期刊文献+
共找到5,405篇文章
< 1 2 250 >
每页显示 20 50 100
Efficient cache replacement framework based on access hotness for spacecraft processors
1
作者 GAO Xin NIAN Jiawei +1 位作者 LIU Hongjin YANG Mengfei 《中国空间科学技术(中英文)》 CSCD 北大核心 2024年第2期74-88,共15页
A notable portion of cachelines in real-world workloads exhibits inner non-uniform access behaviors.However,modern cache management rarely considers this fine-grained feature,which impacts the effective cache capacity... A notable portion of cachelines in real-world workloads exhibits inner non-uniform access behaviors.However,modern cache management rarely considers this fine-grained feature,which impacts the effective cache capacity of contemporary high-performance spacecraft processors.To harness these non-uniform access behaviors,an efficient cache replacement framework featuring an auxiliary cache specifically designed to retain evicted hot data was proposed.This framework reconstructs the cache replacement policy,facilitating data migration between the main cache and the auxiliary cache.Unlike traditional cacheline-granularity policies,the approach excels at identifying and evicting infrequently used data,thereby optimizing cache utilization.The evaluation shows impressive performance improvement,especially on workloads with irregular access patterns.Benefiting from fine granularity,the proposal achieves superior storage efficiency compared with commonly used cache management schemes,providing a potential optimization opportunity for modern resource-constrained processors,such as spacecraft processors.Furthermore,the framework complements existing modern cache replacement policies and can be seamlessly integrated with minimal modifications,enhancing their overall efficacy. 展开更多
关键词 spacecraft processors cache management replacement policy storage efficiency memory hierarchy MICROARCHITECTURE
下载PDF
An impact sensitivity assessment method of spacecraft based on virtual exterior wall
2
作者 Runqiang Chi Yuyan Liu +1 位作者 Diqi Hu Baojun Pang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期142-157,共16页
The impact sensitivity assessment of spacecraft is to obtain the probability of spacecraft encountering the OD/M(orbital debris or meteoroid),which is a prerequisite for survivability assessment of on-orbit spacecraft... The impact sensitivity assessment of spacecraft is to obtain the probability of spacecraft encountering the OD/M(orbital debris or meteoroid),which is a prerequisite for survivability assessment of on-orbit spacecraft.An impact sensitivity assessment method of spacecraft based on virtual exterior wall was proposed to improve the computational efficiency.This method eliminates determination of the outermost surface elements of the spacecraft before generating the debris rays,which are assumed to originate from a non-concave virtual wall that completely wraps the spacecraft.The Dist Mesh method was adopted for the generating of the virtual wall to ensure its mesh quality.The influences of the sizes,mesh densities,shapes of the virtual wall on the efficiency and accuracy were considered to obtain the best combination of the size and mesh density of the wall and spacecraft.The results of this method were compared with those of S3DE(Survivability of Spacecraft in Space Debris Environment),BUMPER,MDPANTO,ESABASE2/Debris to verify the feasibility of the method.The PCHIP(Piecewise Cubic Hermite Interpolating Polynomial)was used to fit the size vs.flux relationship of the space debris to acquire the impact probability of OD/M with arbitrary size on the spacecraft. 展开更多
关键词 Sensitivity OD/M spacecraft Virtual exterior wall
下载PDF
Decoupling Algorithms for the Gravitational Wave Spacecraft
3
作者 XueWang Weizhou Zhu +4 位作者 Zhao Cui Xingguang Qian Jinke Yang Jianjun Jia Yikun Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期325-337,共13页
The gravitational wave spacecraft is a complex multi-input multi-output dynamic system.The gravitational wave detection mission requires the spacecraft to achieve single spacecraft with two laser links and high-precis... The gravitational wave spacecraft is a complex multi-input multi-output dynamic system.The gravitational wave detection mission requires the spacecraft to achieve single spacecraft with two laser links and high-precision control.Establishing one spacecraftwith two laser links,compared to one spacecraft with a single laser link,requires an upgraded decoupling algorithmfor the link establishment.The decoupling algorithmwe designed reassigns the degrees of freedomand forces in the control loop to ensure sufficient degrees of freedomfor optical axis control.In addressing the distinct dynamic characteristics of different degrees of freedom,a transfer function compensation method is used in the decoupling process to further minimize motion coupling.The open-loop frequency response of the systemis obtained through simulation.The upgraded decoupling algorithms effectively reduce the open-loop frequency response by 30 dB.The transfer function compensation method efficiently suppresses the coupling of low-frequency noise. 展开更多
关键词 Gravitational waves spacecraft laser acquisition decoupling algorithms dynamical model optical axis control
下载PDF
Development of Fault Diagnosis System for Spacecraft Based on Fault Tree and G2 被引量:4
4
作者 纪常伟 荣吉利 《Journal of Beijing Institute of Technology》 EI CAS 2002年第4期444-448,共5页
Some ideas in the development of fault diagnosis system for spacecraft are introduced. Firstly, the architecture of spacecraft fault diagnosis is proposed hierarchically with four diagnosis frames, i.e., system level,... Some ideas in the development of fault diagnosis system for spacecraft are introduced. Firstly, the architecture of spacecraft fault diagnosis is proposed hierarchically with four diagnosis frames, i.e., system level, subsystem level, component level and element level. Secondly, a hierarchical diagnosis model is expressed with four layers, i.e., sensors layer, function layer, behavior layer and structure layer. These layers are used to work together to accomplish the fault alarm, diagnosis and localization. Thirdly, a fault-tree-oriented hybrid knowledge representation based on frame and generalized rule and its relevant reasoning strategy is put forward. Finally, a diagnosis case for spacecraft power system is exemplified combining the above with a powerful expert system development tool G2. 展开更多
关键词 spacecraft fault diagnosis fault tree hierarchical diagnosis model G2
下载PDF
Robust attitude control for rapid multi-target tracking in spacecraft formation flying
5
作者 袁长清 李俊峰 +1 位作者 王天舒 宝音贺西 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第2期185-198,共14页
A robust attitude tracking control scheme for spacecraft formation flying is presented. The leader spacecraft with a rapid mobile antenna and a camera is modeled. While the camera is tracking the ground target, the an... A robust attitude tracking control scheme for spacecraft formation flying is presented. The leader spacecraft with a rapid mobile antenna and a camera is modeled. While the camera is tracking the ground target, the antenna is tracking the follower spacecraft. By an angular velocity constraint and an angular constraint, two methods are proposed to compute the reference attitude profiles of the camera and antenna, respectively. To simplify the control design problem, this paper first derives the desired inverse system (DIS), which can convert the attitude tracking problem of 3D space into the regulator problem. Based on DIS and sliding mode control (SMC), a robust attitude tracking controller is developed in the presence of mass parameter uncertainties and external disturbance. By Lyapunov stability theory, the closed loop system stability can be achieved. The numerical simulations show that the proposed robust control scheme exhibits significant advantages for the multi-target attitude tracking of a two-spacecraft formation. 展开更多
关键词 attitude control formation flying multi-body spacecraft robust control multi-target tracking
下载PDF
Optimal reorientation of underactuated spacecraft using genetic algorithm with wavelet approximation 被引量:5
6
作者 Xinsheng Ge Liqun Chen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第4期547-553,共7页
The optimal attitude control of an underactuated spacecraft is investigated in this paper. The flywheels of the spacecraft can somehow only provide control inputs in two independent directions. The dynamic equations a... The optimal attitude control of an underactuated spacecraft is investigated in this paper. The flywheels of the spacecraft can somehow only provide control inputs in two independent directions. The dynamic equations are formulated for the spacecraft under a nonholonomic constraint resulting from the constant time-rate of the total angular momentum of the system. The reorientation of such underactuated spacecraft is transformed into an optimal control problem. A genetic algorithm is proposed to derive the control laws of the two flywheels angle velocity inputs. The control laws are approximated by the discrete orthogonal wavelets. The numerical simulations indicate that the genetic algorithm with the wavelet approximation is an effective approach to deal with the optimal reorientation of underactuated spacecraft. 展开更多
关键词 Underactuated spacecraft REORIENTATION Attitude control Genetic algorithm WAVELET
下载PDF
Dynamic Modeling and Simulation of Multi-body Systems Using the Udwadia-Kalaba Theory 被引量:23
7
作者 ZHAO Han ZHEN Shengchao CHEN Ye-Hwa 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第5期839-850,共12页
Laboratory experiments were conducted for falling U-chain,but explicit analytic form of the general equations of motion was not presented.Several modeling methods were developed for fish robots,however they just focus... Laboratory experiments were conducted for falling U-chain,but explicit analytic form of the general equations of motion was not presented.Several modeling methods were developed for fish robots,however they just focused on the whole fish’s locomotion which does little favor to understand the detailed swimming behavior of fish.Udwadia-Kalaba theory is used to model these two multi-body systems and obtain explicit analytic equations of motion.For falling U-chain,the mass matrix is non-singular.Second-order constraints are used to get the constraint force and equations of motion and the numerical simulation is conducted.Simulation results show that the chain tip falls faster than the freely falling body.For fish robot,two-joint Carangiform fish robot is focused on.Quasi-steady wing theory is used to approximately calculate fluid lift force acting on the caudal fin.Based on the obtained explicit analytic equations of motion(the mass matrix is singular),propulsive characteristics of each part of the fish robot are obtained.Through these two cases of U chain and fish robot,how to use Udwadia-Kalaba equation to obtain the dynamical model is shown and the modeling methodology for multi-body systems is presented.It is also shown that Udwadia-Kalaba theory is applicable to systems whether or not their mass matrices are singular.In the whole process of applying Udwadia-Kalaba equation,Lagrangian multipliers and quasi-coordinates are not used.Udwadia-Kalaba theory is creatively applied to dynamical modeling of falling U-chain and fish robot problems and explicit analytic equations of motion are obtained. 展开更多
关键词 Udwadia-Kalaba equation multi-body systems falling U-chain fish robot
下载PDF
Attitude maneuver of liquid-filled spacecraft with a flexible appendage by momentum wheel 被引量:6
8
作者 Dan-Dan Yang Bao-Zeng Yue +2 位作者 Wen-Jun Wu Xiao-Juan Song Le-Mei Zhu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第2期543-550,共8页
Attitude maneuver of liquid-filled spacecraft with an appendage as a cantilever beam by momentum wheel is studied. The dynamic equations are derived by conserva- tion of angular momentum and force equilibrium principl... Attitude maneuver of liquid-filled spacecraft with an appendage as a cantilever beam by momentum wheel is studied. The dynamic equations are derived by conserva- tion of angular momentum and force equilibrium principle. A feedback control strategy of the momentum wheel is ap- plied for the attitude maneuver. The residual nutation of the spacecraft in maneuver process changes with some chosen parameters, such as steady state time, locations of the liq- uid container and the appendage, and appendage parame- ters. The results indicate that locations in the second and fourth quadrants of the body-fixed coordinate system and the second quadrant of the wall of the main body are better choices for.placing the liquid containers and the appendage than other locations if they can be placed randomly. Higher density and thicker cross section are better for lowering the residual nutation if they can be changed. Light appendage can be modeled as a rigid body, which results in a larger residual nutation than a flexible model though. The resid- ual nutation decreases with increasing absolute value of the initial sloshing angular height. 展开更多
关键词 Liquid-filled spacecraft Appendage Attitude maneuver Momentum wheel Steady state time Residual nutation
下载PDF
Chaotic attitude and reorientation maneuver for completely liquid-filled spacecraft with flexible appendage 被引量:7
9
作者 B. Yue Department of Mechanics, School of Science,Beijing Institute of Technology, 100081 Beijing, China 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第2期271-277,共7页
The present paper investigates the chaotic attitude dynamics and reorientation maneuver for completely viscous liquid-filled spacecraft with flexible appendage. All of the equations of motion are derived by using Lagr... The present paper investigates the chaotic attitude dynamics and reorientation maneuver for completely viscous liquid-filled spacecraft with flexible appendage. All of the equations of motion are derived by using Lagrangian mechanics and then transformed into a form consisting of an unperturbed part plus perturbed terms so that the system's nonlinear characteristics can be exploited in phase space. Emphases are laid on the chaotic attitude dynamics produced from certain sets of physical parameter values of the spacecraft when energy dissipation acts to derive the body from minor to major axis spin. Numerical solutions of these equations show that the attitude dynamics of liquid-filled flexible spacecraft possesses characteristics common to random, non- periodic solutions and chaos, and it is demonstrated that the desired reorientation maneuver is guaranteed by using a pair of thruster impulses. The control strategy for reorientation maneuver is designed and the numerical simulation results are presented for both the uncontrolled and controlled spins transition. 展开更多
关键词 Nonlinear attitude dynamics Attitude reorientation maneuver Control strategyLiquid-filled spacecraft
下载PDF
Characteristic Model-based Discrete-time Sliding Mode Control for Spacecraft with Variable Tilt of Flexible Structures 被引量:5
10
作者 Lei Chen Yan Yan +1 位作者 Chaoxu Mu Changyin Sun 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2016年第1期42-50,共9页
In this paper, the finite-time attitude tracking control problem for the spacecrafts with variable tilt of flexible appendages in the conditions of exogenous disturbances and inertia uncertainties is addressed. First ... In this paper, the finite-time attitude tracking control problem for the spacecrafts with variable tilt of flexible appendages in the conditions of exogenous disturbances and inertia uncertainties is addressed. First the characteristic modeling method is applied to the problem of the spacecraft modeling. Second, a novel adaptive sliding mode surface is designed based on the characteristic model. Furthermore, a discrete-time sliding mode control (DTSMC) law, which makes the tracking error converge into a predefined bound in finite time, is proposed by employing the parameters of characteristic model associated with the sliding mode surface to provide better performances, robustness, faster response, and higher control precision. The designed DTSMC includes the adaptive control architecture and is chattering-free. Finally, digital simulations of a sun synchronous orbit satellite (SSOS) are presented to illustrate effectiveness of the control strategies as well as to verify the practical feasibility of the rapid maneuver mission. © 2014 Chinese Association of Automation. 展开更多
关键词 Flexible structures NAVIGATION ORBITS spacecraft
下载PDF
Controllability of Spacecraft Attitude and Its Application in Reconfigurability Analysis 被引量:4
11
作者 YANG Hao MENG Qingkai JIANG Bin 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第2期189-196,共8页
We review the controllability research on spacecraft attitude based on nonlinear geometry control theory.The existing studies on attitude controllability are mostly concerning the global controllability and small time... We review the controllability research on spacecraft attitude based on nonlinear geometry control theory.The existing studies on attitude controllability are mostly concerning the global controllability and small time local controllability(STLC).A presentation of study methods and connotation in both aspects is briefly carried out.As a necessary condition of reconfigurability,the controllability of the faulty attitude control system is studied.Moreover,two reconfigurability conditions based on controllability results that consider the actuator faults for a pyramid configuration spacecraft are provided. 展开更多
关键词 CONTROLLABILITY spacecraft ATTITUDE CONTROL geometry CONTROL theory fault.tolerant CONTROL
下载PDF
Analytical method for the attitude stability of partially liquid filled spacecraft with flexible appendage 被引量:4
12
作者 Yulong Yan Baozeng Yue 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第1期208-218,共11页
In this paper, the attitude stability of liquid-filled spacecraft with flexible appendage is investigated. The motion of liquid sloshing is modeled as the spherical pendulum, and the flexible appendage is approached b... In this paper, the attitude stability of liquid-filled spacecraft with flexible appendage is investigated. The motion of liquid sloshing is modeled as the spherical pendulum, and the flexible appendage is approached by a linear shearing beam. Nonlinear dynamic equations of the coupled system are derived from the Hamiltonian. The stability of the coupled system was analyzed by using the energy-Casimir method, and the nonlinear stability theorem of the coupled spacecraft system was also obtained. Through numerical computation, the correctness of the proposed theorem is verified and the boundary curves of the stable region are presented. The increase of the angular velocity and flexible attachment length will weaken the attitude stability, and the change of the filled ratio of liquid fuel tank has a different influence on the stability of the coupled spacecraft, depending on the different conditions. The attitude stability analysis of the coupled spacecraft system in this context is useful for selecting appropriate parameters in the complex spacecraft design. 展开更多
关键词 Liquid-filled spacecraft Energy-Casimir method Flexible attachment Stability analysis
下载PDF
Experimental Study of Vacuum Ultraviolet Radiation Effects and Its Synergistic Effects with Atomic Oxygen on a Spacecraft Material-Polytetrafluoroethylene 被引量:5
13
作者 赵小虎 沈志刚 +1 位作者 邢玉山 麻树林 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2004年第3期181-186,共6页
Polytetrafluoroethylene (Teflon), a widely used spacecraft material, isstudied to investigate the vacuum ultraviolet (VUV) effects and its synergistic effects with atomicoxygen (AO) in a ground-based simulation facili... Polytetrafluoroethylene (Teflon), a widely used spacecraft material, isstudied to investigate the vacuum ultraviolet (VUV) effects and its synergistic effects with atomicoxygen (AO) in a ground-based simulation facility. The samples before and after the experiments arecompared in appearance, mass, optical properties and surface composition. The reactioncharacteristics of Teflon are summarized and the reaction mechanisms are analyzed. The followingconclusion can be drawn: at the action of VUV the Teflon sample surface is darkened for theaccumulation of carbon; and when the sample is exposed to AO, the carbon is oxidized and thedarkening surface is bleached; the synergistic effects of VUV and AO may cause the erosion of Teflonmore severe. 展开更多
关键词 Polytetrafluoroethylene spacecraft material vacuum ultraviolet radiation atomic oxygen synergistic effects ground-based test
下载PDF
Orbit Design for Twin-spacecraft Space VLBI 被引量:3
14
作者 ZHANG Cheng WU Xia +1 位作者 ZHENG Jianhua WU Ji 《空间科学学报》 CAS CSCD 北大核心 2015年第4期502-510,共9页
Space Very Long Baseline Interferometry(S-VLBI) is an aperture synthesis technique utilizing an array of radio telescopes including ground telescopes and space orbiting telescopes.It can achieve much higher spatial re... Space Very Long Baseline Interferometry(S-VLBI) is an aperture synthesis technique utilizing an array of radio telescopes including ground telescopes and space orbiting telescopes.It can achieve much higher spatial resolution than that from the ground-only VLBI.In this paper,a new concept of twin spacecraft S-VLBI has been proposed,which utilizes the space-space baselines formed by two satellites to obtain larger and uniform uv coverage without atmospheric influence and hence achieve high quality images with higher angular resolution.The orbit selections of the two satellites are investigated.The imaging performance and actual launch conditions are all taken into account in orbit designing of the twin spacecraft S-VLBI.Three schemes of orbit design using traditional elliptical orbits and circular orbits are presented.These design results can be used for different scientific goals.Furthermore,these designing ideas can provide useful references for the future Chinese millimeter-wave S-VLBI mission. 展开更多
关键词 VLBI TWIN spacecraft ORBIT design
下载PDF
Corrugation Stuffed Shield for Spacecraft and Its Performance 被引量:3
15
作者 刘有英 王海福 《Journal of Beijing Institute of Technology》 EI CAS 2006年第4期397-400,共4页
A corrugation stuffed shield system protecting spacecrafts against meteoroid and orbital debris (M/ OD) is presented. The semi-empirical ballistic limit equations (BLEs)defining the protection capability of the sh... A corrugation stuffed shield system protecting spacecrafts against meteoroid and orbital debris (M/ OD) is presented. The semi-empirical ballistic limit equations (BLEs)defining the protection capability of the shield system are given, and the shielding performance is also discussed. The corrugation stuffed shield (CKS) is more effective than stuffed Whipple shield for M/OD protection, and its shielding performance will be improved significantly as increasing the impact angle. Orbital debris up to 1 cm in diameter can be shielded effectively as increasing the impact angle to 25° at the corrugated angle of 30°. The results are significant to spacecraft design. 展开更多
关键词 spacecraft shield system orbital debris METEOROID
下载PDF
Improved optimal steering law for SGCMG and adaptive attitude control of flexible spacecraft 被引量:3
16
作者 Lu Wang Yu Guo +1 位作者 Liping Wu Qingwei Chen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第6期1268-1276,共9页
The issue of attitude maneuver of a flexible spacecraft is investigated with single gimbaled control moment gyroscopes (SGCMGs) as an actuator. To solve the inertia uncertainty of the system, an adaptive attitude co... The issue of attitude maneuver of a flexible spacecraft is investigated with single gimbaled control moment gyroscopes (SGCMGs) as an actuator. To solve the inertia uncertainty of the system, an adaptive attitude control algorithm is designed by applying a radial basis function (RBF) neural network. An improved steering law for SGCMGs is proposed to achieve the optimal out- put torque. It enables the SGCMGs not only to avoid singularity, but also to output more precise torque. In addition, global, uniform, ultimate bounded stability of the attitude control system is proved via the Lyapunov technique. Simulation results demonstrate the effectiveness of the new steering law and the algorithm of attitude maneuver of the flexible spacecraft. 展开更多
关键词 flexible spacecraft ADAPTIVE steering law attitudecontrol.
下载PDF
Review:A Survey of Single Gimbal Control Moment Gyroscope forAgile Spacecraft Attitude Control 被引量:3
17
作者 Yunhua Wu Feng Han +3 位作者 Bing Hua Zhiming Chen Dafu Xu Linlin Ge 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2018年第6期22-45,共24页
Agile attitude maneuver is a basic requirement for next generation imaging spacecraft and Control Moment Gyroscope (CMG) is an effective candidate for large space station and agile spacecraft attitude control because ... Agile attitude maneuver is a basic requirement for next generation imaging spacecraft and Control Moment Gyroscope (CMG) is an effective candidate for large space station and agile spacecraft attitude control because of its torque amplification capability. This paper provides a thorough survey of Single Gimbal Control Moment Gyroscope (SGCMG) in terms of configuration,evaluation,modeling,singularity analysis and steering logic,etc. For specific space missions,CMGs are logically mounted into different particular arrays which can be chosen by the proposed evaluation methods. From the dynamic model we find a tough inverse mapping problem which suffers the inherent geometric singularity. Different techniques and theories then are applied for singularity analysis and CMG steering logics design. The pyramid CMG cluster and singular robust logics are proven to be able to enhance the agility of spacecraft. Above work forms a systematic framework of SGCMG for agile spacecraft control with lots of illustrative examples,tables and figures,and will evoke further investigation for future missions. 展开更多
关键词 AGILE spacecraft SGCMG CMG configuration SINGULARITY and STEERING logic
下载PDF
Marginalized particle filter for spacecraft attitude estimation from vector measurements 被引量:3
18
作者 Yaqiu LIU Xueyuan JIANG Guangfu MA 《控制理论与应用(英文版)》 EI 2007年第1期60-66,共7页
An algorithm based on the marginalized particle filters (MPF) is given in details in this paper to solve the spacecraft attitude estimation problem: attitude and gyro bias estimation using the biased gyro and vecto... An algorithm based on the marginalized particle filters (MPF) is given in details in this paper to solve the spacecraft attitude estimation problem: attitude and gyro bias estimation using the biased gyro and vector observations. In this algorithm, by marginalizing out the state appearing linearly in the spacecraft model, the Kalman filter is associated with each particle in order to reduce the size of the state space and computational burden. The distribution of attitude vector is approximated by a set of particles and estimated using particle filter, while the estimation of gyro bias is obtained for each one of the attitude particles by applying the Kalman filter. The efficiency of this modified MPF estimator is verified through numerical simulation of a fully actuated rigid body. For comparison, unscented Kalman filter (UKF) is also used to gauge the performance of MPE The results presented in this paper clearly derfionstrate that the MPF is superior to UKF in coping with the nonlinear model. 展开更多
关键词 Attitude estimation Particle filter spacecraft Nonlinear filter QUATERNION
下载PDF
Robust Adaptive Gain Higher Order Sliding Mode Observer Based Control-constrained Nonlinear Model Predictive Control for Spacecraft Formation Flying 被引量:9
19
作者 Ranjith Ravindranathan Nair Laxmidhar Behera 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第1期367-381,共15页
This work deals with the development of a decentralized optimal control algorithm, along with a robust observer,for the relative motion control of spacecraft in leader-follower based formation. An adaptive gain higher... This work deals with the development of a decentralized optimal control algorithm, along with a robust observer,for the relative motion control of spacecraft in leader-follower based formation. An adaptive gain higher order sliding mode observer has been proposed to estimate the velocity as well as unmeasured disturbances from the noisy position measurements.A differentiator structure containing the Lipschitz constant and Lebesgue measurable control input, is utilized for obtaining the estimates. Adaptive tuning algorithms are derived based on Lyapunov stability theory, for updating the observer gains,which will give enough flexibility in the choice of initial estimates.Moreover, it may help to cope with unexpected state jerks. The trajectory tracking problem is formulated as a finite horizon optimal control problem, which is solved online. The control constraints are incorporated by using a nonquadratic performance functional. An adaptive update law has been derived for tuning the step size in the optimization algorithm, which may help to improve the convergence speed. Moreover, it is an attractive alternative to the heuristic choice of step size for diverse operating conditions. The disturbance as well as state estimates from the higher order sliding mode observer are utilized by the plant output prediction model, which will improve the overall performance of the controller. The nonlinear dynamics defined in leader fixed Euler-Hill frame has been considered for the present work and the reference trajectories are generated using Hill-Clohessy-Wiltshire equations of unperturbed motion. The simulation results based on rigorous perturbation analysis are presented to confirm the robustness of the proposed approach. 展开更多
关键词 Adaptive gain higher order sliding mode observer leader-follower formation nonlinear model predictive control spacecraft formation flying tracking control
下载PDF
New Method for Predicting the Motion Responses of A Flexible Joint Multi-Body Floating System to Irregular Waves 被引量:13
20
作者 陈徐均 崔维成 +1 位作者 沈庆 孙芦忠 《China Ocean Engineering》 SCIE EI 2001年第4期491-498,共8页
A new hybrid method of frequency domain and time domain is developed in this paper to predict the motion responses of a flexibly joint multi-body floating system to irregular waves. The main idea of the method is that... A new hybrid method of frequency domain and time domain is developed in this paper to predict the motion responses of a flexibly joint multi-body floating system to irregular waves. The main idea of the method is that the three-dimensional frequency method is used to obtain the hydrodynamic coefficients and the response equations are solved in time domain step by step. All the forces can be obtained at the same time. The motions and nonlinear mooring forces of a box type six-body floating system are predicted. A comparison of the theoretical method-based Solutions with experimental results has shown good agreement. 展开更多
关键词 flexible joint multi-body floating system nonlinear mooring forces
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部