期刊文献+
共找到238篇文章
< 1 2 12 >
每页显示 20 50 100
A Scheme Library-Based Ant Colony Optimization with 2-Opt Local Search for Dynamic Traveling Salesman Problem
1
作者 Chuan Wang Ruoyu Zhu +4 位作者 Yi Jiang Weili Liu Sang-Woon Jeon Lin Sun Hua Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第5期1209-1228,共20页
The dynamic traveling salesman problem(DTSP)is significant in logistics distribution in real-world applications in smart cities,but it is uncertain and difficult to solve.This paper proposes a scheme library-based ant... The dynamic traveling salesman problem(DTSP)is significant in logistics distribution in real-world applications in smart cities,but it is uncertain and difficult to solve.This paper proposes a scheme library-based ant colony optimization(ACO)with a two-optimization(2-opt)strategy to solve the DTSP efficiently.The work is novel and contributes to three aspects:problemmodel,optimization framework,and algorithmdesign.Firstly,in the problem model,traditional DTSP models often consider the change of travel distance between two nodes over time,while this paper focuses on a special DTSP model in that the node locations change dynamically over time.Secondly,in the optimization framework,the ACO algorithm is carried out in an offline optimization and online application framework to efficiently reuse the historical information to help fast respond to the dynamic environment.The framework of offline optimization and online application is proposed due to the fact that the environmental change inDTSPis caused by the change of node location,and therefore the newenvironment is somehowsimilar to certain previous environments.This way,in the offline optimization,the solutions for possible environmental changes are optimized in advance,and are stored in a mode scheme library.In the online application,when an environmental change is detected,the candidate solutions stored in the mode scheme library are reused via ACO to improve search efficiency and reduce computational complexity.Thirdly,in the algorithm design,the ACO cooperates with the 2-opt strategy to enhance search efficiency.To evaluate the performance of ACO with 2-opt,we design two challenging DTSP cases with up to 200 and 1379 nodes and compare them with other ACO and genetic algorithms.The experimental results show that ACO with 2-opt can solve the DTSPs effectively. 展开更多
关键词 dynamic traveling salesman problem(DTSP) offline optimization and online application ant colony optimization(ACO) two-optimization(2-opt)strategy
下载PDF
Predictive Mathematical and Statistical Modeling of the Dynamic Poverty Problem in Burundi: Case of an Innovative Economic Optimization System
2
作者 Fulgence Nahayo Ancille Bagorizamba +1 位作者 Marc Bigirimana Irene Irakoze 《Open Journal of Optimization》 2021年第4期101-125,共25页
The mathematical and statistical modeling of the problem of poverty is a major challenge given Burundi’s economic development. Innovative economic optimization systems are widely needed to face the problem of the dyn... The mathematical and statistical modeling of the problem of poverty is a major challenge given Burundi’s economic development. Innovative economic optimization systems are widely needed to face the problem of the dynamic of the poverty in Burundi. The Burundian economy shows an inflation rate of -1.5% in 2018 for the Gross Domestic Product growth real rate of 2.8% in 2016. In this research, the aim is to find a model that contributes to solving the problem of poverty in Burundi. The results of this research fill the knowledge gap in the modeling and optimization of the Burundian economic system. The aim of this model is to solve an optimization problem combining the variables of production, consumption, budget, human resources and available raw materials. Scientific modeling and optimal solving of the poverty problem show the tools for measuring poverty rate and determining various countries’ poverty levels when considering advanced knowledge. In addition, investigating the aspects of poverty will properly orient development aid to developing countries and thus, achieve their objectives of growth and the fight against poverty. This paper provides a new and innovative framework for global scientific research regarding the multiple facets of this problem. An estimate of the poverty rate allows good progress with the theory and optimization methods in measuring the poverty rate and achieving sustainable development goals. By comparing the annual food production and the required annual consumption, there is an imbalance between different types of food. Proteins, minerals and vitamins produced in Burundi are sufficient when considering their consumption as required by the entire Burundian population. This positive contribution for the latter comes from the fact that some cows, goats, fishes, ···, slaughtered in Burundi come from neighboring countries. Real production remains in deficit. The lipids, acids, calcium, fibers and carbohydrates produced in Burundi are insufficient for consumption. This negative contribution proves a Burundian food deficit. It is a decision-making indicator for the design and updating of agricultural policy and implementation programs as well as projects. Investment and economic growth are only possible when food security is mastered. The capital allocated to food investment must be revised upwards. Demographic control is also a relevant indicator to push forward Burundi among the emerging countries in 2040. Meanwhile, better understanding of the determinants of poverty by taking cultural and organizational aspects into account guides managers for poverty reduction projects and programs. 展开更多
关键词 Poverty problem Mathematical Modeling Applied Statistics Operational Research Symplectic Partitioned Runge Kutta Algorithm dynamic Programming Matlab and Simulink AMPL KNITRO Gurobi Economic optimization Technology Transfer Incubation of Results Sustainable Development Goals
下载PDF
Multi-population and diffusion UMDA for dynamic multimodal problems 被引量:3
3
作者 Yan Wu Yuping Wang +1 位作者 Xiaoxiong Liu Jimin Ye 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第5期777-783,共7页
In dynamic environments,it is important to track changing optimal solutions over time.Univariate marginal distribution algorithm(UMDA) which is a class algorithm of estimation of distribution algorithms attracts mor... In dynamic environments,it is important to track changing optimal solutions over time.Univariate marginal distribution algorithm(UMDA) which is a class algorithm of estimation of distribution algorithms attracts more and more attention in recent years.In this paper a new multi-population and diffusion UMDA(MDUMDA) is proposed for dynamic multimodal problems.The multi-population approach is used to locate multiple local optima which are useful to find the global optimal solution quickly to dynamic multimodal problems.The diffusion model is used to increase the diversity in a guided fashion,which makes the neighbor individuals of previous optimal solutions move gradually from the previous optimal solutions and enlarge the search space.This approach uses both the information of current population and the part history information of the optimal solutions.Finally experimental studies on the moving peaks benchmark are carried out to evaluate the proposed algorithm and compare the performance of MDUMDA and multi-population quantum swarm optimization(MQSO) from the literature.The experimental results show that the MDUMDA is effective for the function with moving optimum and can adapt to the dynamic environments rapidly. 展开更多
关键词 univariate marginal distribution algorithm(UMDA) dynamic multimodal problems dynamic optimization multipopulation scheme.
下载PDF
Recent Advances in Particle Swarm Optimization for Large Scale Problems
4
作者 Danping Yan Yongzhong Lu +3 位作者 Min Zhou Shiping Chen David Levy Jicheng You 《Journal of Autonomous Intelligence》 2018年第1期22-35,共14页
Accompanied by the advent of current big data ages,the scales of real world optimization problems with many decisive design variables are becoming much larger.Up to date,how to develop new optimization algorithms for ... Accompanied by the advent of current big data ages,the scales of real world optimization problems with many decisive design variables are becoming much larger.Up to date,how to develop new optimization algorithms for these large scale problems and how to expand the scalability of existing optimization algorithms have posed further challenges in the domain of bio-inspired computation.So addressing these complex large scale problems to produce truly useful results is one of the presently hottest topics.As a branch of the swarm intelligence based algorithms,particle swarm optimization (PSO) for coping with large scale problems and its expansively diverse applications have been in rapid development over the last decade years.This reviewpaper mainly presents its recent achievements and trends,and also highlights the existing unsolved challenging problems and key issues with a huge impact in order to encourage further more research in both large scale PSO theories and their applications in the forthcoming years. 展开更多
关键词 SWARM INTELLIGENCE particle SWARM optimization large scale optimization problem cooperative coevolution ENSEMBLE evolution static GROUPING METHOD dynamic GROUPING METHOD
下载PDF
A Parallel Search System for Dynamic Multi-Objective Traveling Salesman Problem
5
作者 Weiqi Li 《Journal of Mathematics and System Science》 2014年第5期295-314,共20页
This paper introduces a parallel search system for dynamic multi-objective traveling salesman problem. We design a multi-objective TSP in a stochastic dynamic environment. This dynamic setting of the problem is very u... This paper introduces a parallel search system for dynamic multi-objective traveling salesman problem. We design a multi-objective TSP in a stochastic dynamic environment. This dynamic setting of the problem is very useful for routing in ad-hoc networks. The proposed search system first uses parallel processors to identify the extreme solutions of the search space for each ofk objectives individually at the same time. These solutions are merged into the so-called hit-frequency matrix E. The solutions in E are then searched by parallel processors and evaluated for dominance relationship. The search system is implemented in two different ways master-worker architecture and pipeline architecture. 展开更多
关键词 dynamic multi-objective optimization traveling salesman problem parallel search algorithm solution attractor.
下载PDF
A Hybrid Immigrants Scheme for Genetic Algorithms in Dynamic Environments 被引量:9
6
作者 Shengxiang Yang Renato Tinós 《International Journal of Automation and computing》 EI 2007年第3期243-254,共12页
Dynamic optimization problems are a kind of optimization problems that involve changes over time. They pose a serious challenge to traditional optimization methods as well as conventional genetic algorithms since the ... Dynamic optimization problems are a kind of optimization problems that involve changes over time. They pose a serious challenge to traditional optimization methods as well as conventional genetic algorithms since the goal is no longer to search for the optimal solution(s) of a fixed problem but to track the moving optimum over time. Dynamic optimization problems have attracted a growing interest from the genetic algorithm community in recent years. Several approaches have been developed to enhance the performance of genetic algorithms in dynamic environments. One approach is to maintain the diversity of the population via random immigrants. This paper proposes a hybrid immigrants scheme that combines the concepts of elitism, dualism and random immigrants for genetic algorithms to address dynamic optimization problems. In this hybrid scheme, the best individual, i.e., the elite, from the previous generation and its dual individual are retrieved as the bases to create immigrants via traditional mutation scheme. These elitism-based and dualism-based immigrants together with some random immigrants are substituted into the current population, replacing the worst individuals in the population. These three kinds of immigrants aim to address environmental changes of slight, medium and significant degrees respectively and hence efficiently adapt genetic algorithms to dynamic environments that are subject to different severities of changes. Based on a series of systematically constructed dynamic test problems, experiments are carried out to investigate the performance of genetic algorithms with the hybrid immigrants scheme and traditional random immigrants scheme. Experimental results validate the efficiency of the proposed hybrid immigrants scheme for improving the performance of genetic algorithms in dynamic environments. 展开更多
关键词 Genetic algorithms random immigrants elitism-based immigrants DUALISM dynamic optimization problems.
下载PDF
Chaotic Neural Network Technique for "0-1" Programming Problems 被引量:1
7
作者 王秀宏 乔清理 王正欧 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第4期99-105,共7页
0-1 programming is a special case of the integer programming, which is commonly encountered in many optimization problems. Neural network and its general energy function are presented for 0-1 optimization problem. The... 0-1 programming is a special case of the integer programming, which is commonly encountered in many optimization problems. Neural network and its general energy function are presented for 0-1 optimization problem. Then, the 0-1 optimization problems are solved by a neural network model with transient chaotic dynamics (TCNN). Numerical simulations of two typical 0-1 optimization problems show that TCNN can overcome HNN's main drawbacks that it suffers from the local minimum and can search for the global optimal solutions in to solveing 0-1 optimization problems. 展开更多
关键词 neural network chaotic dynamics 0-1 optimization problem.
下载PDF
An Improved GT Algorithm for Solving Complicated Dynamic Function Optimization Problems
8
作者 ZHANG Qing LI Yan +1 位作者 KANG Zhuo KANG Lishan 《Wuhan University Journal of Natural Sciences》 CAS 2009年第5期404-408,共5页
An improved Guo Tao algorithm (IGT algorithm) is proposed for solving complicated dynamic function optimization problems, and a function optimization benchmark problem with constrained condition and two dynamic para... An improved Guo Tao algorithm (IGT algorithm) is proposed for solving complicated dynamic function optimization problems, and a function optimization benchmark problem with constrained condition and two dynamic parameters has been designed. The results achieved by IGT algorithm have been compared with the results from the Guo Tao algorithm (GT algorithm). It is shown that the new algorithm (IGT algorithm) provides better results. This preliminarily demonstrates the efficiency of the new algorithm in complicated dynamic environments. 展开更多
关键词 dynamic function optimization Guo Tao algorithm (GT algorithm) benchmark problems
原文传递
面向大规模优化问题的精英贡献两阶段动态分组算法
9
作者 王彬 张娇 +2 位作者 李薇 王晓帆 金海燕 《计算机工程》 CAS CSCD 北大核心 2024年第7期154-163,共10页
协同进化框架是解决大规模全局优化问题的有效方法,设计合理的决策变量分组方法是提高协同进化算法性能的关键,而利用精英决策变量动态构建精英子组件可以有效提高进化效率,但在进行大规模优化时,其可能将无关的变量分配到同一子组件,... 协同进化框架是解决大规模全局优化问题的有效方法,设计合理的决策变量分组方法是提高协同进化算法性能的关键,而利用精英决策变量动态构建精英子组件可以有效提高进化效率,但在进行大规模优化时,其可能将无关的变量分配到同一子组件,从而无法充分利用分组提高协同进化效率。针对该问题,提出一种精英贡献两阶段动态分组算法(EC-TSDG)。在分组前阶段,对变量进行随机分组,评估变量的贡献程度,从众多变量中寻找精英贡献变量;在分组后阶段,利用变量的相关关系寻找与精英决策变量存在相互作用的剩余变量,并将其合并形成精英子组件,使得精英子组件内部的变量两两相关,以此提高变量分组的准确性以及算法的收敛速度,避免子组件之间的相关干扰。最后,采用具有外部存档的自适应差分进化算法作为优化器进化各个子组件。在CEC'2013测试集上与其他先进算法进行比较,实验结果表明,EC-TSDG收敛速度快于对比算法,Friedman检验值为1.43,平均排序较对比的动态分组算法DCC平均提升36.78%。 展开更多
关键词 协同进化 大规模优化问题 两阶段动态分组 贡献信息 精英子组件
下载PDF
混合遗传变邻域搜索算法求解柔性车间调度问题
10
作者 周伟 孙瑜 +1 位作者 李西兴 王林琳 《计算机工程与设计》 北大核心 2024年第7期2041-2049,共9页
针对考虑生产成本的柔性作业车间调度问题(flow job shop scheduling problem, FJSP),以完工时间与加工成本为优化指标,提出一种求解FJSP的混合遗传变邻域搜索算法。根据个体适应度对种群分割,结合自适应交叉概率改进子代种群产生方式;... 针对考虑生产成本的柔性作业车间调度问题(flow job shop scheduling problem, FJSP),以完工时间与加工成本为优化指标,提出一种求解FJSP的混合遗传变邻域搜索算法。根据个体适应度对种群分割,结合自适应交叉概率改进子代种群产生方式;设计两种邻域结构增强算法的局部搜索能力;提出一种基于动态交叉变异概率的优化算法流程提高求解效率。运用提出的算法求解基准实例与实际问题测试,验证了算法的有效性。 展开更多
关键词 柔性作业车间调度 加工成本 遗传算法 变邻域搜索 混合算法 动态概率 优化
下载PDF
水下爆炸冲击载荷下波纹夹芯板动态响应及结构优化设计
11
作者 荣吉利 王圣龙 +1 位作者 陈子超 韦振乾 《北京理工大学学报》 EI CAS CSCD 北大核心 2024年第7期679-691,共13页
研究波纹夹芯板在水下爆炸冲击载荷作用下的动态响应规律和抗冲击性能,对提升舰船结构的水下防护能力有重要意义.利用水下爆炸等效冲击加载装置对波纹夹芯板进行了试验.基于ABAQUS建立流固耦合有限元模型对试验进行模拟.测点峰值压力的... 研究波纹夹芯板在水下爆炸冲击载荷作用下的动态响应规律和抗冲击性能,对提升舰船结构的水下防护能力有重要意义.利用水下爆炸等效冲击加载装置对波纹夹芯板进行了试验.基于ABAQUS建立流固耦合有限元模型对试验进行模拟.测点峰值压力的仿真值与试验值误差不超过4.55%,后面板中心位移的仿真值与试验值误差仅为0.8%.以后面板中心位移和夹芯板比吸能作为抗冲击性能指标,考虑了影响面板厚度以及芯层形状的6个波纹夹芯板结构参数,基于仿真分析了各个参数对抗冲击性能的影响.基于克里金模型建立了波纹夹芯板抗冲击性能与结构参数的代理模型.利用NSGA-Ⅱ算法对后面板中心位移和夹芯板比吸能进行了多目标优化.优化后的后面板中心位移平均减小了约23.57%,夹芯板比吸能平均提高了约27.91%. 展开更多
关键词 水下爆炸 波纹夹芯板 动态响应 多目标优化问题
下载PDF
An extended discrete particle swarm optimization algorithm for the dynamic facility layout problem 被引量:3
12
作者 Hassan REZAZADEH Mehdi GHAZANFARI +1 位作者 Mohammad SAIDI-MEHRABAD Seyed JAFAR SADJADI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第4期520-529,共10页
We extended an improved version of the discrete particle swarm optimization (DPSO) algorithm proposed by Liao et al.(2007) to solve the dynamic facility layout problem (DFLP). A computational study was performed with ... We extended an improved version of the discrete particle swarm optimization (DPSO) algorithm proposed by Liao et al.(2007) to solve the dynamic facility layout problem (DFLP). A computational study was performed with the existing heuristic algorithms, including the dynamic programming (DP), genetic algorithm (GA), simulated annealing (SA), hybrid ant system (HAS), hybrid simulated annealing (SA-EG), hybrid genetic algorithms (NLGA and CONGA). The proposed DPSO algorithm, SA, HAS, GA, DP, SA-EG, NLGA, and CONGA obtained the best solutions for 33, 24, 20, 10, 12, 20, 5, and 2 of the 48 problems from (Balakrishnan and Cheng, 2000), respectively. These results show that the DPSO is very effective in dealing with the DFLP. The extended DPSO also has very good computational efficiency when the problem size increases. 展开更多
关键词 dynamic facility layout problem (DFLP) Particle swarm optimization (PSO) optimization Heuristic method
原文传递
面向动态公交的离散分层记忆粒子群优化算法
13
作者 黄君泽 吴文渊 +2 位作者 李轶 石明全 王正江 《计算机工程》 CAS CSCD 北大核心 2024年第4期20-30,共11页
随着智慧城市、智慧交通的发展,移动互联网和公交智能基础设施以及相关数据的不断完善,通过用户手机预约公交服务的新型公交运营方式——动态公交,已经成为许多城市公交发展的重要探索方向。但目前,对动态公交问题的建模、算法研究不足... 随着智慧城市、智慧交通的发展,移动互联网和公交智能基础设施以及相关数据的不断完善,通过用户手机预约公交服务的新型公交运营方式——动态公交,已经成为许多城市公交发展的重要探索方向。但目前,对动态公交问题的建模、算法研究不足。基于这一研究现状,提出动态公交问题模型和面向动态公交的离散分层记忆粒子群优化(PSO)算法。首先给出动态公交问题的目标函数和约束条件,给出动态公交问题的解的形式,并定义解的编辑距离;其次提出使用数据驱动的预计算路径集生成PSO算法的优质初始解的方法,给出基于解的编辑距离的PSO算法中粒子的变异概率和自适应收敛系数的计算方式;最后提出将粒子群分层求解的方法,其中低层粒子群可复用、可继承,从而减少单时间片内、时间片间复制和重初始化带来的性能损耗。基于重庆市北碚区蔡家岗街道的真实场景和亿级历史数据建立仿真环境进行实验,实验结果表明:相对于不分层PSO算法,分层PSO算法通过复用和继承能缩短超80%计算用时;自适应参数和变异机制能帮助算法更稳定地收敛到更优解;相对于传统公交系统,动态公交能在同等运力限制下,提高22%的乘客接单率,节省39.1%的乘客出行时间,所提算法能满足公交运营商在片区内进行动态公交调度的需求;相对于对比算法,所提算法平均缩短了85.3%的计算用时,并且在仅耗用80%里程的情况下提高了至少12%的接单率。 展开更多
关键词 智慧交通 动态公交问题 电召问题 粒子群优化算法 预计算路径集 自适应变异
下载PDF
基于动态熵进化的异构蚁群优化
14
作者 王世科 游晓明 +1 位作者 尹玲 刘升 《电子科技》 2024年第10期6-14,共9页
针对蚁群算法在求解旅行商问题(Traveling Salesman Problem,TSP)时收敛速度慢、求解精度低等问题,文中提出了一种基于动态熵进化的异构蚁群优化算法。该算法中,由蚁群系统(Ant Colony System,ACS)和最大最小蚂蚁系统(Max-Min Ant Syste... 针对蚁群算法在求解旅行商问题(Traveling Salesman Problem,TSP)时收敛速度慢、求解精度低等问题,文中提出了一种基于动态熵进化的异构蚁群优化算法。该算法中,由蚁群系统(Ant Colony System,ACS)和最大最小蚂蚁系统(Max-Min Ant System,MMAS)构成异构双种群,实现种群间优势互补。文中提出动态熵进化策略,通过信息熵来动态控制种群间的交流频率,并将两个种群各自最优解的公共路径的信息素进行融合,以调节低熵种群最优路径上的信息素分布,进而有效保留两个种群的历史搜索信息以及加快算法收敛。将低熵种群最优解的非公共路径进行伪初始化,以扩大其在较优解附近的搜索范围,提高解的精度,从而实现两个种群的协同进化。仿真实验结果表明,所提算法在求解大规模旅行商问题时能有效平衡算法多样性与收敛性之间的关系。 展开更多
关键词 蚁群优化 异构种群 多样性 动态熵 协同进化 信息素融合 伪初始化 旅行商问题
下载PDF
优化算法中均值信息利用研究
15
作者 王方 王鹏 焦育威 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第1期49-57,共9页
研究了启发式优化算法中种群向均值点迁移的策略,并发现该策略对于提升算法性能具有重要影响,同时具备物理和数学含义.通过极大似然估计方法对基态波函数进行参数估计,建立了量子系统达到基态时最优解概率密度函数与种群均值点之间的联... 研究了启发式优化算法中种群向均值点迁移的策略,并发现该策略对于提升算法性能具有重要影响,同时具备物理和数学含义.通过极大似然估计方法对基态波函数进行参数估计,建立了量子系统达到基态时最优解概率密度函数与种群均值点之间的联系,并从动力学的角度解释了种群均值点的物理意义.通过在几种经典优化算法上添加利用均值点位置信息的操作,在CEC2013测试集与摄像机布局优化的工程应用上进行对照实验,实验结果表明合理利用均值点位置信息可以有效提升算法的性能. 展开更多
关键词 量子动力学 优化问题 均值信息 动力学方程 极大似然估计
下载PDF
基于Fuch映射的改进白鲸优化算法及应用 被引量:1
16
作者 陈心怡 张孟健 王德光 《计算机工程与科学》 CSCD 北大核心 2024年第8期1482-1492,共11页
针对标准白鲸优化算法(BWO)存在收敛精度低、自适应能力有限和抗停滞能力弱等缺点,从混沌初始化、参数混沌和非线性控制策略3个角度,提出2种基于Fuch映射和动态反向学习的改进白鲸优化算法(CIOEBWO和CPOEBWO)。采用Fuch混沌初始化,提高... 针对标准白鲸优化算法(BWO)存在收敛精度低、自适应能力有限和抗停滞能力弱等缺点,从混沌初始化、参数混沌和非线性控制策略3个角度,提出2种基于Fuch映射和动态反向学习的改进白鲸优化算法(CIOEBWO和CPOEBWO)。采用Fuch混沌初始化,提高算法初始化种群的遍历性,从而提升算法寻优精度和收敛速度;在开发阶段,引入Fuch混沌映射对参数C 1进行动态调节,协调算法的全局搜索和局部搜索,有效提高算法自适应能力;基于上述2种改进方式,分别引入动态反向学习策略,丰富优质个体数量,提升算法整体抗停滞能力。根据8种基本测试函数仿真实验和Friedman秩检验结果可得,改进算法的收敛精度、自适应能力和抗停滞能力均得到了有效提升。与BWO和CIOEBWO相比,CPOEBWO显现出较为优异的性能。此外,从CPOEBWO与常见的6种对比算法的寻优结果可知,CPOEBWO算法有较强的寻优能力和鲁棒性。最后,为展示CPOEBWO算法的适用性和有效性,将其应用于工程优化问题。 展开更多
关键词 白鲸优化算法 Fuch映射 动态反向学习 参数混沌策略 工程优化问题
下载PDF
城市动态灾害环境下多种类多目标路径优化算法
17
作者 张盈斐 李航 +3 位作者 齐玉亮 王伟明 张海林 胡小兵 《中国安全科学学报》 CAS CSCD 北大核心 2024年第9期217-224,共8页
为提高城市应对动态灾害的响应能力,针对动态灾害环境中应急车辆行驶路线的规划问题,考虑路径安全度为乘法权重,车辆行驶路径长度和通行时间为加法权重,首先,提出一种动态环境下可同时计算乘法与加法权重的多种类多目标路径优化问题(MCM... 为提高城市应对动态灾害的响应能力,针对动态灾害环境中应急车辆行驶路线的规划问题,考虑路径安全度为乘法权重,车辆行驶路径长度和通行时间为加法权重,首先,提出一种动态环境下可同时计算乘法与加法权重的多种类多目标路径优化问题(MCMPOP)的求解模型;其次,通过改进涟漪扩散算法(RSA)求解MCMPOP;然后,为验证算法的有效性,通过510组仿真试验,对比MCMPOP下非支配排序遗传算法(NSGA)-Ⅱ与改进RSA的计算时间与解的质量;最后,选取“7·20”郑州特大暴雨事件数据进行实例验证。结果表明:与NSGA-Ⅱ相比,改进的RSA可以求解出完整的Pareto最优路径集合,有效保证算法的计算效率和Pareto最优解的质量;可在应急车辆可接受的安全范围内,筛选出行驶路线长度和时间成本较小的Pareto最优路径,为应急车辆提供更多可靠的行驶路线,提高城市的应急管理能力。 展开更多
关键词 动态灾害环境 多种类多目标路径优化问题(MCMPOP) 涟漪扩散算法(RSA) 路线规划 PARETO前沿
下载PDF
卫星三轴振动试验条件的等效制定方法
18
作者 马雨嘉 刘质加 +3 位作者 扈勇强 冯振伟 常静 张一鹏 《先进小卫星技术(中英文)》 2024年第4期52-61,共10页
卫星主动段所承受的真实振动环境为多轴同时发生,目前的振动试验方法为单轴分别加载,是一种非真实近似方法.为了模拟真实的卫星振动环境,并缩短研制周期,提出了一种卫星三轴振动试验条件等效制定方法.利用有限元分析技术开展单轴仿真分... 卫星主动段所承受的真实振动环境为多轴同时发生,目前的振动试验方法为单轴分别加载,是一种非真实近似方法.为了模拟真实的卫星振动环境,并缩短研制周期,提出了一种卫星三轴振动试验条件等效制定方法.利用有限元分析技术开展单轴仿真分析,基于单轴仿真结果和响应最大包络原则,将该问题转化为数学优化问题.引入遗传算法(geneticalgorithm,GA)等全局优化算法,搭建优化流程,实现三轴试验条件的合理化制定.该方法能够真实模拟主动段振动环境,使航天器考核更合理. 展开更多
关键词 卫星 三轴振动试验 动力学分析 优化问题 试验条件 遗传算法
下载PDF
A Multi-Objective Scheduling and Routing Problem for Home Health Care Services via Brain Storm Optimization 被引量:4
19
作者 Xiaomeng Ma Yaping Fu +2 位作者 Kaizhou Gao Lihua Zhu Ali Sadollah 《Complex System Modeling and Simulation》 2023年第1期32-46,共15页
At present,home health care(HHC)has been accepted as an effective method for handling the healthcare problems of the elderly.The HHC scheduling and routing problem(HHCSRP)attracts wide concentration from academia and ... At present,home health care(HHC)has been accepted as an effective method for handling the healthcare problems of the elderly.The HHC scheduling and routing problem(HHCSRP)attracts wide concentration from academia and industrial communities.This work proposes an HHCSRP considering several care centers,where a group of customers(i.e.,patients and the elderly)require being assigned to care centers.Then,various kinds of services are provided by caregivers for customers in different regions.By considering the skill matching,customers’appointment time,and caregivers’workload balancing,this article formulates an optimization model with multiple objectives to achieve minimal service cost and minimal delay cost.To handle it,we then introduce a brain storm optimization method with particular multi-objective search mechanisms(MOBSO)via combining with the features of the investigated HHCSRP.Moreover,we perform experiments to test the effectiveness of the designed method.Via comparing the MOBSO with two excellent optimizers,the results confirm that the developed method has significant superiority in addressing the considered HHCSRP. 展开更多
关键词 home health care multi-center service multi-objective optimization scheduling and routing problems brain storm optimization
原文传递
求解动态旅行商问题的蚁群优化算法新策略
20
作者 刘孟莹 秦进 陈双 《计算机仿真》 2024年第8期349-355,368,共8页
动态旅行商问题是标准旅行商问题的一个扩展,由于其现实应用广泛,吸引了大量研究者的兴趣。蚁群优化算法可以转化历史环境信息,天然具有适应动态改变的能力,可以解决动态旅行商问题。使用蚁群优化算法解决优化问题时,算法探索能力和利... 动态旅行商问题是标准旅行商问题的一个扩展,由于其现实应用广泛,吸引了大量研究者的兴趣。蚁群优化算法可以转化历史环境信息,天然具有适应动态改变的能力,可以解决动态旅行商问题。使用蚁群优化算法解决优化问题时,算法探索能力和利用能力的权衡是一个关键问题。传统的思路是在搜索前期侧重探索能力,使蚁群充分获取搜索空间的信息,随着搜索过程的进行逐渐增强利用能力,使蚁群逐渐收敛。然而,以上思路不利于在动态场景中快速获得质量较高的解。针对动态旅行商问题,提出了一种新的探索-利用权衡策略,在环境变化后,首先使用模拟退火算法增强利用能力以快速获得质量较高的解,在解质量难以提高时再使用自适应性轮盘赌选择方法帮助算法跳出局部极值。在权重变化的动态旅行商问题上的实验证明,所提新策略优于其它蚁群优化算法及变体。 展开更多
关键词 动态旅行商问题 蚁群优化 探索-利用权衡策略 模拟退火算法 轮盘赌选择方法
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部