The prediction of water temperature and salinity in coastal areas is one of the essential tasks in water quality control and management. This paper takes a refined forecasting model of water temperature and salinity i...The prediction of water temperature and salinity in coastal areas is one of the essential tasks in water quality control and management. This paper takes a refined forecasting model of water temperature and salinity in coastal areas as a basic target. Based on the Navier-Stokes equation and k-epsilon turbulence model, taking the characteristics of coastal areas into account, a refined model for water temperature and salinity in coastal areas has been developed to simulate the seasonal variations of water temperature and salinity fields in the Hakata Bay, Japan. The model takes into account the effects of a variety of hydrodynamic and meteorological factors on water temperature and salinity. It predicts daily fluctuations in water temperature and salinity at different depths throughout the year. The model has been calibrated well against the data set of historical water temperature and salinity observations in the Hakata Bay, Japan.展开更多
In this paper,the hydrogeological characteristics in the southern coalfields of China are first briefly outlined.Then,taking the Meitanba mine as an example,the evolution and modeling of mine water inflow are studied....In this paper,the hydrogeological characteristics in the southern coalfields of China are first briefly outlined.Then,taking the Meitanba mine as an example,the evolution and modeling of mine water inflow are studied.Finally,the hazard characteristics related to mine water and mud inrush are analyzed.The results show that the main mine water sources in the Meitanba mine area are groundwater,surface water and precipitation.The evolution of mine water inflow with time indicates that the water inflow is closely related to the development of karst structures,the amount of water from rainfall infiltration,and the scope of groundwater depression cone.The mine water inflow increases with time due to the increase in mining depth and the expansion of groundwater depression cone.Using the big well method and following the potential superposition principle,a hydrogeological model considering multi-well interactions has been developed to predict the mine water inflow.Based on the monitored data in the Meitanba mine area over a period of nearly 60 years,it is found that with increasing mining depth,the number of water and mud inrush points tended to decrease.However,the average water and mud flow rate per point tended to increase.展开更多
Water shortage is one bottleneck that limits economic and social developments in arid and semi-arid areas.As the impacts of climate change and human disturbance intensify across time,uncertainties in both water resour...Water shortage is one bottleneck that limits economic and social developments in arid and semi-arid areas.As the impacts of climate change and human disturbance intensify across time,uncertainties in both water resource supplies and demands increase in arid and semi-arid areas.Taking a typical arid region in China,Xinjiang Uygur Autonomous Region,as an example,water yield depth(WYD)and water utilization depth(WUD)from 2002 to 2018 were simulated using the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model and socioeconomic data.The supply-demand relationships of water resources were analyzed using the ecosystem service indices including water supply-demand difference(WSDD)and water supply rate(WSR).The internal factors in changes of WYD and WUD were explored using the controlled variable method.The results show that the supplydemand relationships of water resources in Xinjiang were in a slight deficit,but the deficit was alleviated due to increased precipitation and decreased WUD of irrigation.WYD generally experienced an increasing trend,and significant increase mainly occurred in the oasis areas surrounding both the Junggar Basin and Tarim Basin.WUD had a downward trend with a decline of 20.70%,especially in oasis areas.Water resources in most areas of Xinjiang were fully utilized and the utilization efficiency of water resources increased.The water yield module in the InVEST model was calibrated and validated using gauging station data in Xinjiang,and the result shows that the use of satellite-based water storage data helped to decrease the bias error of the InVEST model by 0.69×10^(8)m^(3).This study analyzed water resource supplies and demands from a perspective of ecosystem services,which expanded the scope of the application of ecosystem services and increased the research perspective of water resource evaluation.The results could provide guidance for water resource management such as spatial allocation and structural optimization of water resources in arid and semi-arid areas.展开更多
This paper presents a risk evaluation model of water and mud inrush for tunnel excavation in karst areas.The factors affecting the probabilities of water and mud inrush in karst tunnels are investigated to define the ...This paper presents a risk evaluation model of water and mud inrush for tunnel excavation in karst areas.The factors affecting the probabilities of water and mud inrush in karst tunnels are investigated to define the dangerousness of this geological disaster.The losses that are caused by water and mud inrush are taken into consideration to account for its harmfulness.Then a risk evaluation model based on the dangerousness-harmfulness evaluation indicator system is constructed,which is more convincing in comparison with the traditional methods.The catastrophe theory is used to evaluate the risk level of water and mud inrush and it has great advantage in handling problems involving discontinuous catastrophe processes.To validate the proposed approach,the Qiyueshan tunnel of Yichang-Wanzhou Railway is taken as an example in which four target segments are evaluated using the risk evaluation model.Finally,the evaluation results are compared with the excavation data,which shows that the risk levels predicted by the proposed approach are in good agreements with that observed in engineering.In conclusion,the catastrophe theory-based risk evaluation model is an efficient and effective approach for water and mud inrush in karst tunnels.展开更多
The effect of tourism on water environments has received a high degree of interest in the study of eco-tourism.Based on the analysis of the relationship between tourist activities and the water environment in the Liup...The effect of tourism on water environments has received a high degree of interest in the study of eco-tourism.Based on the analysis of the relationship between tourist activities and the water environment in the Liupan Mountain eco-tourism zone,the case study area,a Water Environment of Tourism Area Model(WETAM) is built to simulate the temporal and spatial changes in water quality and the response saturation thresholds under four sewage treatment scenarios.The results imply the following:(1) WETAM performs well in modeling a water environment to represent the dynamic process of water quality change in response to tourist activities.(2) Under four sewage treatment scenarios(fundamental,low,medium,and high),the threshold shows an obvious uptrend.(3) The response threshold of water quality with respect to the interference of tourist activities fluctuates seasonally due to changes in tourist density.(4) The thresholds differ significantly among five tourism functional areas.According to the response saturation threshold of the water environment,effective control based on the scale and intensity of tourist activities is important for a successful transformation of this tourism destination's development strategies.Therefore,the integrated management of water pollution in tourism areas plays a crucial role in sustainable tourism development.展开更多
The effect of vegetation on the water-heat exchange in the freezing-thawing processes of active layer is one of the key issues in the study of land surface processes and in predicting the response of alpine ecosystems...The effect of vegetation on the water-heat exchange in the freezing-thawing processes of active layer is one of the key issues in the study of land surface processes and in predicting the response of alpine ecosystems to climate change in permafrost regions. In this study, we used the simultaneous heat and water model to investigate the effects of plant canopy on surface and subsurface hydrothermal dynamics in the Fenghuoshan area of the QinghaiTibet Plateau by changing the leaf area index(LAI) and keeping other variables constant. Results showed that the sensible heat, latent heat and net radiation are increased with an increase in the LAI. However, the ground heat flux decreased with an increasing LAI. The annual total evapotranspiration and vegetation transpiration ranged from-16% to 9% and-100% to 15%, respectively, in response to extremes of doubled and zero LAI, respectively. There was a negative feedback between vegetation and the volumetric unfrozen water content at 0.2 m through changing evapotranspiration. The simulation results of soil temperature and moisture suggest that better vegetation conditions are conducive to maintaining the thermal stability of the underlying permafrost, and the advanced initial thawing time and increasing thawing rate of soil ice with the increase in the LAI may have a great influence on the timing and magnitude of supra-permafrost groundwater. This study quantifies the impact of vegetation change on surface and subsurface hydrothermal processes and provides a basic understanding for evaluating the impact of vegetation degradation on the water-heat exchange in permafrost regions under climate change.展开更多
Through the study of mutual process between groundwater systems and eco-environmental water demand, the eco-environmental water demand is brought into groundwater systems model as the important water consumption item ...Through the study of mutual process between groundwater systems and eco-environmental water demand, the eco-environmental water demand is brought into groundwater systems model as the important water consumption item and unification of groundwater抯 economic, environmental and ecological functions were taken into account. Based on eco-environmental water demand at Da抋n in Jilin province, a three-dimensional simulation and optimized management model of groundwater systems was established. All water balance components of groundwater systems in 1998 and 1999 were simulated with this model and the best optimal exploitation scheme of groundwater systems in 2000 was determined, so that groundwater resource was efficiently utilized and good economic, ecologic and social benefits were obtained.展开更多
The low degree of development and utilization as well as the contradiction between supply and demand of water resources in Huangshui River basin are the main restricting factors of the local agricultural development. ...The low degree of development and utilization as well as the contradiction between supply and demand of water resources in Huangshui River basin are the main restricting factors of the local agricultural development. The study on the simulation of irrigation water loss based on the VSMB model has very important significance to strengthening regional water management and improving water resource utilization efficiency. Five groundwater wells were set up to carry out the farmland irrigation water infiltration and the experimental study on groundwater dynamic effect. Two soil moisture monitoring sites were set up in two typical plots of Daxia and Guanting irrigation area at the same time and TDR300 was used to monitor four kinds of deep soil moisture( 10 cm,30 cm,50 cm and 70 cm). On this basis,the VSMB model was used to study the irrigation water loss in the irrigation area of Yellow River valley of Qinghai Province,including soil moisture content,the actual evapotranspiration,infiltration,runoff,groundwater buried depth and so on. The results showed that the water consumption caused by soil evaporation and crop transpiration accounted for 46. 4% and 24. 1% of the total precipitation plus irrigation,respectively,and the leakage accounted for 30. 3% and 60. 6% of the total precipitation plus irrigation,respectively,from March 1,2013 to April 30,and from August 1 to September 30. The actual evaporation of the GT- TR1 and GT- TR2 sites in the whole year of 2013 was 632. 6 mm and 646. 9 mm,respectively,and the leakage accounted for 2. 6% and 1. 2% of the total precipitation plus irrigation,respectively. RMSE of the simulation results of the groundwater depth in Daxia irrigation area during the two periods was 92. 3 mm and 27. 7 mm,respectively. And RMSE of the simulation results of the water content of soil profile in the two monitoring sites of Guanting irrigation area was 2. 04% and 5. 81%,respectively,indicating that the simulation results were reliable.展开更多
Mountain block recharge(MBR),an important water resource,is a widespread process that recharges lowland aquifers.However,little is known about MBR due to the limited climatic and geologic data in mountainous regions s...Mountain block recharge(MBR),an important water resource,is a widespread process that recharges lowland aquifers.However,little is known about MBR due to the limited climatic and geologic data in mountainous regions such as the northern central foothills of Tianshan.Here,we present an approach to quantify MBR through the combination of water balance calculations and numerical modeling.MBR calculated from the water balance in the data-limited Tianshan Mountains is employed as a fluid-flux boundary condition in the numerical model of the plain.To verify the performance of the model,mean absolute error and root mean square error were used.Results show that the volume of water that is recharging the aquifer via MBR is 107.29 million m^(3)/yr,accounting for 2.2% of the total precipitation that falls in the mountains.Additionally,53.3% of that precipitation enters the plain aquifer via runoff,totaling 2,652.68 million m^(3)/yr.The lower volume of MBR is attributed to a major range-bounding anticline with apparent low permeability in the Tianshan Mountains.Through numerical modeling of groundwater,MBR coming from bedrock was found to be significant,accounting for 14% of total aquifer recharge in the plain,only after the portion of runoff seepage.This research contributes to a deeper understanding of MBR,and may provide instructions for estimating groundwater recharge in arid and semi-arid areas.展开更多
基金The project was financially supported by the National Natural Science Foundation of China(Grant No.59779023,No.59839330)
文摘The prediction of water temperature and salinity in coastal areas is one of the essential tasks in water quality control and management. This paper takes a refined forecasting model of water temperature and salinity in coastal areas as a basic target. Based on the Navier-Stokes equation and k-epsilon turbulence model, taking the characteristics of coastal areas into account, a refined model for water temperature and salinity in coastal areas has been developed to simulate the seasonal variations of water temperature and salinity fields in the Hakata Bay, Japan. The model takes into account the effects of a variety of hydrodynamic and meteorological factors on water temperature and salinity. It predicts daily fluctuations in water temperature and salinity at different depths throughout the year. The model has been calibrated well against the data set of historical water temperature and salinity observations in the Hakata Bay, Japan.
基金This research is supported by the National Natural Science Foundation of China(Nos.51774131,51874133)Construction Project of Chenzhou National Sustainable Development Agenda Innovation Demonstration Zone(2021sfQ18).
文摘In this paper,the hydrogeological characteristics in the southern coalfields of China are first briefly outlined.Then,taking the Meitanba mine as an example,the evolution and modeling of mine water inflow are studied.Finally,the hazard characteristics related to mine water and mud inrush are analyzed.The results show that the main mine water sources in the Meitanba mine area are groundwater,surface water and precipitation.The evolution of mine water inflow with time indicates that the water inflow is closely related to the development of karst structures,the amount of water from rainfall infiltration,and the scope of groundwater depression cone.The mine water inflow increases with time due to the increase in mining depth and the expansion of groundwater depression cone.Using the big well method and following the potential superposition principle,a hydrogeological model considering multi-well interactions has been developed to predict the mine water inflow.Based on the monitored data in the Meitanba mine area over a period of nearly 60 years,it is found that with increasing mining depth,the number of water and mud inrush points tended to decrease.However,the average water and mud flow rate per point tended to increase.
基金supported by the National Natural Science Foundation of China(41875122)the Western Talents(2018XBYJRC004)+2 种基金the Guangdong Top Young Talents(2017TQ04Z359)the Introducing Talents to Western China Project of Chinese Academy of Sciences(Y932121)the Natural Science Foundation of Guangdong Province,China(2021A1515011429)。
文摘Water shortage is one bottleneck that limits economic and social developments in arid and semi-arid areas.As the impacts of climate change and human disturbance intensify across time,uncertainties in both water resource supplies and demands increase in arid and semi-arid areas.Taking a typical arid region in China,Xinjiang Uygur Autonomous Region,as an example,water yield depth(WYD)and water utilization depth(WUD)from 2002 to 2018 were simulated using the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model and socioeconomic data.The supply-demand relationships of water resources were analyzed using the ecosystem service indices including water supply-demand difference(WSDD)and water supply rate(WSR).The internal factors in changes of WYD and WUD were explored using the controlled variable method.The results show that the supplydemand relationships of water resources in Xinjiang were in a slight deficit,but the deficit was alleviated due to increased precipitation and decreased WUD of irrigation.WYD generally experienced an increasing trend,and significant increase mainly occurred in the oasis areas surrounding both the Junggar Basin and Tarim Basin.WUD had a downward trend with a decline of 20.70%,especially in oasis areas.Water resources in most areas of Xinjiang were fully utilized and the utilization efficiency of water resources increased.The water yield module in the InVEST model was calibrated and validated using gauging station data in Xinjiang,and the result shows that the use of satellite-based water storage data helped to decrease the bias error of the InVEST model by 0.69×10^(8)m^(3).This study analyzed water resource supplies and demands from a perspective of ecosystem services,which expanded the scope of the application of ecosystem services and increased the research perspective of water resource evaluation.The results could provide guidance for water resource management such as spatial allocation and structural optimization of water resources in arid and semi-arid areas.
基金Project(51378510)supported by National Natural Science Foundation of China。
文摘This paper presents a risk evaluation model of water and mud inrush for tunnel excavation in karst areas.The factors affecting the probabilities of water and mud inrush in karst tunnels are investigated to define the dangerousness of this geological disaster.The losses that are caused by water and mud inrush are taken into consideration to account for its harmfulness.Then a risk evaluation model based on the dangerousness-harmfulness evaluation indicator system is constructed,which is more convincing in comparison with the traditional methods.The catastrophe theory is used to evaluate the risk level of water and mud inrush and it has great advantage in handling problems involving discontinuous catastrophe processes.To validate the proposed approach,the Qiyueshan tunnel of Yichang-Wanzhou Railway is taken as an example in which four target segments are evaluated using the risk evaluation model.Finally,the evaluation results are compared with the excavation data,which shows that the risk levels predicted by the proposed approach are in good agreements with that observed in engineering.In conclusion,the catastrophe theory-based risk evaluation model is an efficient and effective approach for water and mud inrush in karst tunnels.
基金supported by the National Natural Science Foundation of China(Project No.40971299)
文摘The effect of tourism on water environments has received a high degree of interest in the study of eco-tourism.Based on the analysis of the relationship between tourist activities and the water environment in the Liupan Mountain eco-tourism zone,the case study area,a Water Environment of Tourism Area Model(WETAM) is built to simulate the temporal and spatial changes in water quality and the response saturation thresholds under four sewage treatment scenarios.The results imply the following:(1) WETAM performs well in modeling a water environment to represent the dynamic process of water quality change in response to tourist activities.(2) Under four sewage treatment scenarios(fundamental,low,medium,and high),the threshold shows an obvious uptrend.(3) The response threshold of water quality with respect to the interference of tourist activities fluctuates seasonally due to changes in tourist density.(4) The thresholds differ significantly among five tourism functional areas.According to the response saturation threshold of the water environment,effective control based on the scale and intensity of tourist activities is important for a successful transformation of this tourism destination's development strategies.Therefore,the integrated management of water pollution in tourism areas plays a crucial role in sustainable tourism development.
基金This study was supported by the National Nature Science Foundation of China(No.41671015,No.42071027,No.41890821)。
文摘The effect of vegetation on the water-heat exchange in the freezing-thawing processes of active layer is one of the key issues in the study of land surface processes and in predicting the response of alpine ecosystems to climate change in permafrost regions. In this study, we used the simultaneous heat and water model to investigate the effects of plant canopy on surface and subsurface hydrothermal dynamics in the Fenghuoshan area of the QinghaiTibet Plateau by changing the leaf area index(LAI) and keeping other variables constant. Results showed that the sensible heat, latent heat and net radiation are increased with an increase in the LAI. However, the ground heat flux decreased with an increasing LAI. The annual total evapotranspiration and vegetation transpiration ranged from-16% to 9% and-100% to 15%, respectively, in response to extremes of doubled and zero LAI, respectively. There was a negative feedback between vegetation and the volumetric unfrozen water content at 0.2 m through changing evapotranspiration. The simulation results of soil temperature and moisture suggest that better vegetation conditions are conducive to maintaining the thermal stability of the underlying permafrost, and the advanced initial thawing time and increasing thawing rate of soil ice with the increase in the LAI may have a great influence on the timing and magnitude of supra-permafrost groundwater. This study quantifies the impact of vegetation change on surface and subsurface hydrothermal processes and provides a basic understanding for evaluating the impact of vegetation degradation on the water-heat exchange in permafrost regions under climate change.
基金The Key Project of the National Ninth-Five-Year Plan No. 96-004-02-09The 48Project of Ministry of Water Resources No. 985106The Project of Chinese Academy of Sciences
文摘Through the study of mutual process between groundwater systems and eco-environmental water demand, the eco-environmental water demand is brought into groundwater systems model as the important water consumption item and unification of groundwater抯 economic, environmental and ecological functions were taken into account. Based on eco-environmental water demand at Da抋n in Jilin province, a three-dimensional simulation and optimized management model of groundwater systems was established. All water balance components of groundwater systems in 1998 and 1999 were simulated with this model and the best optimal exploitation scheme of groundwater systems in 2000 was determined, so that groundwater resource was efficiently utilized and good economic, ecologic and social benefits were obtained.
基金Supported by Study of Water Consumption Coefficient in the Irrigation Area of the Yellow River Basin in Qinghai Province(QX2012-019)
文摘The low degree of development and utilization as well as the contradiction between supply and demand of water resources in Huangshui River basin are the main restricting factors of the local agricultural development. The study on the simulation of irrigation water loss based on the VSMB model has very important significance to strengthening regional water management and improving water resource utilization efficiency. Five groundwater wells were set up to carry out the farmland irrigation water infiltration and the experimental study on groundwater dynamic effect. Two soil moisture monitoring sites were set up in two typical plots of Daxia and Guanting irrigation area at the same time and TDR300 was used to monitor four kinds of deep soil moisture( 10 cm,30 cm,50 cm and 70 cm). On this basis,the VSMB model was used to study the irrigation water loss in the irrigation area of Yellow River valley of Qinghai Province,including soil moisture content,the actual evapotranspiration,infiltration,runoff,groundwater buried depth and so on. The results showed that the water consumption caused by soil evaporation and crop transpiration accounted for 46. 4% and 24. 1% of the total precipitation plus irrigation,respectively,and the leakage accounted for 30. 3% and 60. 6% of the total precipitation plus irrigation,respectively,from March 1,2013 to April 30,and from August 1 to September 30. The actual evaporation of the GT- TR1 and GT- TR2 sites in the whole year of 2013 was 632. 6 mm and 646. 9 mm,respectively,and the leakage accounted for 2. 6% and 1. 2% of the total precipitation plus irrigation,respectively. RMSE of the simulation results of the groundwater depth in Daxia irrigation area during the two periods was 92. 3 mm and 27. 7 mm,respectively. And RMSE of the simulation results of the water content of soil profile in the two monitoring sites of Guanting irrigation area was 2. 04% and 5. 81%,respectively,indicating that the simulation results were reliable.
基金funded by the National Natural Science Foundation of China-Henan Talent Training Joint Foundation (Grant No.U1504404)the National Natural Science Foundation of China: Dynamic mechanism and ecological effect of watershed transformation of surface water and groundwater and groundwater in some typical areas in Junggar basin (Grant No.U1603243)。
文摘Mountain block recharge(MBR),an important water resource,is a widespread process that recharges lowland aquifers.However,little is known about MBR due to the limited climatic and geologic data in mountainous regions such as the northern central foothills of Tianshan.Here,we present an approach to quantify MBR through the combination of water balance calculations and numerical modeling.MBR calculated from the water balance in the data-limited Tianshan Mountains is employed as a fluid-flux boundary condition in the numerical model of the plain.To verify the performance of the model,mean absolute error and root mean square error were used.Results show that the volume of water that is recharging the aquifer via MBR is 107.29 million m^(3)/yr,accounting for 2.2% of the total precipitation that falls in the mountains.Additionally,53.3% of that precipitation enters the plain aquifer via runoff,totaling 2,652.68 million m^(3)/yr.The lower volume of MBR is attributed to a major range-bounding anticline with apparent low permeability in the Tianshan Mountains.Through numerical modeling of groundwater,MBR coming from bedrock was found to be significant,accounting for 14% of total aquifer recharge in the plain,only after the portion of runoff seepage.This research contributes to a deeper understanding of MBR,and may provide instructions for estimating groundwater recharge in arid and semi-arid areas.