pillars(i.e.cohesion and internal friction angle)when they are supported by cemented backfilling.In this study,a formula was derived for the upper limit of the confining pressure σ3max on a high-level pillar supported by cemented backfilling in a deep metal mine.A new method of estimating the shear strength of such pillars was then proposed based on the Hoek eBrown failure criterion.Our analysis indicates that the horizontal stress σhh acting on the cemented backfill pillar can be simplified by expressing it as a constant value.A reasonable and effective value for σ3max can then be determined.The value of s3max predicted using the proposed method is generally less than 3 MPa.Within this range,the shear strength of the high-level pillar is accurately calculated using the equivalent MohreCoulomb theory.The proposed method can effectively avoid the calculation of inaccurate shear strength values for the high-level pillars when the original HoekeBrown criterion is used in the presence of large confining pressures,i.e.the situation in which the cohesion value is too large and the friction angle is too small can effectively be avoided.The proposed method is applied to a deep metal mine in China that is being excavated using the HLSCB method.The shear strength parameters of the high-level pillars obtained using the proposed method were input in the numerical simulations.The numerical results show that the recommended level heights and sizes of the high-level pillars and rooms in the mine are rational.
基金Project(2023YFC2907403)supported by the National Key R&D Program of ChinaProject(52074021)supported by the National Natural Science Foundation of China+1 种基金Project(2242045)supported by Beijing Natural Science Foundation,ChinaProject(ZD202216)supported by the Beijing Association of Higher Education,China。
文摘The macroscopic mechanical properties of rocks are significantly influenced by their microstructure.As a material bonded by mineral grains,the grain morphology of crystalline rock is the primary factor influencing the strength.However,most strength criteria neglect the strength variations caused by different grain characteristics in rocks.Furthermore,the traditional linear criteria tend to overestimate tensile strength and exhibit apex singularity.To address these shortcomings,a piecewise strength criterion that considers the grain size effect has been proposed.A part of an ellipse was employed to construct the envelope of the tensive-shear region on the meridian plane,to accurately reproduce the low tensile-compressive strength ratio.Based on the analysis of experimental data,both linear and exponential modification functions that account for grain size effects were integrated into the proposed criterion.The corresponding finite element algorithm has been implemented.The accuracy and applicability of the proposed criterion were validated by comparing with the experimental data.
基金supported by Fundamental Research Funds for the central universities of Central South University(No.2022ZZTS0153).
文摘The face stability problem is a major concern for tunnels excavated in rock masses governed by the Hoek-Brown strength criterion.To provide an accurate prediction for the theoretical solution of the critical face pressure,this study adopts the piecewise linear method(PLM)to account for the nonlinearity of the strength envelope and proposes a new multi-horn rotational mechanism based on the Hoek-Brown strength criterion and the associative flow rule.The analytical solution of critical support pressure is derived from the energy-work balance equation in the framework of the plastic limit theorem;it is formulated as a multivariable nonlinear optimization problem relying on 2m dependent variables(m is the number of segments).Meanwhile,two classic linearized measures,the generalized tangential technique(GTT)and equivalent Mohr-Coulomb parameters method(EMM),are incorporated into the analysis for comparison.Surprisingly,the parametric study indicates a significant improvement in support pressure by up to 13%compared with the GTT,and as expected,the stability of the tunnel face is greatly influenced by the rock strength parameters.The stress distribution on the rupture surface is calculated to gain an intuitive understanding of the failure at the limit state.Although the limit analysis is incapable of calculating the true stress distribution in rock masses,a rough approximation of the stress vector on the rupture surface is permitted.In the end,sets of normalized face pressure are provided in the form of charts for a quick assessment of face stability in rock masses.
基金We acknowledge the funding support from the National Natural Science Foundation of China(Grant Nos.42141010,51879184 and 12172253).
文摘Dynamic tensile failure is a common phenomenon in deep rock practices,and thus accurately evaluating the dynamic tensile responses of rocks under triaxial pressures is of great significance.The Brazilian disc(BD)test is the suggested method by the International Society for Rock Mechanics and Rock Engineering(ISRM)for measuring both the static and dynamic tensile strengths of rock-like materials.However,due to the overload phenomenon and the complex preloading conditions,the dynamic tensile strengths of rocks measured by the BD tests tend to be overestimated.To address this issue,the dynamic BD tensile strength(BTS)of Fangshan marble(FM)under different preloading conditions were measured through a triaxial split Hopkinson pressure bar(SHPB).The fracture onset in BD specimen was captured through a strain gage around the disc center.The discrepancy between the traditional tensile strength(TTS,determined by the peak load P_(f) of the BD specimen)and the nominal tensile strength(NTS,obtained from the load P_(i) when the diametral fracture commences in the tested BD specimen)was applied to quantitatively evaluating the overload phenomenon.The Griffith criterion was used to rectify the calculation of the tensile stress at the disc center under triaxial stress states.The results demonstrate that the overload ratio(s)increases with the loading rate(σ)and decreases with the hydrostatic pressure(σ_(s)).The TTS corrected by the Griffith criterion is independent of theσ_(s)due to the overload phenomenon,while the NTS corrected by the Griffith criterion is sensitive to both the andσ.Therefore,it is essential to modify the tensile stress in dynamic confined BD tests using both the overload correction and the Griffith criterion rectification to obtain the accurate dynamic BTS of rocks.
基金the financial support from the National Natural Science Foundation of China(Grant No.51979008)the National Natural Science Foundation of China(Grant No.51779018)the Innovation team of Changjiang River Scientific Research Institute(Grant No.CKSF2021715/YT).
文摘Layered rock mass is a type of engineering rock mass with sound mechanical anisotropy,which is generally unfavorable to the stability of underground works.To investigate the strength anisotropy of layered rock,the Mohr-Coulomb and Hoek-Brown criteria are introduced to establish the two transverse isotropic strength criteria based on Jaeger's single weak plane theory and maximum axial strain theory,and parameter determination methods.Furthermore,the sensitivity of strength parameters(K 1,K 2,and K 3)that are used to characterize the anisotropy strength of non-sliding failure involved in the strength criteria and confining pressure are investigated.The results demonstrate that strength parameters K 1 and K 2 affect the strength of layered rock samples at all bedding angles except for the bedding angle of 90°and the angle range that can cause the shear sliding failure along the bedding plane.The strength of samples at any bedding angle decreases with increasing K 1,whereas the opposite is for K 2.Except for bedding angles of 0°and 90°and the bedding angle range that can cause the shear sliding along the bedding plane,K 3 has an impact on the strength of rock samples with other bedding angles that the specimens'strength increases with increase of K 3.In addition,the strength of the rock sample increases as confining pressure rises.Furthermore,the uniaxial and triaxial tests of chlorite schist samples were carried out to verify and evaluate the strength criteria proposed in the paper.It shows that the predicted strength is in good agreement with the experimental results.To test the applicability of the strength criterion,the strength data of several types of rock in the literature are compared.Finally,a comparison is made between the fitting effects of the two strength criteria and other available criteria for layered rocks.
基金This research was financially supported by the National Natural Science Foundation of China(Nos.51934003,52334004)Yunnan Innovation Team(No.202105AE 160023)+2 种基金Major Science and Technology Special Project of Yunnan Province,China(No.202102AF080001)Yunnan Major Scientific and Technological Projects,China(No.202202AG050014)Key Laboratory of Geohazard Forecast and Geoecological Restoration in Plateau Mountainous Area,MNR,and Yunnan Key Laboratory of Geohazard Forecast and Geoecological Restoration in Plateau Mountainous Area.
文摘Strength theory is the basic theory for calculating and designing the strength of engineering materials in civil,hydraulic,mechanical,aerospace,military,and other engineering disciplines.Therefore,the comprehensive study of the generalized nonlinear strength theory(GNST)of geomaterials has significance for the construction of engineering rock strength.This paper reviews the GNST of geomaterials to demonstrate the research status of nonlinear strength characteristics of geomaterials under complex stress paths.First,it systematically summarizes the research progress of GNST(classical and empirical criteria).Then,the latest research the authors conducted over the past five years on the GNST is introduced,and a generalized three-dimensional(3D)nonlinear Hoek‒Brown(HB)criterion(NGHB criterion)is proposed for practical applications.This criterion can be degenerated into the existing three modified HB criteria and has a better prediction performance.The strength prediction errors for six rocks and two in-situ rock masses are 2.0724%-3.5091%and 1.0144%-3.2321%,respectively.Finally,the development and outlook of the GNST are expounded,and a new topic about the building strength index of rock mass and determining the strength of in-situ engineering rock mass is proposed.The summarization of the GNST provides theoretical traceability and optimization for constructing in-situ engineering rock mass strength.
基金the National Science and Technology Major Project(Grant No.2017-VII-0011-0106)Natural Science Foundation of Heilongjiang Province(Grant No.ZD2019A001).
文摘Experimental investigations on dynamic in-plane compressive behavior of a plain weave composite were performed using the split Hopkinson pressure bar. A quantitative criterion for calculating the constant strain rate of composites was established. Then the upper limit of strain rate, restricted by stress equilibrium and constant loading rate, was rationally estimated and confirmed by tests. Within the achievable range of 0.001/s-895/s, it was found that the strength increased first and subsequently decreased as the strain rate increased. This feature was also reflected by the turning point(579/s) of the bilinear model for strength prediction. The transition in failure mechanism, from local opening damage to completely splitting destruction, was mainly responsible for such strain rate effects. And three major failure modes were summarized under microscopic observations: fiber fracture, inter-fiber fracture, and interface delamination. Finally, by introducing a nonlinear damage variable, a simplified ZWT model was developed to characterize the dynamic mechanical response. Excellent agreement was shown between the experimental and simulated results.
文摘Underground constructions often encounter water environments,where water–rock interaction can increase porosity,thereby weakening engineering rocks.Correspondingly,the failure criterion for chemically corroded rocks becomes essential in the stability analysis and design of such structures.This study enhances the applicability of the Hoek-Brown(H-B)criterion for engineering structures operating in chemically corrosive conditions by introducing a kinetic porosity-dependent instantaneous mi(KPIM).A multiscale experimental investigation,including nuclear magnetic resonance(NMR),X-ray diffraction(XRD),scanning electron microscopy(SEM),pH and ion chromatography analysis,and triaxial compression tests,is employed to quantify pore structural changes and their linkage with the strength responses of limestone under coupled chemical-mechanical(C-M)conditions.By employing ion chromatography and NMR analysis,along with incorporating the principles of free-face dissolution theory accounting for both congruent and incongruent dissolution,a kinetic chemical corrosion model is developed.This model aims to calculate the kinetic porosity alterations within rocks exposed to varying H+concentrations and durations.Subsequently,utilizing the generalized mixture rule(GMR),the kinetic porositydependent mi is formulated.Evaluation of the KPIM-enhanced H-B criterion using compression test data from 5 types of rocks demonstrated a high level of consistency between the criterion and the experimental results,with a coefficient of determination greater than 0.96,a mean absolute percentage error less than 4.84%,and a root-mean-square deviation less than 5.95 MPa.Finally,the physical significance of the porosity-dependent instantaneous mi is clarified:it serves as an indicator of a rock’s capacity to leverage the confining pressure effect.
文摘Biaxial compression tests are performed on 100 mm × 100 mm × 100 mm cubic specimens of plain high-strength highperformance concrete (HSHPC) at seven kinds of stress ratios, σ2:σ3 =0 : - 1, -0.20 : - 1, -0.30 : - 1, -0.40 : - 1, -0.50 : -1, -0. 75 : - 1, and - 1.00 : - 1 after exposure to normal and high temperatures of 20, 200, 300, 400, 500 and 600 ℃, using a large static-dynamic true triaxial machine. Frictionreducing pads are three layers of plastic membranes with glycerine in-between for the compressive loading plane. Failure modes of the specimens are described. The two principally static compressive strengths are measured. The influences of the temperatures and stress ratios on the biaxial strengths of HSHPC after exposure to high temperatures are also analyzed. The experimental results show that the uniaxial compressive strength of plain HSHPC after exposure to high temperatures does not decrease completely with the increase in temperature; the ratios of the biaxial to its uniaxial compressive strengths depend on the stress ratios and brittleness-stiffness of HSHPC after exposure to different high temperatures. The formula of the Kupfer-Gerstle failure criterion modified with the temperature and stress ratio parameters for plain HSHPC is proposed.
基金financial support of the National 973 Program in China (No. 61338)the National Funds in China (Nos.11772352, 61407200203 and 51328050101)
文摘Based on the dynamic loading(1-100 s^(-1)) experiments under different temperatures(223-298 K) and stress states, uniaxial and biaxial strength criterion of a Hydroxyl-terminated polybutadiene(HTPB)based composite solid propellant were further investigated. These experiments were conducted through the use of a new uniaxial INSTRON testing machine, different new designed gripping apparatus and samples with different configurations. According to the test results, dynamic uniaxial tensile strength criterion of the propellant was directly constructed with the master curve of the uniaxial maximum tensile stress. Whereas, a new method was proposed to determine the dynamic uniaxial compressive strength of the propellant in this study. Then uniaxial compressive strength criterion of the propellant was constructed based on the related master curve. Moreover, it found that the uniaxial tensilecompressive strength ratio of the propellant is more sensitive to loading temperature under the test conditions. The value of this parameter is about 0.4 at room temperature, and it reduces to 0.2-0.3 at low temperatures. Finally, the theoretical biaxial strength criterion of HTPB propellant under dynamic loading was constructed with the unified strength theory, the uniaxial strength and the typical biaxial tensile strength. In addition, the theoretical limit lines of the principal stress plane for the propellant under dynamic loading at different temperatures were further plotted, and the scope of the limit line increases with decreasing temperature.
基金supported by Western Transportation Technology Funds of China (200731800038)the Special Fund for Basic Scientific Research of Central Colleges,Chang’an University(CHD2011JC175)
文摘The Hoek-Brown (HB) strength criterion has been widely applied to the estimation of strength of intact rock and rock mass, while evolving ever since. However, negligence of the effect of the intermediate principal stress still remains in the criterion's latest version. At the same time, several three-dimensional (3D) HB strength, which can takes into account the influence of the intermediate principal stress, have already been proposed, among which the 3D HB criterion proposed by Zhang and Zhu seems to be the most reasonable one. However, the Zhang 3D HB criterion may have problems with some stress path close to triaxial extension state because of the non-convexity characteristic of its failure surface. In this paper, a new 3D HB strength criterion is presented based on a generalized form of the HB criterion, which also considers the effect of the intermediate principal stress and inherits all the merits of the original version of the HB criterion. In addition, this new criterion can remedy to some extent the shortcomings observed in the Zhang 3D HB criterion. Polyaxial tests for five different rocks from pub- lished literatures are used for evaluating this new criterion and comparing it with the Zhang 3D HB criterion. The re- sults show that this new criterion may over-predict or under- predict the polyaxial strength of rocks but the errors are rela- tively small, and similar results are also found for the Zhang 3D HB criterion, which one is better depends on the type of the rock under estimation.
基金Project supported by the National Natural Science Foundation of China (Nos. 50438020 and 50578162).
文摘A new unified strength criterion in the principal stress space has been proposed for use with normal strength concrete (NC) and high strength concrete (HSC) in compressioncompression-tension, compression-tension-tension, triaxial tension, and biaxial stress states. The study covers concrete with strengths ranging from 20 to 130 MPa. The conception of damage Poisson's ratio is defined and the expression for damage Poisson's ratio is determined basically. The failure mechanism of concrete is illustrated, which points out that damage Poisson's ratio is the key to determining the failure of concrete. Furthermore, for the concrete under biaxial stress conditions, the unified strength criterion is simplified and a simplified strength criterion in the form of curves is also proposed. The strength criterion is physically meaningful and easy to calculate, which can be applied to analytic solution and numerical solution of concrete structures.
基金Project(51774322)supported by the National Natural Science Foundation of ChinaProject(2018JJ2500)supported by Natural Science Foundation of Hunan Province,China+1 种基金Project(2020JGB135)supported by Degree and Postgraduate Education Reform Project of Central South University,ChinaProject(2018zzts209)supported by the Fundamental Research Funds for the Central Universities,China。
文摘The failure criterion of rocks is a critical factor involved in reliability design and stability analysis of geotechnical engineering.In order to accurately evaluate the triaxial compressive strength of rocks under different confining pressures,a nonlinear empirical strength criterion based on Mohr-Coulomb criterion was proposed in this paper.Through the analysis of triaxial test strength of 11 types of rock materials,the feasibility and validity of proposed criterion was discussed.For a further verification,six typical strength criteria were selected,and the prediction results of each criterion and test results were statistically analyzed.The comparative comparison results show that the prediction results obtained by applying this new criterion to 97 conventional triaxial compression tests of 11 different rock materials are highly consistent with the experimental data.Statistical analysis was executed to assess the application of the new criterion and other classical criteria in predicting the failure behavior of rock.This proposed empirical criterion provides a new reference and method for the determination of triaxial compressive strength of rock materials.
基金Project(2006318802111) supported by West Traffic Construction Science and Technology of ChinaProject(2008yb004) supported by Excellent Doctorate Dissertations of Central South University, China Project(2008G032-3) supported by Key Item of Science and Technology Research of Railway Ministry of China
文摘Based on the upper bound limit analysis theorem and the shear strength reduction technique, the equation for expressing critical limit-equilibrium state was employed to define the safety factor of a given slope and its corresponding critical failure mechanism by means of the kinematical approach of limit analysis theory. The nonlinear shear strength parameters were treated as variable parameters and a kinematically admissible failure mechanism was considered for calculation schemes. The iterative optimization method was adopted to obtain the safety factors. Case study and comparative analysis show that solutions presented here agree with available predictions when nonlinear criterion reduces to linear criterion, and the validity of present method could be illuminated. From the numerical results, it can also be seen that nonlinear parameter rn, slope foot gradient ,β, height of slope H, slope top gradient a and soil bulk density γ have significant effects on the safety factor of the slope.
基金This work was supported by the Key Research and Development Programof Shaanxi,China(Grant Nos.2019SF-231and 2020SF-394)the Natural Science Foundation of China(Grant No.41630639).
文摘The Hoek-Brown(HB)strength criterion has been applied widely in a large number of projects around the world.However,this criterion ignores the intermediate principal stress s2.Many evidences have demonstrated that the rock strength is dependent on s2.Thus it is necessary to extend the HB criterion into a three-dimensional(3D)form.In this study,the effect of s2 on the strength of rocks is identified by reviewing the true triaxial tests of various rock types reported in the literature.A simple 3D strength criterion is developed.The modified criterion is verified by the true triaxial tests of 13 rock types.The results indicate that the modified criterion can achieve a good fit to most of rock types.It can represent a series of criteria as b varies.For comparisons,several existing 3D versions of the HB criterion are selected to predict the strengths of these rock types.It is indicated that the proposed criterion works better than other criteria.A substantial relationship between parameter b and the unconfined compressive strength is established,which guarantees that the proposed criterion can still work well even in the absence of true triaxial test data.
基金support of National Natural Science Foundation of China (Nos. 51674158 and 51604168)the Natural Science Foundation of Shandong Provincial (No. ZR2016EEQ18)+2 种基金and the Source Innovation Program (Applied Research Special-Youth Special) of Qingdao (No. 17-1-138-jch)Shandong University of Science and Technology ResearchFund (No. 2015JQJH105)the Taishan Scholar Talent Team Support Plan for Advantaged & Unique Discipline Areas
文摘Coal seam destabilization inflicts damage to equipment, causes property loss and personnel casualties,and severely threatens mining safety and efficient production. To further understand this destabilization based on the basic theory of Lippmann seam destabilization, a mathematical model was introduced for gas pressure distribution by considering intermediate principal stress and support resistance.Subsequently, we established a translation model suitable for the entire roadway coal seam with rocky roof and floor by applying the unified form of yield criterion in the state of plane strain. We also obtained the analytic expressions of coal seam stress distribution on both sides of the roadway and the widths of plastic and disturbance zones. Afterward, we analyzed several typical cases with different material yield criteria, obtained the plastic zone widths of the coal seam under different gas pressures, and assessed the effects of support resistance, roadway size, and coal strength on coal seam destabilization. Results showed that: the results obtained on the basis of Wilson and Mohr–Coulomb criteria are considerably conservative, and the use of Druker–Prager criteria to evaluate the rockburst-induced coal seam destabilization is safer than the use of the two other criteria; coal seam stability is correlated with gas pressure;and high-pressure gas accelerates the coal seam destabilization.
基金supported by the National Natural Science Foundation of China (Nos.50774082 and 50804046)
文摘With the increase of mining depth of mineral resources,the rock mass stress state is being more and more complex.The rock mass show different features,namely,with the increase of hydrostatic pressure,rock mass failure mode turns from brittle tension failure to structure ductile failure and its limit strength also increases.The restriction of minimal principal stress on the initiation and development of microcrack and the change of micro-unit stress state by the intermediate principal stress play a decisive role in the increase of rock mass limit strength.Based on the rock mass failure behavior law under complex stress state and the σ2-dependence on the rock mass strength,we proposed a Modified Mohr-Coulomb(M-MC) strength criterion which is smooth and convex.Finally,the M-MC criterion is validated by multiaxial test data of eight kinds of rock mass.We also compared the fitting results with Mohr-Coulomb criterion(MC).It shows that the new criterion fits the test data better than the Mohr-Coulomb criterion.So the M-MC strength criterion well reveals the rock mass bearing behavior and can be widely used in the rock mass strength analysis.The results can provide theoretical foundations for stability analysis and reinforcement design of complex underground engineering.
基金the International Collaboration Project on Coupled Fracture Mechanics Modelling(project team consisting of CSIRO,SDUST,Posiva,KIGAM,KICT,CAS-IRSM,DUT/Mechsoft,SNU,LBNL,ETH,Aalto Uni.,GFZ and TYUT)Taishan Scholar Talent Team Support Plan for Advantaged&Unique Discipline Areas,Shandong Province
文摘In this paper, the Mohr-Coulomb shear strength criterion is modified by mobilising the cohesion and internal friction angle with normal stress, in order to capture the nonlinearity and critical state concept for intact rocks reported in the literature. The mathematical expression for the strength is the same as the classical form, but the terms of cohesion and internal friction angle depend on the normal stress now,leading to a nonlinear relationship between the strength and normal stress. It covers both the tension and compression regions with different expressions for cohesion and internal friction angle. The strengths from the two regions join continuously at the transition of zero normal stress. The part in the compression region approximately satisfies the conditions of critical state, where the maximum shear strength is reached. Due to the nonlinearity, the classical simple relationship between the parameters of cohesion, internal friction angle and uniaxial compressive strength from the linear Mohr-Coulomb criterion does not hold anymore. The equation for determining one of the three parameters in terms of the other two is supplied. This equation is nonlinear and thus a nonlinear equation solver is needed. For simplicity, the classical linear relationship is used as a local approximation. The approximate modified Mohr-Coulomb criterion has been implemented in a fracture mechanics based numerical code FRACOD,and an example case of deep tunnel failure is presented to demonstrate the difference between the original and modified Mohr-Coulomb criteria. It is shown that the nonlinear modified Mohr-Coulomb criterion predicts somewhat deeper and more intensive fracturing regions in the surrounding rock mass than the original linear Mohr-Coulomb criterion. A more comprehensive piecewise nonlinear shear strength criterion is also included in Appendix B for those readers who are interested. It covers the tensile, compressive, brittle-ductile behaviour transition and the critical state, and gives smooth transitions.
基金Project(2017M622540)supported by the China Postdoctoral Science FoundationProject(51808419)supported by the National Natural Science Foundation of China+1 种基金Project(2019CFB217)supported by the National Natural Science Foundation of Hubei Province,ChinaProject(201623)supported by the Science and Technology Project of Wuhan Urban and Rural Construction Committee,China。
文摘Fibre-reinforced polymer(FRP)has the advantages of high strength,light weight,corrosion resistance and convenient construction and is widely used in repairing and strengthening damaged concrete columns.Most of the existing strength models were built by regression analysis of experimental data;however,in this article,a new unified strength model is proposed using the Hoek-Brown failure criterion.To study the strength of FRP-confined damaged and undamaged concrete columns,900 test data were collected from the published literature and a large database that contains the cross-sectional shape of each specimen,the damage type,the damage level and the FRP-confined stiffness was established.A new strength model using the Hoek-Brown failure criterion was established and is suitable for both circular and square columns that are undamaged,load-damaged and fire-damaged.Based on the database,most of the existing strength models from the published literature and the model proposed in this paper were evaluated.The evaluation shows that the proposed model can predict the compressive strength for FRP-confined pre-damaged and undamaged concrete columns with good accuracy.
基金The project supported by the National Natural Science Foundation of China (19525207).
文摘As known, there is a large number of dentin tubules in dentin. These tubules have varying radii and are shaped into radially parallel pattern. The anisotropy of microstructure of dentin shows that dentin should be treated as a ma- terial of varying transverse isotropy. In this Part, the elastic stress-strain relations and the quadratic strength criterion are established in the form of having varying transverse isotropy, in the framework of micromechanics to take into account of the effect of the microstructures-dentin tubules. Simplified forms for isotropic and ho- mogeneous cases, as well as the corresponding plane stress form of the stress-strain relations are also given. These theoretical models are very well supported by the experiments shown later in the continued paper (Part Ⅱ).