In order to analyze the hydrodynamic performance of the ducted propeller with high precision, this paper proposes a new method which combines Multi-Block Hybrid Mesh and Reynolds Stress Model (MBHM & RSM). The cal...In order to analyze the hydrodynamic performance of the ducted propeller with high precision, this paper proposes a new method which combines Multi-Block Hybrid Mesh and Reynolds Stress Model (MBHM & RSM). The calculation errors of MBHM & RSM and standard two-equation model (standard k-ε model) on the ducted propeller JD7704 +Ka4-55 are compared. The maximum error of the total thrust coefficient KT, the duct thrust coefficient KTN, the torque coefficient KQ and the open-water efficiency η0 of MBHM & RSM are 2.98%, 4.01%, 1.46%, and 0.89%, respectively, which are lower than those of standard k-ε model. Indeed, the pressure distribution on the propeller surfaces, the pressure and the velocity vector distribution of the flow field are also analyzed, which are consistent with the theory. It is demonstrated that MBHM & RSM on the thruster dynamics analysis are feasible. This paper provides reference in the thruster designing of underwater robot.展开更多
Aiming at a complex multi-block structured grid,an efficient dynamic mesh generation method is presented in this paper,which is based on radial basis functions(RBFs)and transfinite interpolation(TFI).When the object i...Aiming at a complex multi-block structured grid,an efficient dynamic mesh generation method is presented in this paper,which is based on radial basis functions(RBFs)and transfinite interpolation(TFI).When the object is moving,the multi-block structured grid would be changed.The fast mesh deformation is critical for numerical simulation.In this work,the dynamic mesh deformation is completed in two steps.At first,we select all block vertexes with known deformation as center points,and apply RBFs interpolation to get the grid deformation on block edges.Then,an arc-lengthbased TFI is employed to efficiently calculate the grid deformation on block faces and inside each block.The present approach can be well applied to both two-dimensional(2D)and three-dimensional(3D)problems.Numerical results show that the dynamic meshes for all test cases can be generated in an accurate and efficient manner.展开更多
文摘In order to analyze the hydrodynamic performance of the ducted propeller with high precision, this paper proposes a new method which combines Multi-Block Hybrid Mesh and Reynolds Stress Model (MBHM & RSM). The calculation errors of MBHM & RSM and standard two-equation model (standard k-ε model) on the ducted propeller JD7704 +Ka4-55 are compared. The maximum error of the total thrust coefficient KT, the duct thrust coefficient KTN, the torque coefficient KQ and the open-water efficiency η0 of MBHM & RSM are 2.98%, 4.01%, 1.46%, and 0.89%, respectively, which are lower than those of standard k-ε model. Indeed, the pressure distribution on the propeller surfaces, the pressure and the velocity vector distribution of the flow field are also analyzed, which are consistent with the theory. It is demonstrated that MBHM & RSM on the thruster dynamics analysis are feasible. This paper provides reference in the thruster designing of underwater robot.
基金the National Natural Science Foundation of China(Grant No.11372135)the National Basic Research Program of China(”973”Project)(Grant No.2014CB046200)the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Aiming at a complex multi-block structured grid,an efficient dynamic mesh generation method is presented in this paper,which is based on radial basis functions(RBFs)and transfinite interpolation(TFI).When the object is moving,the multi-block structured grid would be changed.The fast mesh deformation is critical for numerical simulation.In this work,the dynamic mesh deformation is completed in two steps.At first,we select all block vertexes with known deformation as center points,and apply RBFs interpolation to get the grid deformation on block edges.Then,an arc-lengthbased TFI is employed to efficiently calculate the grid deformation on block faces and inside each block.The present approach can be well applied to both two-dimensional(2D)and three-dimensional(3D)problems.Numerical results show that the dynamic meshes for all test cases can be generated in an accurate and efficient manner.